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Ab initio study of the effect of vacancies on the thermal conductivity of boron arsenide
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Using a first principles theoretical approach, we show that vacancies give anomalously strong suppression of
the lattice thermal conductivity κ of cubic Boron arsenide (BAs), which has recently been predicted to have an
exceptionally high κ . This effect is tied to the unusually large phonon lifetimes in BAs and results in a stronger
reduction in the BAs κ than occurs in diamond. The large changes in bonding around vacancies cannot be
accurately captured using standard perturbative methods and are instead treated here using an ab initio Green
function approach. As and B vacancies are found to have similar effects on κ . In contrast, we show that commonly
used mass disorder models for vacancies fail for large mass ratio compounds such as BAs, incorrectly predicting
much stronger (weaker) phonon scattering when the vacancy is on the heavy (light) atom site. The quantitative
treatment given here contributes to fundamental understanding of the effect of point defects on thermal transport
in solids and provides guidance to synthesis efforts to grow high quality BAs.
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I. INTRODUCTION

Cubic boron arsenide (BAs) has recently been predicted to
have an ultrahigh lattice thermal conductivity κ comparable
to that of diamond [1,2]. This has led to an increased interest
in the material because of the novel way in which its high
κ is achieved and because of its potential for use in thermal
management applications. To date, experimental verification
of the high κ of BAs has proved challenging because of the
difficulty in growing high quality single crystal samples [3,4].
In particular, in Ref. [3], the presence of high As vacancy
concentrations was suspected from chemical vapor transport
synthesis. Therefore it is of importance to accurately calculate
the effect of As vacancies on the BAs κ .

BAs is a semiconductor with an energy gap of about
1.5 eV [5]. Thus, heat is carried primarily by phonons. The
standard method of studying the effect of point defects such as
vacancies on phonon thermal transport is the Born approxima-
tion [6], which treats the defect in lowest-order perturbation
theory. However, vacancies represent large perturbations,
making the Born approximation questionable. Furthermore,
simple theories have treated vacancies as effective on-site mass
defects [7]. For large mass ratio compounds, such theories
would predict much larger phonon scattering from vacancies
on the heavy atom site compared to those on the light atom
site. Recently, that view has been called into question. Instead,
it has been shown that vacancies should be treated only
as bond defects since a change in the mass of a noninter-
acting atom does not perturb the dynamics of the system
[8].

In this paper, we calculate the phonon-vacancy scattering
rates and lattice thermal conductivity of BAs for both As
and B vacancies as a function of vacancy concentration
using a Green’s (Green) [9] function based T -matrix ap-
proach [8,10,11], which treats the perturbation to all orders.
Section II describes the first principles theory of phonon
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thermal transport. In Sec. III, the T -matrix treatment of
phonon-vacancy scattering is given. Section IV describes the
computational details, while Sec. V presents the results along
with discussion. Section VI summarizes our findings.

II. AB INITIO PHONON HEAT TRANSPORT

In semiconducting and insulating materials phonons are
the main carriers of heat. Three-phonon scattering and
phonon-defect scattering typically limit the lattice thermal
conductivity around and above room temperature [12]. The
nonequilibrium phonon distribution resulting from an applied
temperature gradient in a material is described through the
Peierls-Boltzmann transport equation (BTE):

vλ · ∇T
∂nλ

∂T
=

(
∂nλ

∂t

)
collisions

, (1)

where λ ≡ (q,p) labels the phonon mode with wave vector
q and polarization p, nλ is the nonequilibrium distribution
of phonons, vλ is the phonon group velocity, and ∇T is
the applied temperature gradient. Here, the left-hand-side
term represents phonon drift due to the applied temperature
gradient, and the right-hand side is due to phonon scattering.

In our first principles approach, we take the temperature
gradient ∇T to be small. The nonequilibrium phonon distri-
bution can then be expanded in powers of ∇T and, retaining
only up to linear order in ∇T , it can be written as nλ =
n0

λ + (−∂n0
λ/∂T )Fλ · ∇T , where n0

λ is the Bose distribution.
In this limit, the BTE is also linearized in ∇T and can be recast
as Fλ = τ 0

λ (vλ + �λ). Here, 1/τ 0
λ is the total scattering rate in

mode λ, which includes intrinsic phonon-phonon scattering
and scattering from defects, and �λ is a linear function
of Fλ. Explicit definitions of these quantities are given in
Refs. [13,14]. The three-phonon rates are given by Eq. (4)
in Ref. [13]; isotopes are treated as mass defects, and the
phonon-isotope scattering rates in the Born approximation can
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be expressed in closed form for binary cubic compounds [15]:

1

τ iso
λ

= π

6N

∑
k

gk

∣∣êλ
k

∣∣2
Dk(ωλ), (2)

where Dk(ωλ) = ∑
λ′ |êλ′

k |2δ(ωλ − ωλ′) is the partial phonon
density of states of the kth atom in the unit cell, and

gk =
∑

s

fsk

(
�Msk

Mk

)2

(3)

is the mass variance parameter for that atom, with �Msk ≡
Msk − Mk . In these equations, N is the number of unit cells
in the crystal, (2π )−1ωλ and êλ

k are the phonon frequency and
eigenvector in mode λ, fsk and Msk are the concentration and
the mass of the sth type of isotope on the kth atom, and Msk is
the average mass of species k atoms. The thermal conductivity
tensor is given by:

καβ = kB

V

∑
λ

(
�ωλ

kBT

)2

n0
λ

(
n0

λ + 1
)
vα

λF
β

λ , (4)

where α and β are Cartesian components, kB is the Boltzmann
constant, and V is the crystal volume. For cubic compounds,
the thermal conductivity is a scalar: κ ≡ καα .

III. PHONON-VACANCY SCATTERING

The phonon modes are obtained from the dynamical
equation

ω2uiα =
∑
jβ

Kiα,jβ√
MiMj

ujβ, (5)

where Mi is the mass of the ith atom, uiα is the atomic
displacement of the ith atom in the direction α, and Kiα,jβ

are the harmonic interatomic force constants (IFCs). In
general, point defects introduce two perturbation potentials:
V M and V K, representing the mass and IFC perturbations.
The mass perturbation for a defect at defect site i is: V M

iα,jβ =
−ω2(M ′

i − Mi)δij δαβ/Mi , where the primed mass is the mass
of the defect. Note that this type of perturbation acts only at
the defect site. In contrast, the bond perturbation extends over
a region around the defect site. This perturbation is:

V K
iα,jβ = (K ′

iα,jβ − Kiα,jβ )√
MiMj

, (6)

where K ′
iα,jβ gives the harmonic force constant between sites

i and j after the system has relaxed around the defect.
When calculating V M and V K from first principles, care
should be taken that the force constants satisfy translational
and rotational invariance. This can be enforced by slight
modification of the interatomic force constants (IFCs), as
shown in Ref. [8].

Vacancy defects are commonly treated within the Born
approximation and as on-site defects characterized by an
effective mass perturbation that includes both mass and
bond components [7,16–18]. For example, in the model
of Ratsifaritana and Klemens (RK) [7,17,18], the vacancy
perturbation is taken to be:

V M
iα,jβ + V K

iα,jβ = −ω2(2 + Mi/M)δij δαβ, (7)

where the 2 estimates the effect from broken bond linkages,
Mi is the mass of the removed atom on unit cell site i,
and M is the average atomic mass. Note that this expression
depends explicitly on the mass of the removed atom, which has
profound implications for large mass ratio compounds such as
BAs, as discussed below.

However, treating a vacancy as a mass defect is conceptually
wrong. In a lattice the presence of an atom is felt by
its interactions with its neighbors. Creation of a vacancy,
therefore, is equivalent to the removal of all the interactions of
the rest of the crystal with the atom to be removed. This is true
regardless of the mass of the atom. Therefore having a nonzero
V M in the case of a complete vacancy is incorrect. Quantitative
results in favor of this argument have been presented in Ref. [8]
for the case of diamond. The discussion in the paragraph
above highlights the fact that there is an additional important
difference for large mass ratio compounds.

The phonon-vacancy scattering cross section σ is obtained
by solving the Lippmann-Schwinger equation [19] and is given
in our case by [8,10,11]

σλ = sπ

ωλvλ

∑
λ′

∣∣〈λ′∣∣T +(
ω2

λ

)∣∣λ〉∣∣2
δ
(
ω2

λ′ − ω2
λ

)
, (8)

where s is the supercell volume into which the phonon
eigenstate |λ〉 is normalized and T + is known as the T matrix
given by

T + = (I − V G+
0 )−1V, (9)

where I is the identity matrix, V is the perturbation matrix, and
G+

0 is the retarded, unperturbed Green function for phonons
given by:

G+
0,ij (ω2) = lim

z→ω2+i0

∑
λ

〈i|λ〉〈λ|j 〉(z − ω2
λ

)−1
, (10)

where |i〉,|j 〉 represent displacements in the i,j lattice degrees
of freedom. The expansion of Eq. (9) in the perturbation V

gives us the Born series:

T + = V + V G+
0 V + V G+

0 V G+
0 V + ... ≈ V, (11)

where the right-hand side of Eq. (11) defines the typically used
first Born approximation.

From σ the phonon-vacancy scattering rate is obtained
as 1/τ vac

λ = f vλσλ/V0, where f is the volume fraction of
vacancies and V0 is the volume per atom in the pristine lattice.
Here, it is assumed that the vacancies are randomly distributed
throughout the crystal and that the vacancy concentration is
low enough so that each vacancy behaves as an independent
scattering center. We note that the vacancy concentrations
considered here are less than 0.2% corresponding to less
than one in every 500 atoms. For such dilute concentrations,
effects associated with proximity of multiple vacancies such
as coherent scattering of phonons should be negligible.
The phonon-vacancy scattering rates are used along with
the phonon-isotope scattering rates [Eqs. (2) and (3)] and the
phonon-phonon scattering rates to construct the total scattering
rates, which are used in an iterative solution of the phonon
BTE [14].
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Below we compare the results of three approaches to treat
vacancies: (i) using the exact T -matrix approach, treating the
vacancy as a bond perturbation in Eq. (9), V = V K, evaluated
to all orders; ii) using the Born approximation and treating the
vacancy as a bond perturbation: T + = V K; (iii) using the RK
model, which uses the Born approximation and uses Eq. (7)
as the mass perturbation; (iv) same as (iii) but treating the
perturbation using the full T matrix. The comparisons of these
different models are given in Figs. 5 and 6.

IV. COMPUTATIONAL DETAILS

Our first principles approach involves computing the second
and third order interatomic force constants (IFCs) using the
finite displacement method with the VASP [20–22] imple-
mentation of density functional theory (DFT) using the PAW
pseudopotentials [23,24] in the PBE [25,26] approximation.
Helper pre- and post-processing softwares phonopy [27,28]
and thirdorder.py [13,14] are used to create the finite displace-
ments in a 4 × 4 × 4 supercell (128 atoms) and also to read off
the IFCs. The DFT run is carried out on a 2 × 2 × 2 �-centered
Monkhorst-Pack q grid. The energy cutoff is set at 398 eV.
For the pristine lattice, the relaxed BAs lattice constant is
a = 4.82Å, slightly larger than the measured value of 4.78Å

in Ref. [3]. Here we consider the two cases of single As and
single B vacancies. After the creation of each vacancy, the
surrounding atom positions are relaxed, fixing the supercell
volume to that of the pristine supercell. The acoustic sum rule
is imposed in the computation of both the pristine and defected
supercell harmonic IFCs.

The harmonic IFCs for the pristine and the defected
system are used to calculate the perturbation matrix V K

using Eq. (6). Since anharmonic interactions are weak, the
vacancy is represented sufficiently well by the change in the
harmonic IFCs only. The changes in the harmonic IFCs are
considered for a cluster radius of 6.1Å around the vacancy,
taking into account the first- and second-nearest-neighbor
interactions for the atoms in the six nearest shells around the
vacancy site. From the perturbation matrix, σ is calculated
on a 28 × 28 × 28 q grid. The phonon-vacancy scattering
rates for each vacancy concentration are then combined using
Matheissen’s rule with phonon-phonon and phonon-isotope
scattering rates determined from ShengBTE [14,29]. The total
scattering rates are used in an iterative solution of the linearized
Boltzmann equation, and a converged κ is obtained using the
ShengBTE platform.

V. RESULTS AND DISCUSSIONS

The phonon dispersions of BAs and diamond are shown
in Figs. 1(a) and 1(b). These figures illustrate different
features that help give each material its high intrinsic thermal
conductivity. In BAs, the large frequency gap between acoustic
(a) and optic (o) phonons (a − o gap) prevents the a + a ↔ o

(aao) scattering since energy cannot be conserved. Also,
the phase space for a + a ↔ a (aaa) scattering is severely
restricted owing to the bunching of the acoustic branches
coupled with a theorem that says that three phonons from
the same acoustic branch cannot conserve both momentum
and energy [30]. These two vibrational properties along with

FIG. 1. Phonon dispersions of BAs (a) and diamond (b) along
high symmetry directions.

the isotopic purity of the heavy As atom give BAs an ultrahigh
intrinsic κ of over 3000 Wm−1 K−1 at room temperature. In
contrast, the light carbon atoms and strong covalent bonding
give diamond the high phonon frequency scale contributing to
its high κ .

The distortions of bond lengths and bond angles around
As and B vacancies are shown in Figs. 2(a) and 2(b). The
maximum change in bond length (angle) is 2.5 (3.3)% of that
of the pristine case for As vacancies and 0.42 (0.96)% for
B vacancies and occurs at the nearest and second-nearest-
neighbor sites from the As vacancy and at the second-nearest
neighbor-sites from the B vacancy. In the case of diamond these
numbers are 3.3% and 3.7%, respectively [8]. The distortions
around the As and B vacancies extend up to about 5Å from
the defect site, a distance that is much smaller than the 4 ×
4 × 4 supercell size of about 13.6Å. Nevertheless, we have
performed calculations for As vacancies in BAs with a 5 ×
5 × 5 supercell (250 atoms). As seen in Figs. 2(a) and 2(b),
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FIG. 2. Distortion of bond (a) angle and (b) length for As and
B vacancies. Blue lines represent the relaxed bond length 2.09Åand
angle 109.5◦ for the pristine crystal, respectively. The data points
corresponding to As vacancy for the 4 × 4 × 4 and 5 × 5 × 5
supercells coincide almost perfectly.

bond angle and bond length distortions for this case are almost
exactly the same as those for the 4 × 4 × 4 supercell justifying
its use for all further calculations described below.

Figure 3 shows the phonon-phonon scattering rates (solid
black squares) and the phonon-vacancy scattering rates for
0.01 and 0.1% As vacancy concentrations in BAs in the Born
approximation (open and solid blue circles) and T -matrix
method (open and solid red triangles) in the longitudinal
acoustic (LA) branch. Other acoustic branches show similar
behavior. In the Born approximation the scattering rates
are significantly underestimated except at high frequencies
where they exceed the scattering rates calculated in the
T -matrix formalism. Similar behavior was found previously
for diamond [8]. Note the dip in the phonon-phonon scattering
rates in the mid-high frequency range, which is due to the
suppressed phase space for phonon-phonon scattering from
the large a − o gap and the acoustic bunching shown in

FIG. 3. Three-phonon scattering rates at 300 K for the LA phonon
branch in BAs as a function of phonon frequency (solid black
squares), compared with the scattering rates of phonons from As
vacancies. Open (solid) blue circles give Born approximation results
for 0.01% (0.1%) As vacancies, while the corresponding T -matrix
results are shown by the open and solid red triangles.

Fig. 1(a). It is this frequency region that gives the largest
contribution to the vacancy-free BAs κ . This is shown by the
black dotted curve in Fig. 4. From this figure, we see that when
the phonon-vacancy scattering rates are comparable to or larger
than the phonon-phonon scattering rates, a large suppression
of κ is expected.

Figure 5 shows the κ vs As vacancy concentration within the
Born and T -matrix approaches. Surprisingly, the two results
are quite close for As vacancy concentrations up to about
0.01%. This fortuitous agreement is in fact a consequence

FIG. 4. The contribution to κ at 300 K as a function of frequency
ν, where κ = ∫

κ(ν)dν. The black dotted curve gives κ(ν) for
vacancy-free BAs for naturally occurring isotope mix (19.9% 10B,
80.1% 11B); the thin blue dashed and solid curve gives Born
approximation results for 0.01 and 0.1% As vacancies, respectively,
while the thick red dashed and solid curves give the corresponding
results obtained using the T -matrix approach.
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FIG. 5. The room temperature thermal conductivity of BAs as a
function of As vacancy concentration in the Born approximation (thin
blue curve) and using the T -matrix method (thick red curve).

of two failures of the Born approximation: It underestimates
the scattering rates at low frequency and overestimates them
at high frequency, as seen in Fig. 3. For concentrations
below 0.01%, these two errors cancel. This is seen in the
κ(ν) curves for 0.01% in Fig. 4 which shows similar areas
under the red (T -matrix) and blue (Born) dashed curves.
With increasing As vacancy concentration above 0.01%, the
phonon-vacancy scattering rates become much stronger than
the phonon-phonon scattering rates where the phonon-phonon
scattering shows a dip. Then, the larger T -matrix scattering
rates are seen in Fig. 4 to give a larger reduction in κ than in
the Born approximation (compare red and blue solid curves).
This difference becomes about a factor of two for 0.2% As
vacancies.

As noted above, previous models to estimate the effect
of vacancies on the lattice thermal conductivity use the
Born approximation with an on-site effective mass perturba-
tion [7,16–18]. This corresponds to Eqs. (7) and (11) inserted
in Eq. 8. The resulting thermal conductivities vs As and B
vacancy concentrations (green solid and dashed curves) are
plotted in Fig. 6 along with the corresponding results from
the full T -matrix calculations (red curve and red points). Note
that the RK model significantly underestimates the effect of
the light atom (B) vacancy and overestimates the effect of the
heavy atom (As) vacancy. This is a general feature of large
mass ratio compounds, which has two underlying reasons.
First, the mass perturbation itself is larger for the heavy atom:
In BAs, the value of the parentheses in Eq. (7) is 3.75 for
As vacancies, 1.7 times larger than the 2.25 for B vacancies.
Secondly, the heavy atom dominates the vibrational motion
of the heat-carrying acoustic modes [15,30], e.g., the phonon
eigenvector components for As are much larger than those for
B throughout the Brillouin zone.

The blue line and blue triangles in Fig. 6 show results
using the RK mass perturbation, Eq. (7), in the full T -matrix
scattering cross section. Since B vacancies give a weak mass-
defect perturbation, the Born approximation and T -matrix
results are almost the same. In contrast, for As vacancies the T -

FIG. 6. The room temperature thermal conductivity of BAs as a
function of atomic percent As and B vacancies using the T -matrix
(thick red line and red circles) method compared to the corresponding
results for As (thin green solid curve) and B (green dashed curve)
obtained from the RK model treated in the Born approximation. The
result for the RK model treated in the T -matrix approach for As is
given by the blue line while blue triangles are for B vacancy.

matrix result shows that the actual phonon-vacancy scattering
is weaker than estimated by the Born approximation. Here,
since the mass perturbation is proportional to ω2, the Born
approximation fails badly in the high frequency range. Never-
theless, even the T -matrix treatment still incorrectly predicts
an order of magnitude smaller κ for As vacancies compared
to B vacancies at a concentration of 0.2%. Thus, the failure of
the RK model in large mass ratio compounds stems both from
treating the vacancy as a mass defect and from the failure of
the Born approximation in treating large perturbations.

Given the differences in the distortions of atoms around
As and B vacancies seen in Figs. 2(a) and 2(b), it is somewhat
surprising that the T -matrix results for As and B vacancies seen
in Fig. 6 are almost the same throughout the range of vacancy
concentrations considered. In fact, the scattering rates for As
and B vacancies do show modest differences, but effects on
κ(ν) tend to cancel over the full frequency range of the acoustic
phonons.

High quality diamond, designated type-II a reflecting low
concentrations of nitrogen defects, is also thought to have very
low vacancy concentrations; the observed ultrahigh thermal
conductivities [31–33] could not be achieved otherwise. The
reduction in κ introduced by irradiating type-II a diamond
was studied by Burgemeister and Ammerlaan [34], and good
agreement with this data was recently achieved from first prin-
ciples calculations [8], demonstrating that such calculations
can properly capture the interplay between phonon-phonon
and phonon-vacancy scattering. Since BAs is predicted to have
roughly the same room temperature κ as diamond, it is then
natural to compare the effects of vacancies on the thermal
conductivities of these two materials. Figure 7 shows that BAs
is more strongly affected by the presence of vacancies than
is diamond. For example, at 0.1% vacancy concentration, the
natural BAs κ is reduced from the calculated pristine value
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FIG. 7. The room temperature thermal conductivities of BAs and
diamond as functions of atomic percent of As and C vacancies,
respectively.

of about 2300 Wm−1 K−1 to 120 Wm−1 K−1, a reduction of
95%. In natural diamond, on the other hand, κ is reduced
by 88% from the pristine value of about 2500 Wm−1 K−1

to 300 Wm−1 K−1. At 0.01% defect concentrations, these
numbers are 73% and 55%, respectively, for BAs and diamond.
As mentioned above, for BAs, the elimination of scattering
between acoustic and optic phonons and small phase space
for scattering between acoustic phonons in the mid-high range
of the acoustic phonon spectrum gives very weak scattering
rates and correspondingly large contributions to the BAs κ

over this relatively narrow frequency range. For large vacancy
concentrations, the phonon-vacancy scattering is strong over
this frequency range, which then has a profound effect on κ .
For diamond, this is not the case. Instead, the κ contributions
extend over a wide frequency range, and the phonon-vacancy
scattering is therefore less effective at reducing κ . This result
is consistent with the fact that the phonon mean free paths
contributing to the intrinsic BAs κ are quite large, in the
1–3 μm range, while those for diamond are smaller, mostly
below 1 μm [2]. Consequently, to achieve room temperature
κ in BAs over 1000 Wm−1 K−1, the target As vacancy atomic
percent should be no more than 0.004%. This translates to an
As vacancy concentration of about 3 × 1018 cm−3.

It is interesting to compare the temperature dependence of
the κ for BAs and diamond for fixed vacancy concentration.
In diamond, phonon-phonon scattering around and above
room temperature has a strong temperature dependence. This
occurs because the diamond frequency scale is high, and as T

increases above 300 K, scattering of the heat-carrying acoustic
phonons by optic phonons becomes stronger. In contrast,
in BAs three-phonon scattering between the heat-carrying
acoustic phonons and optic phonons is quite weak because
there is no phase space for aao processes and only a very
small phase space for aoo processes. As a result, the BAs κ

shows a weaker T dependence than that of diamond, as seen in
Fig. 8 for the case of 0.01% As vacancies. Thus, for example,
at 300 K the κ of BAs is about 40% that of diamond, while at
900 K, it is almost 75% that of diamond.

FIG. 8. Temperature dependence of the thermal conductivity of
BAs (diamond) for 0.01% As (C) vacancies.

VI. CONCLUSIONS

The effect of As vacancies on the lattice thermal con-
ductivity κ of cubic boron arsenide has been investigated
using an ab initio approach that treats the vacancy to all
orders in perturbation theory. The large contribution to the
defect-free BAs κ coming from a narrow range of frequencies
is suppressed for large As vacancy concentration leading to
larger κ reduction compared to that for diamond. However,
the T dependence of the κ of BAs is shown to be weaker than
that of diamond making the effect of vacancies on these two
ultrahigh κ materials more comparable at higher T .

The physically-motivated treatment of vacancies solely as
bond defects gives almost the same κ reduction for B vacancies
as for As vacancies. In contrast, the common treatment of
vacancies as mass defects predicts a sensitive dependence of
phonon-vacancy scattering on the mass of the constituent atom
and gives much too large suppression of κ with As vacancy
concentration. We note that this difference provides a means
of testing experimentally the validity of mass defect models
for vacancies. If two samples of the same large mass ratio
binary compound could be grown in a controlled way so that
each sample had the same vacancy concentration of one or the
other constituent atom, then if a similar reduction in κ occurs,
this would discount the mass defect models.

The Born approximation, commonly used to treat phonon-
defect scattering, is demonstrated to underestimate the reduc-
tion in the BAs κ when the vacancy is treated as a bond
defect and to overestimate this reduction when the vacancy
is treated as a mass defect. This failure highlights the need to
treat vacancies in large mass ratio compounds using the full
T -matrix approach presented here.

Despite the strong effect on the BAs κ due to vacancies, high
κ can still be achieved with advances in synthesis approaches.
For vacancy concentrations of below 3 × 1018 cm−3, the
calculated room temperature BAs κ is over 1000 Wm−1 K−1.
We note that in GaN, a large mass ratio compound mirroring
BAs across the group IV column of the periodic table, Ga
vacancy concentrations of less than a few times 1016 cm−3 have
been achieved [35]. If similarly low As vacancy concentrations
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could be achieved in BAs, its ultrahigh thermal conductivity
should remain unaffected.
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