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Structural order and melting of a quasi-one-dimensional electron system
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We investigate the influence of confinement on the positional order of a quasi-1D electron system trapped
on the surface of liquid helium. We find evidence that the melting of the Wigner solid (WS) depends on the
confinement strength, as well as electron density and temperature. A reentrant solid-liquid-solid transition is
observed for increasing electron density under constant electrostatic confinement. As the electron row number
Ny changes, varying commensurability results in a modulation of the WS order, even when Ny is large (several
tens). This is confirmed by Monte Carlo simulations.
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I. INTRODUCTION

For interacting particles in (quasi-)1D channels, the com-
peting influences of temperature, interaction energy, and
confinement give rise to many complex phenomena. For Fermi
degenerate electrons (or holes), 1D confinement results in
Luttinger liquid behavior [1], Wigner crystallization [2], and
anomalous transport close to the first quantized conductance
plateau [3]. As the confinement weakens, ‘zig-zag’ transitions
from 1 to 2 electron rows can occur [4,5]. Similar structural
transitions can be observed directly in trapped ion experiments
[6]. For a growing number of particle chains the quasi-1D
order depends critically on commensurability, as demonstrated
in experiments with colloids [7], dusty plasmas [8], vortices
in superconducting films [9], and electrons on liquid helium
substrates [10], as well as numerical simulations [11–13].
However, the parameter range explored in such experiments
is typically quite narrow, while simulations are limited by
processor speed. Here, we gain insights into the ordering and
melting of a quasi-1D system of electrons on He by using a
multigated microchannel device to tune the particle density
and confinement over a wide range. In particular, we find that
the strength of the lateral confinement, rather than simply the
reduced width, can play a key role in determining the melting
behavior of the quasi-1D electron lattice.

Surface-state electron (SSE) systems on liquid He sub-
strates are ideally suited to the study of strongly correlated
electron behavior [14]. The typical surface density (ns ≈
1013 m−2) is low, ensuring that electron-electron interactions
are purely Coulombic. In 2D, the electrons form a triangular
lattice, the Wigner solid (WS), with increasing ns or decreasing
temperature T [15]. Once the electrons become localized,
the electrostatic pressure from each electron on the He
beneath results in the formation of surface ‘dimples’ that
increase the system effective mass [16]. For the moving
electron lattice, resonant Bragg-Cherenkov (BC) scattering
with surface excitations (ripplons) deepens the dimple lattice,
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and the resistive force exerted on the electron system increases
[17]. The electron velocity is then limited to that of the phase
velocity of ripplons whose wave vector is commensurate with
one of the reciprocal lattice vectors of the electron lattice
(usually the shortest). Hence the Wigner solid transport is
strongly nonlinear. When the driving force reaches a critical
value, the electrons decouple from the dimple lattice and ‘slide’
along the He surface with high velocity [18]. This transport
anomaly is a sensitive alert to the Wigner solid formation
[19]. The onset of nonlinearity in the electric conductivity
is a more reliable experimental criterion for determining the
Wigner solid formation than the conductivity change, which
can appear smeared [10].

Microchannels filled with liquid He can provide quasi-1D
confinement for SSE systems [20,21]. Using such devices,
the melting of the Wigner solid was found to be suppressed
for small electron row number Ny while, separately, reentrant
ordering of the quasi-1D lattice was observed with increasing
Ny [10,22]. Here we map structural and phase diagrams for a
quasi-1D SSE system, for 1 � Ny � 30. The phase boundary
is determined by a unique method, namely measuring the
third harmonic component of the SSE current to find the
onset of nonlinear transport. We find evidence of a scaled
relationship between Coulomb energy, confinement strength
and temperature at the Wigner solid melting point, and
observe a solid-liquid-solid melting behavior as ns increases
under constant electrostatic confinement. Our experiment
demonstrates a uniquely sensitive electrostatic control over
the positional order of a quasi-1D electron system and so is an
important step towards utilizing SSE in quantum information
and quantum optics applications [23–25].

II. RESULTS AND DISCUSSION

A. Sample and method

The device, shown in Fig. 1(a), has been described in
detail elsewhere [26]. Two metal layers are separated by
an insulating layer approximately 2 μm thick formed by
hard-baked photoresist. The guard electrode (upper layer) and

2469-9950/2016/94(4)/045139(6) 045139-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.045139


DAVID G. REES et al. PHYSICAL REVIEW B 94, 045139 (2016)

Split Gate

(a)

Bottom Gate

Left 
Reservoir

I

Guard

100 µm

Right 
Reservoir

FIG. 1. (a) False-color scanning electron micrograph of the
central microchannel in the device. (b) Schematic diagram of the
microchannel cross section. Gold layers, separated by an insulating
layer, are fabricated on a silicon wafer section. (c) φy and ns in
the central microchannel calculated by FEM for Vsg = −0.2 V and
Vbg = +1 V.

reservoir electrodes (lower layer) define two large arrays of
microchannels that act as electron reservoirs. The reservoirs
are connected by a smaller central microchannel, 100 μm long
and 7.5 μm wide, that is formed by the split gate electrode
(upper layer) and bottom gate electrode (lower layer).

Dc voltages Vgu = −0.2 V, Vres = 0 V, Vbg , and Vsg were
applied to the guard, reservoir, bottom gate, and split gate
electrodes, respectively. Transport measurements were made
by applying an ac voltage Vin, of frequency f = 20.2 kHz,
to the left reservoir electrode and measuring the ac current
I induced in the right reservoir electrode. (Note that all ac
parameters are given in peak-to-peak units.) The circuit was
well described by a lumped-element RC model [27], which
was used to extract the SSE resistance R. The area of the
reservoirs greatly exceeds that of the central microchannel.
Therefore, the number of electrons in the reservoirs, and so
the electrostatic potential of the electron system φe, can be
assumed to remain constant while the lateral confinement
potential φy in the central microchannel is controlled by
changing Vbg and Vsg [Fig. 1(c)]. The electron density in the
reservoirs was kept low to prevent Wigner solid formation,
a crucial advantage over previous experiments [10]. Finite
element modeling (FEM) was used to calculate φy , the average
ns , and the effective width of the electron system we in the
central microchannel for all values of Vbg and Vsg , using φe and
the channel depth h as fitting parameters [26,28]. Ny was then
estimated as Ny = we

√
ns . Values of the angular frequency

ω, which describes strength of the lateral confinement, were
found by fitting the parabolic function φye = 1

2meω
2y2 to the

FEM results in the central region of the central microchannel,
where me is the bare electron mass.

B. Experimental results

The magnitude of I for varying Vbg and Vsg is shown
in Fig. 2(a), for Vin = 3 mV and T = 0.6 K. The threshold
for conductance through the central microchannel depends
on both electrode voltages. As in other similar devices
[21,26], electrons can enter the central microchannel when
the maximum of the potential at its center (or minimum,
for electrons) φmax

y = αVbg + βVsg exceeds φe. Examination
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FIG. 2. (a) Magnitude of I against Vbg and Vsg , at T = 0.6 K.
Here Vin = 3 mV. (b) Magnitude of I3f measured under the same
conditions, but with Vin = 10 mV. The measurement noise floor was
5 pA. The solid line indicates the boundary between the electron liquid
(EL) and WS phases. Regions corresponding to the EL phase and the
sliding and dynamically pinned WS phases are labeled accordingly,
as are lines representing the conditions � = 130 and ξ+ = 3we.

of the conductance threshold in Fig. 2(a) yields the values
α = 0.60 and β = 0.40. These values are reproduced by the
FEM for h = 2.20 μm.

From the current measurement shown in Fig. 2(a), for each
point in the Vbg-Vsg plane, it is not straightforward to determine
whether the SSE system is in the electron liquid or Wigner
solid phase. This is because there is no sharp contrast between
high and low current regions. Although the current should
drop when the electron system becomes dynamically pinned
to the dimple lattice, the sinusoidal driving voltage can induce
the decoupling to the dimple lattice during each ac cycle, if
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the pinning effect is not sufficiently strong [29]. In this case
the measured current magnitude may not be greatly changed
from that measured in the electron liquid phase. However, the
nonlinear response in this transport regime gives rise to higher
odd harmonics in the ac current signal [30]. Therefore, in
order to precisely determine the boundary between the liquid
and solid phases, the third harmonic component of the SSE
current, I3f , was measured for varying Vbg and Vsg . The result
is shown in Fig. 2(b), for Vin = 10 mV and T = 0.6 K. In the
upper left-hand corner of the plot, where ns is generally low,
the ac response is linear signifying the electron liquid regime.
In the Wigner solid regime, distinct regions in which I3f is
high and low are evident. These correspond to the sliding
and dynamically pinned transport regimes, respectively. In
the sliding regime, the decoupling of the electron system
from the dimple lattice during each ac current cycle leads
to large I3f . The decoupling occurs more readily close to the
conduction threshold, where ns is low. In the dynamically
pinned regime, in which ns is higher, the driving force cannot
induce the decoupling and BC scattering limits the electron
velocity during each ac cycle. This also results in a nonlinear
SSE response, but with a reduced current magnitude and so
smaller I3f .

In 2D, the Wigner solid melts when the value of �,
which is defined as the ratio of the electron Coulomb energy
UC = e2√πns/4πε0 to kinetic energy kBT , falls below a
critical value of �2D ≈ 130. Here e, ε0, and kB are the
elementary charge, vacuum permittivity, and the Boltzmann
constant, respectively. The melting is a Kosterlitz-Thouless
(KT)-type transition, occurring due to the unbinding of lattice
dislocation pairs [31–34]. In a small temperature range above
the melting temperature there exists a ‘hexatic’ phase, in which
the system exhibits nearest-neighbor bond-orientational order.
This order is finally destroyed at a higher temperature by the
emergence of a second type of defect, lattice disclinations, and
the system enters the isotropic liquid phase. In this paper we
define melting as the loss of long-range positional order due to
the appearance of free dislocations because, for electrons on
helium, the dimple lattice formation and associated transport
properties depend on this positional ordering. The distance
over which positional ordering can be expected is described
by the correlation length ξ+ = aeb/tν , where a ≈ n−0.5

s is the
dislocation core size, b = 1.8 is the ratio of the core energy to
the thermal energy, ν = 0.37 is a constant, and t = �2D

�
− 1.

The correlation length is finite in the electron liquid phase and
diverges as � approaches �2D. However, for quasi-1D systems,
an ordered state might be expected when ξ+ exceeds the
system width we, which can occur for � < �2D. Recently, the
melting of a quasi-1D SSE system was found to be described
by the empirical relation ξ+ = 3we [22]. We note that a strictly
quantitative comparison between experiment and theory is
difficult in this case because the values of b and ν are valid
only when t � 0.07.

Lines representing the 2D and quasi-1D melting criteria
are shown in Fig. 2(b). (In our calculations the screening of
the Coulomb interaction by the underlying electrode, which
modifies UC by a few percent, is taken into account [22].)
When Vsg is close to Vgu the boundary between the electron
liquid and solid regimes is close to the 2D melting criterion,
confirming the KT-type melting. However, for more negative
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FIG. 3. (a) Phase boundaries determined by measuring I3f , at
T = 0.6, 0.8, and 1.0 K. The solid line represents the threshold for
conductance through the central microchannel. Along the dashed line
�V is constant. (b) UC/�ω against � for the data shown in (a). The
dotted line represents the 2D melting criterion. The dashed line is
equivalent to the dashed line in (a), for T = 1 K.

Vsg , the electron system is solid within (to the left of) both
the � = 130 and ξ+ = 3we boundaries. We conclude that
electron ordering in quasi-1D generally occurs for values
of � below 130 and, in our sample, is found to be more
strongly enhanced than in previous experiments where the
phase boundary followed the condition ξ+ = 3we [22].

Phase boundaries for T = 0.6, 0.8, and 1.0 K are shown
in Fig. 3(a). The boundaries were determined by finding the
values of Vbg and Vsg for which I3f exceeds the measurement
noise floor, after adjacent-point averaging over a 50 mV
window. The liquid region expands as T increases, as expected.
To elucidate the relationship between UC , ω, and T at the
phase boundaries, we show in Fig. 3(b) the dimensionless ratio
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UC/�ω against �. (It is convenient to express the confinement
in units of energy although no quantum mechanical effects are
considered here). The data points fall close to a single curve,
suggesting that UC , ω, and T are interrelated at the Wigner
solid melting point. When UC/�ω is large the melting occurs
close to the 2D criterion � = 130. As UC/�ω decreases, due to
increasing confinement strength or decreasing electron density,
the Wigner solid melts at values of � much lower than 130. This
observation is in agreement with numerical simulations, which
have shown that strong electrostatic confinement restricts
lateral particle motion and thereby suppresses the melting of
the quasi-1D Wigner solid [11,12]. The dependence of melting
on confinement strength is qualitatively different from finite-
size effects considered in other studies [22]. We conclude that
the KT-type melting of the Wigner solid can be significantly
modified by strong lateral confinement, as it promotes the
positional order of the electron system. This is evidence of a
scaled relationship between interaction energy, confinement
strength, and temperature that describes the melting of a
quasi-1D system.

The interplay between UC , ω, and T at the Wigner solid
melting point results in a curvature of the phase boundaries
shown in Figs. 3(a) and 3(b). Lines drawn on these plots for
constant confinement voltage �V = Vbg − Vsg , and therefore
constant ω, can intersect the phase boundary twice, for a given
temperature. Moving along these lines, by increasing ns under
the constant electrostatic confinement, therefore results in a
reentrant solid-liquid-solid transition. We are aware of no
previous demonstration of such behavior, but consider it likely
to be observed in other strongly correlated quasi-1D systems
subjected to paraboliclike confinement.

In Fig. 2, both I and I3f exhibit fringelike features that
lie close to parallel with the conductance threshold. Previous
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FIG. 4. dR/dVbg against Vbg and Vsg at T = 0.6 K and Vin = 3
mV. In the hatched region I becomes too small to measure. The dashed
lines represent constant values of Ny as given by the FEM analysis.
The solid line represents the liquid-solid boundary determined by the
measurement of I3f , as also shown in Fig. 2(b).
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FIG. 5. R and the magnitude of I3f recorded along the line �V =
Vbg − Vsg = 0.55 V, at T = 0.6 K. The electron liquid and Wigner
solid regimes, and resistance peaks corresponding to several Ny , are
labeled.

studies have shown that such oscillatory transport behavior
arises due to the modulation of the electron lattice structural
order with changing Ny [10]. Close to the structural transitions
between adjacent Ny , lattice defects and fluctuations between
lattice configurations of similar energy should occur [11]. The
reduced positional order weakens the Bragg ripplon scattering
and so the effective electron mass and the SSE resistivity.
A plot of dR/dVbg for varying Vbg and Vsg is shown in
Fig. 4. Oscillatory resistance features follow arclike paths
in the Vbg-Vgt plane. No resistance oscillations are recorded
in the electron liquid region. Several lines corresponding
to constant Ny values, as calculated by the FEM for φe =
−0.151 V, are also shown. These lines closely follow the R

maxima, confirming that the resistance oscillations are related
to the changing Ny . However, this effect was previously only
observed close to the melting point of the Wigner solid and for
small Ny [10]. Here we demonstrate that structural transitions
strongly influence the electron positional order up to large Ny

and for � � 130.
The solid-liquid-solid transition that occurs when ns

increases for certain values of �V results in the loss of
the resistance oscillations for intermediate values of Ny . In
Fig. 5 we show both R and I3f recorded along the line in
the Vbg-Vsg plane for which �V = 0.55 V, at T = 0.6 K.
In both measurements, signatures of electron ordering are
exhibited for small and large Ny but not for intermediate
values 5 � Ny � 13, confirming the reentrant behavior. The
close agreement between the two independent measurements,
performed for different Vin, confirms that the phase boundary
is accurately determined in our transport measurements.

C. Monte Carlo simulations

To better understand the nature of the structural transitions
that occur as Ny increases, we performed Monte Carlo
simulations of electrons interacting via a screened Coulomb
potential under parabolic confinement. Techniques similar to
those described in Ref. [11] were used, but extended to larger
Ny . We consider N classical particles in two-dimensional
space interacting with each other through a Yukawa potential.
The particles are confined in the y direction by a parabolic
potential, and there is no confinement along the x axis. Periodic
boundary conditions are inserted in the x direction to simulate
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FIG. 6. (a) yi against nl as calculated by Monte Carlo simulations.
(b) Electron lattice configuration for nl = 13 μm−1. The simulation
cell contains 84 particles. (c) Electron lattice configuration for nl =
23.5 μm−1. The simulation cell contains 141 particles. Electrons
exhibiting five nearest neighbors are marked by triangles.

an infinite length in x. We solved the Langevin equation with
a friction force proportional to the velocity and a temperature
dependent random force. The ground state structures at zero
temperature were searched for by the annealing method. The
number of particles required to achieve the smallest energy
per particle were found by repeating the annealing simulation
for various N , with the box length adjusted to keep the linear
density constant. In this way the proper number of particles to
obtain the lowest-energy structures could be determined. We
used the scaled Hamiltonian used in Ref. [11], with κ = 7.25.
This corresponds to a screening length λ = 1 μm for an
electron system under parabolic confinement �ω/kB = 0.6 K.
These values are comparable with the experimental conditions.

Lateral particle positions yi against linear electron density
nl are shown in Fig. 6(a). Generally, the electrons are arranged
in rows and Ny increases sequentially. An example of a highly

ordered row structure, found for nl = 13 μm−1, is shown in
Fig. 6(b). However, close to values of nl at which Ny changes,
an increased scatter in yi reflects reduced positional order. An
example is shown in Fig. 6(c) for nl = 15.4 μm−1; the electron
lattice becomes distorted and domains containing six or seven
rows appear, along with structural defects that break the sixfold
symmetry of the electron lattice. This behavior is in agreement
with other similar studies made for small values of Ny [12].
The increased disorder observed here occurs at each transition
and up to the largest Ny values, supporting our explanation that
the resistance oscillations observed in the experiment reflect
changes in Ny as Vbg or Vsg is varied.

III. CONCLUSION

We have used a multigated microchannel device to map
the first structural and phase diagrams for a quasi-1D electron
system on a liquid He substrate. The KT-type Wigner solid
melting is strongly modified by the lateral electrostatic
confinement. We have demonstrated that the melting of the
quasi-1D Wigner solid is determined by a scaled relationship
between Coulomb energy, temperature, and the confinement
strength. In addition we have shown that the positional order of
electrons in the quasi-1D Wigner solid depends strongly on the
commensurability with the confinement geometry, even when
the number of electron rows is large. This observation was
confirmed using Monte Carlo simulations. Because electrons
on helium are a model system, our results are relevant to a
wide variety of micro- and macroscopic many body systems.
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