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Electro-optical properties of Rydberg excitons
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We show how to compute the electro-optical functions (absorption, reflection, and transmission) when
Rydberg exciton-polaritons appear, including the effect of the coherence between the electron-hole pair and
the electromagnetic field. With the use of the real density matrix approach, numerical calculations applied for the
Cu2O crystal are performed. We also examine in detail and explain the dependence of the resonance displacement
on the state number and applied electric field strength. We report a fairly good agreement with recently published
experimental data.
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I. INTRODUCTION

The new avenue in modern semiconductor physics has been
opened by the outstanding experiment performed recently by
Kazimierczuk et al. [1] who detected the large quasiparticles
known as Rydberg excitons in natural crystals of copper
oxide. They have observed absorption lines associated with
excitons of principal quantum numbers as large as n = 25.
One could expect that Rydberg excitons would have been
described, in analogy to Rydberg atoms, by Rydberg series
of hydrogen atoms, but it has turned out that this generic
method of description should have been revised. This is due
to the fact that the size of a huge quasiparticle, which in fact
is a Rydberg exciton with high n, has a diameter of more
than 2 micrometers, which is much larger than the wavelength
of light needed to create this exciton. Several theoretical
approaches to calculate optical properties of Rydberg excitons
have been presented [2–12]. Schweiner et al. [5] developed
calculations of the absorption spectrum on the ground of
Toyozawa theory and calculated the main parameters for the
excitonic absorption line for the yellow exciton series, and
emphasized that central-cell corrections have a major influence
on the linewidth of the 2P exciton state. In our recent paper [4]
we have proposed the method based on the real density matrix
approach (RDMA) to obtain the analytical expressions for the
optical functions of semiconductor crystals, including a high
number of Rydberg excitons, taking into account the effect of
anisotropic dispersion and the coherence of the electron and
hole with the radiation field.

It is expected that the natural direction of development of
interest in Rydberg excitons is focused on the Stark effect
in such systems because this phenomenon may be used for
the optical manipulations of excitons if there is an efficient
coupling between the radiation field and excitonic systems
far from the band edge. Copper oxide is a perfect candidate
for such observations because due to high binding energy on
the order of hundreds of meV and due to their large size,
Rydberg excitons in Cu2O can exhibit very large electric
dipole moments. These features provide that this system is
appropriate to observe the Stark effect experimentally. In
semiconductors where the Wannier excitons have a small
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binding energy (such as GaAs), the main effect of the applied
electric field is the Stark shift of the excitonic resonances and
changes in their oscillator strengths (see, for example, [13,14]
for a review). In Cu2O which is now the main semiconductor
where Rydberg excitons are observed, even relatively high
excitonic states have a binding energy which is larger than the
corresponding ionization energy. Thus the excitonic character
of the spectra is conserved, but new phenomena, such as
the appearance of symmetry-forbidden states, with positions
dependent on the applied field strength and on the state number,
are observed [8,9].

Actually, one of the aims of our theoretical paper is to extend
the method presented in Ref. [4], which allowed one to describe
optical properties of Rydberg excitons, in order to obtain
electro-optic functions (susceptibility, absorption reflection,
and transmission). Our approach has a general character
because it works for any exciton angular momentum number
and for an arbitrary electric field. In particular, we derive an
analytical expression for the electrosusceptibility, from which
other electro-optical functions can be obtained. Since the
electric field effects, increasing with the applied field strength
and the state number, compete with the decreasing oscillator
strength, we are able, having analytical expressions, to indicate
the optimal excitation interval to observe the electro-optical
effects. We also indicate the impact of the finite crystal size
on the shape of the spectra, which was overlooked in the
previous considerations. Therefore our predictions should be
of interest for experimentalists, although accuracy of presented
numerical results is limited by the choice of certain parameters
(for example, damping parameters, coherence radii, dipole
transition matrix elements) and the model of dipole density we
have taken into account. They, in turn, influence the oscillator
strengths and could be sources of discrepancy between the
experimental data (Refs. [3] and [8]) and our theoretical
results.

The motivation of our considerations is also connected with
with potential application of Rydberg excitons as solid-state
switches. Due to their unusual features—long lifetimes, strong
dipolar interactions, and huge size—they are expected to be
implemented in quantum information technology. Kazimier-
czuk et al. [1] observed the Rydberg blockade (RB), which
consists of reduction of excitonic absorption accompanied
by increasing laser power for lines associated with large n,
which means that only a limited amount of Rydberg excitons
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is permitted in a well-localized space of the crystal. The idea of
using dipolar Rydberg interaction to implement RB is based on
the fact that in an ensemble of particles coupled by long-range
dipolar interactions, only one particle can be excited at a given
time. The blockade originates from dipole-dipole interactions
between Rydberg excitons not necessarily with the same n and
is strongly influenced by their separation. This effect offers
exciting possibilities for manipulating quantum bit stores in
a single collective excitation in mesoscopic ensembles or for
realizing scalable quantum logic gates and one implemented in
solids would bring many advantages for quantum information
and for constructing all-optical switches and single-photon
logic devices. Moreover, it is essential to have an additional
mechanism for switching the dipole-dipole interaction, which
in fact can be turned on and off by the Stark effect; therefore it is
worth going into details of the Stark effect in Rydberg excitons.

Our paper is organized as follows. In Sec. II we present
the assumptions of the considered model and solve the
constitutive equation which gives an analytical expression for
the electrosusceptibility. We also use the obtained expression
to compute the effective dielectric function, thanks to which
the electro-optical functions (reflectivity, transmissivity, and
absorption) are derived (Sec. III). Next, in Sec. IV, the
electro-optical functions are numerically analyzed for the
Cu2O crystal for the purpose of realistic implementation of
the presented method. We examine in detail changes of both
real and imaginary parts of electrosusceptibility, reflectivity,
and transmission under the influence of electric field. In Sec.
V we draw conclusions of the model studied in this paper and
we indicate the optimal range of energy for which Rydberg
excitons could be experimentally observed.

II. DENSITY MATRIX FORMULATION

Wannier-Mott excitons, treated as hydrogen-like particles,
due to their small binding energy, are very receptive to the ac-
tion of external fields (electric and/or magnetic). The external
fields remove the degeneration of the excitonic energy levels
and enhance the optical effects. Such effects were observed in
the case of Rydberg excitons in Cu2O [1,3]. In what follows
we describe the electro-optic properties of systems where the
Rydberg excitons appear. As was recently shown in Ref. [4],
the so-called real density matrix approach is very effective
in describing the optical properties of Rydberg excitons. This
approach was used in the past for the description of electro-
optical effects (see, e.g., Ref. [13] and the references therein).
We show below that the specific properties of Rydberg excitons
require a reformulation of the methods used in the past. As
in Ref. [4], we do not enter into the quantum-mechanical
explanation of the valence band structure of the Cu2O. This
explanation is given in detail in the recent paper by Schweiner
et al. [11]. Here we treat the band structure and the related
parameters as known, and use the scheme of Ref. [4] for the sit-
uation in which the constant external electric field F is applied
in the z direction. The presented method starts with the consti-
tutive equations, which have the form (for example, [14,15])

Ẏ (R,r) = (−i/�)HehY (R,r) + eFr − �Y (R,r)

+ (i/�)E(R)M(r), (1)

where Y is the bilocal coherent electron-hole amplitude (pair
wave function), R is simply the excitonic center-of-mass coor-
dinate, r = re − rh the relative coordinate, M(r) the smeared-
out transition dipole density, and E(R) the electric field vector
of the wave propagating in the crystal. The coefficient � in the
constitutive equation represents dissipative processes. We can
expect a significant temperature dependence of the spectra; mi-
croscopic analysis of damping parameters, which are the main
temperature-dependent factors, requires future studies and will
not be considered explicitly in this paper. The interaction with
phonons and their role in determining the line shape, discussed
recently by Schweiner et al. (Ref. [5]) who have considered
possible causes of line broadening, goes into the field of non-
linear optics and was in the past considered in the framework of
the RDMA, for example by Schlösser (Ref. [6]) or in the case of
Electromagnetically Induced transparency, in Ref. [7]. In this
paper we do not consider the interaction with phonons, and
take the damping coefficients as phenomenological constants.

The smeared-out transition dipole density M(r) is related
to the bilocality of the amplitude Y and describes the quantum
coherence between the macroscopic electromagnetic field
and the interband transitions. The two-band Hamiltonian
Heh includes the electron and hole kinetic energy terms,
the electron-hole interaction potential, and the confinement
potentials. For details about the Hamiltonian see, for example,
[4]. The coherent amplitude Y defines the excitonic counterpart
of the polarization

P(R) = 2
∫

d3rRe[M(r)Y (R,r)], (2)

which is then used in the Maxwell field equation

c2∇2
RE − ε

b
Ë(R) = 1

ε0
P̈(R), (3)

with the use of the bulk dielectric tensor ε
b

and the vacuum
dielectric constant ε0. In the present paper we solve Eqs.
(1)–(3) with the aim to compute the electro-optical functions
(reflectivity, transmission, and absorption) for the case of
Cu2O. In the following we will start with considering the
bulk situation, where the center-of-mass motion is decoupled
from the relative electron-hole motion and given by the term
exp(ik R) with the wave vector k resulting, in general, from
the polariton dispersion relation [4]. We also assume the
harmonic time dependence ∝ exp(−iωt). These assumptions
allow us to calculate the dielectric susceptibility. This will be
achieved by expanding the coherent amplitudes Y in terms of
eigenfunctions of the Hamiltonian Heh. Let us note that the
solution of the Schrödinger equation

Heh� + V (r)� = E�, V (r) = eFr, (4)

can be obtained only in an approximative way (perturbation
calculus, variational method, matrix diagonalization, etc.).
Considering the cases of Cu2O, when the applied field is of
the order of 10 V/cm [3], we can compare the magnitude
of the electron-hole pair attractive energy (En = −R∗/n2

in the isotropic effective masses approximation) and the
electric field energy Efield = eFa∗

n,a
∗
n = n2a∗. For n = 16

one has ECoulomb = 0.39 meV and Efield = 0.38 meV, when
F = 15 V/cm [3]. Thus the excitonic character of the spectra
prevails and the applied electric field can be considered as
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perturbation. It is clear that, when external fields are applied,
the full diagonalization of field- and band-mixing effects is
more adequate to describe the optical properties, in particular
when polarization dependence is considered. However, in the
RDMA the band parameters, such as the effective masses, are
considered as field independent, and the fields are treated as
perturbation operators. Such approach was merely applied in
the past (for a recent review see [13]) for various nanostructures
and field orientations, and was justified by the agreement
with experimental data. The considered approximation is also
justified by the fact that the applied field strengths are much
below the critical values for the fields (the ionization field for
the electric field and the critical magnetic field). In the case of
Cu20 the ionization field is of the order of 106 V/cm, compared
to the applied 15 or even 50 V/cm.

We assume the solution of Eq. (4) in the form of the
solutions of an anisotropic Schrödinger equation ϕn�m (see
Appendix A for details)

ϕn�m(r) = Rn�m(r)Y�m(θ,φ), (5)

where

Rn�m(r) =
(

2η�m

na∗

)3/2
√

(n − � − 1)!

2n(n + �)!

(
2η�mr

na∗

)�

×L2�+1
n−�−1

(
2η�mr

na∗

)
e−η�mr/na∗

, (6)

with η�m defined by (A7), and the Laguerre polynomials Lα
n(x)

(for example, [16])

Lα
n(x) = 1

n!
exx−α dn

dxn
(e−xxn+α)

=
n∑

m=0

(−1)m
(

n + α

n − m

)
xm

m!
, (7)

Y�m being the spherical harmonics. The energy eigenvalues
relating to the eigenfunctions (5) have the form [see Eq. (A14)]

En�m = −η2
�m

n2
R∗, (8)

where n = 1,2, . . . ; � = 0,1,2, . . . ,n − 1; m = −�,−� +
1, . . . , + �. We see that the mass anisotropy removes the
degeneracy with respect to the quantum number �, so that
in this approach the higher order excitons P , D, F , etc.,
appear. When the electric field is directed along the z axis, the
perturbation operator V has the form

V = eFz = eF r cos θ. (9)

We look for the solutions of Eq. (1) in the form

Y =
∑
n�m

cn�mRn�m(r)Y�m(θ,φ). (10)

Inserting the above expansion into (1) we obtain the following
system of equations for the expansion coefficients cn1�1m1 (for
details, see Appendix B)

Xn1�1m1 = cn1�1m1Wn1�1m1 +
∑

n

cn�1−1m1V
(n)
�1−1�1m1

+
∑

n

cn�1+1m1V
(n)
�1�1+1m1

, (11)

where

V
(nn1)
�1−1�1m1

= eF

√
�2

1 − m2
1

4�2
1 − 1

∫
r2dr Rn1�1mrRn�1−1m,

V
(nn1)
�1�1+1m1

= eF

√
(�1 + 1)2−m2

1

(2�1 + 1)(2�1 + 3)

×
∫

r2dr Rn1�1mrRn�1+1m,

Xn1�1m1 = E
∫

d�

∫
r2drY�1m1Rn1m�1M(r,θ,φ),

Wn�m = Eg + En�m + �
2

2Mz

k2 − �ω − i�

= ET n�m − E + �
2

2Mz

k2 − i�, (12)

where E denotes the amplitude of the electric field. In all
calculations we will use only the above matrix elements
with n = n1, denoting them by V

(n)
�1−1�1m1

,V
(n)
�1�1+1m1

. This is
an approximation, which can be justified as follows. The
spacing between the Rydberg states, at least for the states
n = 2, . . . ,7 considered in this paper, is of the order of
a few meV. Taking, for simplicity, Rydberg equal to 100
meV, one has the spacings (taking � = 0,m = 0 states) (meV)
E3 − E2 = 14,E4 − E3 = 4.75,E5 − E4 = 2.25, etc. On the
other hand, the matrix elements V, collected in Table I and
being the measure of the splitting between the Stark levels
with the same principal number, are of the order between
10−3 and 10−1 meV, so that they are much smaller than the
distances between the exciton states. Obviously, one should
notice that the distances between the excitonic states decrease
with the increasing number n, whereas the Stark splittings
increase, and at a certain number the Stark splittings are greater
than the spacing between the Rydberg states. The indication
is that for higher numbers n one should take into account
the interaction (in other words the matrix elements V) between
different states, and not only within the same state. Besides, the
method applied is not exactly the perturbation calculus, rather
the matrix diagonalization, so its validity is not restricted by
the value of the applied field.

We put the coherent amplitudes (10) into Eq. (2), from
which, when the center-of-mass motion is decoupled, one can
obtain the susceptibility from the relation P = ε0χ (ω,k)E. The
dipole density vectors M should be chosen appropriate for P

TABLE I. The matrix elements V
(n)

010 and V
(n)

230.

n 2 3 4 5 6

−V
(n)

010 3.0000 7.3485 13.4164 21.2132 30.7409
−V

(n)
230 8.0498 15.2128 23.7144

n 7 8 9 10

−V
(n)

010 42.0000 54.9909 69.7137 86.1684
−V

(n)
230 33.6749 45.1284 58.0881 72.5603
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or F excitons, and we obtain (see also [4])

χ (ω,k) = �
(2)
LT

N∑
n=2

Cn10fn1 + �
(2)
LT

N∑
n=4

fn3Cn30, (13)

where for P excitons

C210 = W200

W200W210 − (
V

(2)
010

)2 ,

C310 = W300W320

W300
[
W310W320 − (

V
(3)

120

)2] − (
V

(3)
010

)2
W320

. (14)

For n � 4 we take the same expression as (14)

Cn10 = Wn00

Wn00Wn10 − (
V

(n)
010

)2 .

For F excitons when n1 � 4, taking into account � = 0,1,2,3,
one has [see also (B11)]

Cn130 = Wn120Wn110Wn100

�

− Wn120
(
V

(n1)
010

)2 − Wn100
(
V

(n1)
120

)2

�
,

� = Wn130Wn120Wn110Wn100

−Wn130
[
Wn120

(
V

(n1)
010

)2 − Wn100
(
V

(n1)
120

)2]
− (

V
(n1)

230

)2[
Wn110Wn100 − (

V
(n1)

010

)2]
. (15)

For F excitons, when n � 5, we can extend the basis taking
� = 4,3,2,1,0 and m = 0, obtaining the expressions (B13). In
the above formulas �

(2)
LT denotes the longitudinal-transverse

splitting energy. The explicit form of the oscillator strengths
fn1,fn3 for the isotropic case can be found in Ref. [4].
As follows from the definitions given in [4], the oscillator
strength fn1 associated with P excitons is at least one order
of magnitude greater than fn3. Both values are roughly
proportional to n−3, especially for higher values of n (see
Fig. 1). We do not include the absorption of S and D excitons
in our calculations. So we used the dipole density M in the form
related to P andF excitons. By an appropriate extension of the

10
0

10
1

10
−3

10
−2

10
−1

10
0

n

fn

 

 

fn
10

fn
30

FIG. 1. Oscillator strengths as a function of exciton number n.
Logarithmic scale is applied. Dashed line marks the linear regression
for n−3 relation.

definition of M the effects of S and D excitons can be included,
as we explained in Ref. [4] for the case of direct excitons in
GaN and ZnO. However, some effects of the S and D excitons
can be seen, since the quantities of the type Wn00, Wn20 which
enter into the above equations (15) correspond to S and D
excitonic resonances. It should also be noted that using the
dipole density M (3) as proportional to the harmonics Y30, we
obtain in the case without applied field single F exciton states
En30; see Eq. (8). Taking a different form of M (3), for example
M (3) ∝ c1Y3,±1 + c2Y3,±3 (M (3)

x in Ref. [4]), we obtain two
F exciton states En31,En33 [see (8)] also in the case without
applied field, as was observed by Thewes et al. [3].

The matrix elements V
(n)
��′m are calculated in Appendix C.

III. REFLECTION AND TRANSMISSION SPECTRA

In the previous considerations we treated the semiconductor
crystal as unbounded. The real situation is different due to
crystal finite size in all directions. Practically, the confined size
in only one arbitrary chosen direction is considered and usually
this direction is the same as the electromagnetic wave vector.
Concerning the experiments with Cu2O one should notice
that the dimension of the crystals examined experimentally
exceeds the electromagnetic wave length; therefore the use of
the long-wave approximation is not well justified so we will
compute the optical functions such as the transmissivity and
reflectivity taking into account the finite crystal size and finite
wavelength. We will obtain analytic expressions for the optical
functions. These expressions will also include the impact of the
applied constant electric field. In the description of the optical
properties of excitons in finite semiconductors the excitonic
Bohr radius plays an important role. Near the semiconductor
surfaces there are layers where the excitons are created (or
destroyed), the so-called exciton-free layers (“dead layers”).
Mostly it is assumed that their thickness amounts to 2–3
excitonic Bohr radii. In the case of GaAs it gives about 30 nm.
The excitons and related to them polaritons are formed in the
remaining volume (“bulk”) of the crystal, and are responsible
for the bulk susceptibility. The junction of layers with different
dielectric properties is a complicated task and many works on
this topic, including the so-called ABC problem, have been
done over the past decades (for review see, for example,
[14,17,18]). When we consider a particular case of a GaAs thin
layer of the thickness 150 nm, and the relevant excitonic Bohr
radius is about 15 nm, then two excitonic Bohr radii correspond
to 20% of the crystal size. When we consider a Cu2O slab, the
situation is quite different. For a Cu2O crystal of the size 30 μm
[1,3] even the exciton state with n = 25 has the extension of
about 0.6 μm, so that the two Bohr radii correspond to 4% of
the crystal size. This means that, in the first approximation, we
can neglect the dead-layer effects. It does not mean that the
dead-layer and polariton effects are not important, as they can
shift the resonance positions and affect the oscillator strengths
(see also the discussion in Ref. [5]). The problem is that,
when taking into account 25 excitonic states, we have at least
50 polaritonic waves (including the incoming and outgoing
polariton waves) so that the methods applied for the III-V and
II-VI compounds (for example, Ref. [19]) cannot be applied
for the case under consideration. This aspect requires future
studies and will not be explicitly considered in this paper.
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Moreover it should be mentioned that a different aspect of
semiconductors’ geometry was considered by Schweiner et al.
[11] who have developed the method of investigating excitonic
spectra taking into account the discrepancy of valence and
conduction bands from parabolic shapes as well as their
degeneracy and possible anisotropy.

The formation of excitons can be considered as a fast
process leading to an effective dielectric function

εeff = εb + χ = εb + χ1 + i χ2, (16)

with the excitonic susceptibility defined in Eq. (13). Thus the
electromagnetic wave in the crystal propagates in a medium
characterized by the effective dielectric function. The crystal
under consideration will be modeled by a slab with infinite
extension in the xy plane and the boundary planes z = 0,z =
L. For the sake of simplicity, the slab is located in vacuum.
A monochromatic, linearly polarized electromagnetic wave
propagates along the z axis. Its electric field is given by

E = (Ex,0,0), Ex = Eine
ik0z−iωt , (17)

where for vacuum

k0 = ω

c
, (18)

ω being the frequency, and c the velocity of light. It is
well known that the energy of the propagating wave will be
divided into reflected and transmitted waves. The reflectivity,
transmissivity, and absorption will be obtained from the
relations

R =
∣∣∣∣E(0)

Ein
− 1

∣∣∣∣
2

, T =
∣∣∣∣E(z = L)

Ein

∣∣∣∣
2

,

(19)
A = 1 − R − T ,

where E(z) is the x component of the wave electric field inside
the crystal.

In the simplest approximation, neglecting the carrier
confinement effects leading to the above-mentioned ABC
problem, we can use the effective dielectric function (16) and
the resulting effective refractive index

n = √
εeff = n1 + i n2,

n1 = Re n ≈ √
εb + χ1, (20)

n2 = Im n ≈ χ2

2n1
.

Then the reflectivity results from the standard formula

R =
∣∣∣∣1 − n

1 + n

∣∣∣∣
2

= (1 − n1)2 + n2
2

(1 + n1)2 + n2
2

. (21)

Regarding the exceptional experiments by Kazimierczuk
et al. [1] and Thewes et al. [3] we can use the model of
multiple reflection and in the lowest order we get the following
expression describing transmission:

T = 16|n|2
|(1 + n)2|2 e−αL

= 16
(
n2

1 + n2
2

)
[
(1 + n1)2 − n2

2

]2 + 4n2
2(1 + n1)2

e−αL. (22)

Here

α = 2
�ω

�c
Im n (23)

denotes the absorption coefficient.

IV. RESULTS OF SPECIFIC CALCULATIONS

We have performed numerical calculations of electro-
optical functions (absorption, reflectivity, and transmissivity)
for the Cu2O crystal having in mind the experiments by Thewes
et al. [3] and Schöne et al. [8]. First, using the obtained
expression for the susceptibility (13)–(15), we have calculated
the electroabsorption, taking into account the lowest n = 2–10
excitonic states. The parameters we used are the energies En�m,
the gap energy Eg , the longitudinal-transverse energy �

(2)
LT ,

and the dissipation parameter �.
The energies En�m were obtained from the relations (8)

with the effective Rydberg energy R∗ and mass-anisotropy
parameter γ . We have used the values Eg = 2172 meV, R∗ =
86.981 meV, �

(2)
LT = 10 μeV which is the common value in

the available literature, γ = 0.5351, and phenomenological
value of damping � = 0.1 meV. The results for the absorption
which seem the most important are reported in Figs. 2–8.

In Fig. 2 we show the absorption spectrum in the region of
n = 4–7 excitons, for two values of the applied field. Since the
absorption peaks decrease quite rapidly the logarithmic scale

FIG. 2. The bulk electroabsorption of a Cu2O crystal calculated
from the imaginary part of the susceptibility in the energetic region
of n = 3–10 excitonic states, for the electric field strengths F =
15 V/cm and F = 0. The logarithmic scale is applied. Insets show
the absorption spectrum near selected states.
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FIG. 3. The bulk electroabsorption of a Cu2O crystal, in the
energetic region of n = 3–10 excitonic states, for the electric field
F = 15 V/cm. The logarithmic scale is applied. The contributions of
P and F excitons are shown separately.

is applied. For clarity, we present in Fig. 3 the contributions of
P and F excitons separately.

The effects of the applied field are more evident when
we display the difference �α = α(F ) − α(F = 0). Such
difference, for F = 15 V/cm, is shown in Fig. 4. We observe
the numbers of additional peaks with increasing distances
between them in comparison to the situation without an electric
field. In our model this additional interaction is included in the
matrix elements V

(n)
�1−1�1m1

[Eq. (12)], which values increase
with the state number (see Table I). Therefore in the following
we will focus our attention on higher number states. It should
be stressed that for these states oscillator strengths are strong
enough to warrant the robust and stable structure, which is
important for possible further applications. In Fig. 5 we show
the electroabsorption in the energetic region of n = 8–10
excitonic states, for two values of the applied field strength.
The P and F states are clearly distinguished. As was reported
in Ref. [9], the electric field strength can reach 50 V/cm so we
performed numerical simulations to examine the influence of
field strength on electro-optical properties of our system. It is
visible in Fig. 6 where one can see the basic effect of the applied
field: the Stark shift of the main peaks and the appearance of
new resonances, especially evident in the case of F excitons.
The changes in the absorption, as a function of the applied
field strength, for the range (0, 50) V/cm and near the n = 7
state, are presented in Fig. 7(a). The absorption shape for three
chosen values of the field are given in Fig. 7(b). The effect of
the Stark shift and changes in the oscillator strength can be
observed. When we extend the energy interval to include more
states, we observe evident mixing and overlapping of the lines
of the neighboring states accompanied by spreading of Stark
shifts with increasing of field strength (Fig. 8). Our theoretical

FIG. 4. The difference �α = α(F ) − α(0), for F = 15 V/cm
and in the range of n = 4–10 excitonic states.

FIG. 5. The bulk electroabsorption of Cu2O crystal calculated
from imaginary part of susceptibility in the energetic region of n =
8–10 excitonic states, for two electric field strengths F = 15 V/cm
and F = 0. The logarithmic scale is applied. There is some overlap
in the identified states.

predictions are very close to the experimental results of Schöne
et al. [8].

Our method allows us to calculate both the real and
the imaginary part of the susceptibility, without using the
Kramers-Kronig relations. The results for the real part of χ are
presented in Fig. 9. Having the real and imaginary part of the
susceptibility, we have been able to get the effective dielectric
function from (16) and other optical functions, in particular, the
reflection coefficient [Eq. (21)], which is shown in Fig. 10(a).
Its shape resembles the real part of the susceptibility. We
notice the redshift of the main peaks, changes in the oscillator
strength, appearance of new peaks when the field is applied,
and decreasing of the effects for energies above 2.171 eV.
Similarly as was done for the electroabsorption (Fig. 4),
we plot the difference �R = R(F ) − R(0) for the energetic
region of n = 8–10 excitonic resonances [Fig. 10(b)]. It can be

(a)

(b)

FIG. 6. (a) The same as in Fig. 2, in the energetic region of n = 7
excitons, without the electric field, (b) for the field strength 50 V/cm.
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(a)

(b)

FIG. 7. (a) The changes in the absorption, as a function of the
applied field strength, for the range (0, 50) V/cm, (b) the same for
three chosen values of the field strength.

seen that the electro-optical effects are noticeable, maxima of
reflectivity are back-shifted, and due to the electric field new
peaks have occurred.

Finally, making use of Eq. (22), we have calculated the
transmissivity of the considered above Cu2O crystal, taking the
size L = 30 μm. The results for the transmissivity T and the
difference �T = T (F ) − T (0) are shown in Figs. 10(c) and
10(d). The same tendency as for reflectivity can be observed.

FIG. 8. Absorption spectrum of Cu2O crystal, in the energetic
region of n = 7–10 excitonic states as a function of the applied field
strength.

FIG. 9. The real part of susceptibility of Cu2O crystal in the
energetic region of n = 4–10 excitonic states, for the electric field
F = 15 V/cm and F = 0. The logarithmic scale is applied. Insets
show absorption spectrum near selected states.

FIG. 10. (a) The reflection coefficient of a Cu2O crystal, in the
energetic region of n = 8–10 excitonic states, for two values of the
electric field. (b) The difference �R = R(F ) − R(F = 0) for F =
15 V/cm. (c) The transmissivity T , and (d) �T = T (F ) − T (0), for
F = 15 V/cm.
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SYLWIA ZIELIŃSKA-RACZYŃSKA et al. PHYSICAL REVIEW B 94, 045205 (2016)

V. CONCLUSIONS

The main results of our paper can be summarized as follows.
We have proposed a procedure based on the RDMA approach
that allows us to obtain analytical expressions for the electro-
optical functions of semiconductor crystals including a high
number Rydberg excitons. Our results have a general character
because arbitrary exciton angular momentum number and
arbitrary applied field strength are included. We have chosen
the example of cuprous dioxide, inspired by the recent
experiment by Kazimierczuk et al. [1]. We have calculated the
electro-optical functions (susceptibility, absorption, reflection,
and transmission), obtaining a fairly good agreement between
the calculated and the experimentally observed spectra. The
choice of dipole density model and therefore the oscillator
strength, which is an intricate function of free parameters, has
an impact on accuracy of our calculations. Our results confirm
the fundamental peculiarity of the Stark effect—shifting,
splitting, and, as a result for higher excitonic states, mixing of
spectral lines. In particular, we obtained the splitting of P and
F excitons, with increasing number of peaks corresponding to
increasing state number. We could assess the observed peaks
to excitonic states, which are symmetry forbidden when the
electric field is absent. On the basis of our theory we have
predicted the range of energy where one could observe the
Stark splitting and shifting for Rydberg excitons. All these
interesting features of excitons with high n number which are
examined and discussed on the basis on our theory might
possibly provide deep insight into the nature of Rydberg
excitons in solids and provoke their application to the design
of all-optical flexible switchers and future implementation in
quantum information processing. Rydberg excitons in cuprous
oxide are also promising candidates for observing the influence
of magnetic fields effects. Very recently the transmission
spectrum of the Cu2O yellow series was registered in magnetic
fields for states with high n number showing extraordinary
complex splitting pattern of levels [12]. An approach sim-
ilar to that described above could be used to analyze this
experiment.

APPENDIX A: ANISOTROPIC SCHRÖDINGER EQUATION

Below we follow the calculations from Ref. [20], correcting
and supplementing them. Consider a two-band semiconductor
with an isotropic conduction band (electron) mass me and
anisotropic hole mass with the components mh‖,mz, with
corresponding reduced masses

1

μ‖
= 1

me

+ 1

mh‖
,

1

μz

= 1

me

+ 1

mhz

. (A1)

The anisotropic Schrödinger equation for the relative electron-
hole motion, with the above reduced masses and with a
screened Coulomb interaction, has the form[

− �
2

2μ‖

(
∂2

∂x2
+ ∂2

∂y2

)
− �

2

2μz

∂2

∂z2

− e2

4πε0εb

√
x2 + y2 + z2

]
ψ = Eψ. (A2)

Using scaled variables

x = ξa∗, y = ηa∗, z = ζγ a∗, γ = √
μ‖/μz,

a∗−1 = μ‖
�2

e2

4πε0εb

,
2μ‖
�2

a∗2 = 1

R∗ , (A3)

we transform Eq. (A2) into(
∇ρ2 − 2

ρ
√

sin2 θ + γ 2 cos2 θ

)
ψ(ρ,θ,φ) = εψ(ρ,θ,φ),

(A4)
where ρ =

√
ξ 2 + η2 + ζ 2, ε = E/R∗, and ∇ρ2 is the common

Laplace operator in spherical coordinates. We are looking for
the solution in the form

ψ(ρ,θ,φ) =
∑

�

R�(ρ)Y�m(θ,φ). (A5)

Multiplying both sides with Y ∗
�′m′ , integrating, and taking into

account only the diagonal terms � = �′,m = m′ we obtain the
following equation for the radial part R:[

d2

dρ2
+ 2

ρ

d

dρ
− κ2 + 2

ρ
η�m − �(� + 1)

ρ2

]
R = 0, (A6)

with

η�m =
∫ 2π

0
dφ

∫ π

0
sin θ dθ

|Y�m|2√
sin2 θ + γ 2 cos2 θ

, (A7)

and with κ2 = −ε, assuming that we consider only the bound
states. Some values for η�m were given in Refs. [4] and [20].
Mostly γ is close to 1. In this case, to a good approximation

η�m = 1 + (1 − γ )(2�2 + 2� − 1 − 2m2)

2(2� − 1)(2� + 3)
. (A8)

Making use of substitutions

z = 2κρ, λ = η�m

κ
, F = R(z)z, μ = � + 1

2 , (A9)

we transform (A6) into the equation

d2

dz2
F +

(
− 1

4
+ λ

z
+ (1/4) − μ2

z2

)
F = 0. (A10)

The above equation has two linearly independent solutions
Mλ,μ,Wλ,μ known as the Whittaker functions. They are
related to the more familiar Kummer functions (confluent
hypergeometric functions) by the relations

Mλ,μ(z) = zμ+1/2e−z/2M
(
μ − λ + 1

2 ,2μ + 1,z
)
,

Wλ,μ(z) = zμ+1/2e−z/2U
(
μ − λ + 1

2 ,2μ + 1,z
)
.

We choose the function M which is finite for z = 0 and, with
respect to the relations (A9), we obtain the radial part R in the
form

R = N (2κρ)�e−κρM(� + 1 − λ,2� + 2,2κρ), (A11)

N being the normalization constant. The function R is finite
for ρ → ∞ when the first argument of the Kummer function
is 0 or negative integer. Thus

� + 1 − η�m

κ
= −N, (A12)
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which gives

η�m

κ
= N + � + 1 = n, (A13)

and, finally

ε = −η2
�m

n2
. (A14)

Inserting the result for κ into (A11) we obtain the radial
function R in the form

R(ρ) = Rn�m(ρ) = Nn�m

(
2η�mρ

n

)�

e−η�mρ/n

×M

(
−n + � + 1,2� + 2,

2η�mρ

n

)
. (A15)

Using the integral (for example, [21])

Jν =
∫ ∞

0
e−kzzν−1[M(−n,γ,kz)]2dz

= �(ν) n!

kνγ (γ + 1) . . . (γ + n − 1)

{
1 + n(γ − ν − 1)(γ − ν)

12 · γ

+n(n − 1)(γ − ν − 2)(γ − ν − 1)(γ − ν)(γ − ν + 1)

12 · 22 · γ (γ + 1)

+ · · ·
}

we obtain the normalization constant in the form

Nn�m =
(

2η�m

n

)3/2 1

(2� + 1)!

√
(n + �)!

2n(n − � − 1)!
. (A16)

Thus the radial part of the solution of the anisotropic
Schrödinger equation has the form

Rn�m(ρ) =
(

2η�m

n

)3/2 1

(2� + 1)!

√
(n + �)!

2n(n − � − 1)!

×
(

2η�mρ

n

)�

e−η�mρ/nM

×
(

− n + � + 1,2� + 2,
2η�mρ

n

)
. (A17)

Using the relation

Lα
N (x) =

(
N + α

N

)
M(−N,α + 1,x)

between the Kummer function and the Laguerre polynomials,
we can express the radial function R in terms of them

Rn�m(ρ) =
(

2η�m

n

)3/2
√

(n − � − 1)!

2n(n + �)!

(
2η�mρ

n

)�

×L2�+1
n−�−1

(
2η�mρ

n

)
e−η�mρ/n. (A18)

APPENDIX B: DERIVATION OF THE EXPANSION
COEFFICIENTS

Inserting the expansion (10) into (1) and making use of the
relations

cos θ Y�m =
√

(� + 1 + m)(� + 1 − m)

(2� + 1)(2� + 3)
Y�+1m

+
√

(� + m)(� − m)

(2� + 1)(2� − 1)
Y�−1m,

〈�1m1| cos θ |�2m2〉 
= 0 if m1 = m2 and �1 = �2 ± 1,

〈�m| cos θ |� − 1m〉 =
√

�2 − m2

4�2 − 1
, (B1)

and making use of the orthogonality properties of the eigen-
functions Rn�,Y�m we obtain the system of equations (11) for
the expansion coefficients. The equations (11) form, in general,
an infinite system of linear equations. Therefore a certain cutoff
must be applied. Having in mind the properties of Cu2O we put
n = n1; i.e., we neglect the interaction between the states with
different quantum number n. This is due to the fact that the
energy differences between the states are much larger than the
perturbations caused by the electric field. In consequence, the
infinite system of equations is reduced to a set of subsystems
of equations for each value of n. The subsystems consist, in
general, of 2n2 equations labeled by different values of � and
m. With respect to the properties of Cu2O, we will consider
the P excitons (� = 1) and F excitons (� = 3). The lowest P

exciton state is given by n = 2,� = 1,m = 0. From (11), with
M given by [4]

M(r) = er M10
r + r0

2r2r2
0

e−r/r0 = erM(r)

= iM10
r + r0

4ir2r2
0

√
8π

3
(Y1,−1 − Y1,1)e−r/r0

+ jM10
r + r0

4r2r2
0

√
8π

3
(Y1,−1 + Y1,1)e−r/r0

+ kM10
r + r0

2r2r2
0

√
4π

3
Y10e

−r/r0 , (B2)

and its Y10 component, one obtains the four equations

W200c200 + V
(2)

010c210 = 0,

V
(2)

010c200 + W210c210 = X210,

W211c211 = 0,

W21−1c21−1 = 0,

(B3)

where we took only the allowed combinations for the n,�,m.
Thus we obtain

c210 = C210X210 = W200X210

W200W210 − (
V

(2)
010

)2 . (B4)
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For the P,n = 3 exciton state we use n2 = 9 combinations:

300(x1) 310(x2) 311(x3) 31 − 1(x4)
320(x5) 321(x6) 32 − 1(x7)
322(x8) 32 − 2(x9) (B5)

and obtain equations

W300x1 + V
(3)

010x2 + · · · = 0,

V
(3)

010x1 + W310x2 + · · · +V
(3)

120x5 = X310,

W311x3 . . . +V
(3)

121x6 = 0,

W31−1x4 . . . +V
(3)

12−1x7 = 0,

V
(3)

120x2 . . . +W320x5 = 0,

V
(3)

121x3 . . . +W321x6 = 0,

V
(3)

12−1x4 . . . +W32−1x7 = 0,

(B6)

where c300 = x1,c310 = x2, etc., with regard to (B5). For the remaining coefficients we have x8 = x9 = 0. The resulting coefficient
c310 = C310X310 is given by the formula (14). In the expressions for C210 and Cn10 one can separate the real and imaginary parts,
obtaining

Cn10 = (ET n00 − E)
[
(ET n00 − E)(ET n10 − E) − (

V
(n)

010

)2 − �2
] + (ET n10 + ET n00 − 2E)�2[

(ET n00 − E)(ET n10 − E) − (
V

(n)
010

)2 − �2
]2 + (ET n10 + ET n00 − 2E)2�2

+ i�
(ET n00 − E)2 + (

V
(n)

010

)2 + �2[
(ET n00 − E)(ET n10 − E) − (

V
(n)

010

)2 − �2
]2 + (ET n10 + ET n00 − 2E)2�2

. (B7)

Clearly Im Cn10 > 0. Introducing notation

E
(n)
� = ET n�0 − E,

Wn�0(k = 0) = E
(n)
� − i�, (B8)

R
(n)
��1

= E
(n)
� E

(n)
�1

− �2,

S
(n)
��1

= E
(n)
� + E

(n)
�1

,

we put Eq. (B7) into a more compact form

Cn10 = E
(n)
0

[
R

(n)
01 − (

V
(n)

010

)2] + S
(n)
01 �2[

R
(n)
01 − (

V
(n)

010

)2]2 + (
S

(n)
01

)2
�2

+ i�

(
E

(n)
0

)2 + (
V

(n)
010

)2 + �2[
R

(n)
01 − (

V
(n)

010

)2]2 + (
S

(n)
01

)2
�2

. (B9)

For F excitons, when n1 � 4,� = 3,2,1,0,m = 0, we obtain the following equations for the expansion coefficients

cn130Wn130 +cn120V
(n1)

230 = Xn130,

cn130V
(n1)

230 +cn120Wn120 +cn110V
(n1)

120 = 0,

cn120V
(n1)

120 +cn110Wn110 +cn100V
(n1)

010 = 0,

cn110V
(n1)

010 +cn100Wn100 = 0,

(B10)

with the result for the relevant coefficient

cn130 = Xn130Cn130 = Xn130
Wn120Wn110Wn100 − Wn120

(
V

(n1)
010

)2 − Wn100
(
V

(n1)
120

)2

�
, (B11)

where

� =

∣∣∣∣∣∣∣∣∣∣

Wn130 V
(n1)

230 0 0
V

(n1)
230 Wn120 V

(n1)
120 0

0 V
(n1)

120 Wn110 V
(n1)

010

0 0 V
(n1)

010 Wn100

∣∣∣∣∣∣∣∣∣∣
= Wn130

[
Wn120Wn110Wn100 − Wn120

(
V

(n1)
010

)2 − Wn100
(
V

(n1)
120

)2]

− (
V

(n1)
230

)2[
Wn110Wn100 − (

V
(n1)

010

)2]
.
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Using the definitions (B8), Cn130 can be put into the form

Cn130 = ac − bd

a2 + b2
+ i

ad + bc

a2 + b2
,

a = R
(n1)
01 R

(n1)
23 + (

V
(n1)

010

)2(
V

(n1)
230

)2 − �2S
(n1)
01 S

(n1)
23 − R

(n1)
01

(
V

(n1)
230

)2

−R
(n1)
03

(
V

(n1)
120

)2 − R
(n1)
23

(
V

(n1)
010

)2
, (B12)

b = �
[
R

(n1)
01 S

(n1)
23 + R

(n1)
23 S

(n1)
01 − S

(n1)
01

(
V

(n1)
230

)2 − S
(n1)
03

(
V

(n1)
120

)2 − S
(n1)
23

(
V

(n1)
010

)2]
,

c = E
(n1)
2 R

(n1)
01 − �2S

(n1)
01 − E

(n1)
2

(
V

(n1)
010

)2 − E
(n1)
0

(
V

(n1)
120

)2
,

d = �
[(

V
(n1)

010

)2 + (
V

(n1)
120

)2 − S
(n1)
01 E

(n1)
2 − R

(n1)
01

]
.

For F excitons, when n � 5, we can extend the basis taking � = 4,3,2,1,0 and m = 0, obtaining

cn130 = Xn130
Wn140

[
Wn120Wn110Wn100 − Wn120

(
V

(n1)
010

)2 − Wn100
(
V

(n1)
120

)2]
�

,

� = [
Wn140Wn130 − (

V
(n1)

340

)2][
Wn120Wn110Wn100 − Wn120

(
V

(n1)
010

)2 − Wn100
(
V

(n1)
120

)2]
−Wn140

(
V

(n1)
230

)2[
Wn110Wn100 − (

V
(n1)

010

)2]
. (B13)

APPENDIX C: DERIVATION OF THE MATRIX ELEMENTS V (n)
�1−1�1m1

The matrix elements follow from the definitions (12):

V
(n1)
�1−1�1m1

= eFa∗
√

�2
1 − m2

1

4�2
1 − 1

(
2

n1

)3 ∫
ρ3dρ e−2ρ/n1

{√
(n1 − �1 − 1)!

2n1(n1 + �1)!

(
2ρ

n1

)�1

L
2�1+1
n1−�1−1

×
√

(n1 − �1)!

2n1(n1 + �1 − 1)!

(
2ρ

n1

)�1−1

L
2�1−1
n1−�1

}
, (C1)

V
(n1)
�1�1+1m1

= eFa∗
√

(�1 + m1 + 1)(�1 − m1 + 1)

(2�1 + 1)(2�1 + 3)

(
2

n1

)3

×
∫

ρ3dρ e−2ρ/n1

{√
(n1 − �1 − 2)!

2n1(n1 + �1 + 1)!

(
2ρ

n1

)�1

L
2�1+1
n1−�1−1

√
(n1 − �1 − 1)!

2n1(n1 + �1 − 1)!

(
2ρ

n1

)�1+1

L
2�1+3
n1−�1−2

}
, (C2)

with the Laguerre polynomials Lα
n(x) [see (7)]. Substituting x = 2ρ

n1
and treating eFa∗ as unit, we obtain

V
(n1)
�1−1�1m1

=
√

�2
1 − m2

1

4�2
1 − 1

(
n1

2

) ∫
x3dx e−xx2�1−1

{√
(n1 − �1 − 1)!

2n1(n1 + �1)!
L

2�1+1
n1−�1−1(x)

√
(n1 − �1)!

2n1(n1 + �1 − 1)!
L

2�1−1
n1−�1

(x)

}

=
√ (

�2
1 − m2

1

)
16

(
4�2

1 − 1
) (n1 − �1 − 1)!

(n1 + �1)!

(n1 − �1)!

(n1 + �1 − 1)!

∫
dx e−xx2�1+2L

2�1+1
n1−�1−1(x)L2�1−1

n1−�1
(x), (C3)

V
(n1)
�1�1+1m1

=
√

(�1 + m1 + 1)(�1 − m1 + 1)

(2�1 + 1)(2�1 + 3)

(
2

n1

)3

×
∫

ρ3dρ e−2ρ/n1

{√
(n1 − �1 − 2)!

2n1(n1 + �1 + 1)!

(
2ρ

n1

)�1

L
2�1+1
n1−�1−1

√
(n1 − �1 − 1)!

2n1(n1 + �1)!

(
2ρ

n1

)�1+1

L
2�1+3
n1−�1−2

}

=
√

(�1 + m1 + 1)(�1 − m1 + 1)

16(2�1 + 1)(2�1 + 3)

(n1 − �1 − 2)!

(n1 + �1 + 1)!

(n1 − �1 − 1)!

(n1 + �1)!

×
∫

dx e−xx2�1+4L
2�1+1
n1−�1−1(x)L2�1+3

n1−�1−2(x). (C4)
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In particular, for V
(n)

010 and in units eFa∗, one obtains

V
(n)

010 = 1√
3

√
(n − 1)!(n − 2)!

16n!(n + 1)!

∫ ∞

0
dx e−xx4L1

n−1(x)L3
n−2(x)

= −
√

12

n2(n2 − 1)

(
n

n − 2

)(
n + 1

n − 1

)
, (C5)

where we used the following integral involving Laguerre polynomials [16]:∫ ∞

0
e−xxα+βLα

m(x)Lβ
n (x)dx = (−1)m+n(α + β)!

(
α + m

n

)(
β + n

m

)
[Re (α + β) > −1]. (C6)

For V
(n)

230 we have by definition

V
(n)

230 =
√

9(n − 3)!(n − 4)!

16 · 35 (n + 2)!(n + 3)!

∫ ∞

0
dx e−xx8L7

n−4(x)L5
n−3(x). (C7)

Some numerical values for the elements V
(n)

010 and V
(n)

230 are given in Table I.
Another example, important in view of the formulas (14) and (B11), will be obtained from Eq. (C1) by taking n1 = 3,�1 =

2,m1 = 0:

V
(3)

120 =
√

4 · 0! · 1!

16 · 15 · 5! · 4!

∫ ∞

0
dx e−xx6L5

0(x)L3
1(x)

=
√

1

4 · 15 · 5! · 4!

∫ ∞

0
dx e−xx6(4 − x) = −3 · 6!

√
1

4 · 15 · 5! · 4!
= −3

√
3 ≈ −5.196, (C8)

since L5
0(x) = 1, L3

1(x) = 4 − x.
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