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Detection of gapped phases of a one-dimensional spin chain with on-site and spatial symmetries

Abhishodh Prakash, Colin G. West, and Tzu-Chieh Wei
C. N. Yang Institute for Theoretical Physics and Department of Physics and Astronomy,
State University of New York at Stony Brook, Stony Brook, New York 11794-3840, USA

(Received 7 April 2016; revised manuscript received 8 July 2016; published 27 July 2016)

We investigate the phase diagram of a quantum spin-1 chain whose Hamiltonian is invariant under a global
on-site A4, translation, and lattice inversion symmetries. We detect different gapped phases characterized by a
symmetry protected topological (SPT) order and symmetry breaking using matrix product state order parameters.
We observe a rich variety of phases of matter characterized by a combination of symmetry breaking and symmetry
fractionalization and also the interplay between the on-site and spatial symmetries. Examples of continuous phase
transitions directly between topologically nontrivial SPT phases are also observed.
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I. INTRODUCTION

The program of classifying and characterizing different
phases of matter has been revived and actively pursued in
recent years. One aspect is to classify phases based on global
symmetries. In the Landau-Ginzburg paradigm, given a class
of many-body Hamiltonians invariant under a global symmetry
defined by a group G, different phases of matter can be
enumerated by the spontaneous symmetry breaking of G

and labeled by the residual symmetry H that G is broken
down to. One could also envision the existence of local
order parameters which arise from symmetry breaking and
hence be able to distinguish between these phases. However,
after the discovery of the quantum Hall effect [1,2], it was
realized that the Ginzburg-Landau symmetry-breaking picture
might not be enough to classify all phases of matter [3].
Some systems like the fractional quantum Hall states [2],
spin liquids [4], quantum double models [5], and string-net
models [6] do not even need symmetries and are called intrinsic
topological phases or simply topological phases. Even with
symmetries, several new phases have been discovered that are
not classified by symmetry-breaking or characterized by local
order parameters, such as topological insulators [7] and the
Haldane phase of spin-1 chains [8–10] and these phases are
called symmetry protected topological (SPT) phases [11–13].
Furthermore, if we consider global symmetry in systems with
intrinsic topological order, we can have more phases called
symmetry enriched topological phases [14–16]. In gapped 1D
spin chains, which we focus on in this paper, however, it has
been shown that there cannot be any intrinsic topological order
and hence all phases are either symmetry breaking or SPT
phases [11,17–21].

Given that the classification program has been much
explored, there has been interest in developing ways to detect
which phase of matter a system belongs to. Since local
order parameters are insufficient to detect phases that are not
characterized by spontaneous symmetry breaking (SSB), there
have been attempts to develop other quantities that can detect
SPT phases like nonlocal “string” order parameters [20,22–
25] and matrix product state (MPS) order parameters [20].
Furthermore, if we include the possibility of both symmetry
breaking and SPT phases, there is a rich set of possible
phases [18]. Given a global symmetry group G, the ground
state can spontaneously break the symmetry to one of its

subgroups H ⊂ G. However, for each subgroup H , there
can exist different SPT phases that do not break symmetry
spontaneously. The situation is even more interesting if there
are both internal and space-time symmetries like parity and
time reversal invariance. In this paper, we generalize the
techniques of Ref. [20] and study the phase diagram for
a two-parameter Hamiltonian of a spin-1 chain, which is
invariant under a global on-site (internal) A4 symmetry, lattice
translation, and lattice inversion (parity). Through suitable
order parameters, we detect both the different SSB and SPT
phases and label them using the classification framework
of Ref. [18]. A total of eight distinct phases are identified
within the parameter space we consider. In particular, we find
among these a direct, continuous transition between two topo-
logically nontrivial A4-symmetric SPT phases, distinguished
by the 1D representations of the symmetries, as explained
below.

This paper is organized as follows. In Sec. II, we described
the A4 spin-chain Hamiltonian studied here and present its
phase diagram which contains the main results of this paper.
In Sec. III, we review the classification of 1D gapped-spin
chains and list parameters, which can be used to completely
classify phases. In Sec. IV, we describe the full details of the
phase diagram of the A4 model, and also enumerate the several
possible phases that can in principle exist given the symmetry
group of the parent Hamiltonian. Section V presents, in detail,
the numerical techniques by which the states and parameters
were obtained, and Sec. VI gives a summary of our results.

II. OVERVIEW OF MAIN RESULTS

A. The Hamiltonian

We will now describe an A4 and inversion symmetric
Hamiltonian whose phase diagram we study in detail. The
Hamiltonian we present here is a modified version of the one
used in Ref. [26] where it was found that the there was an
extended region where the ground state is exactly the AKLT
state and hence useful for single qubit quantum information
processing [27]. Here, we slightly modify the Hamiltonian to
retain the essential features only and study the phase diagram.

The total Hamiltonian consists of three parts. The first is the
Hamiltonian for the spin-1 Heisenberg antiferromagnet which
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is invariant under the spin-1 representation of SO(3):

HHeis =
∑

i

�Si · �Si+1, (1)

where �Si · �Si+1 ≡ Sx
i Sx

i+1 + S
y

i S
y

i+1 + Sz
i S

z
i+1. We add two

other combinations, Hq and Hc to the Heisenberg Hamiltonian
which breaks the SO(3) symmetry to A4, the alternating group
of degree four and the group of even permutations on four
elements (equivalently, the rotation group of a tetrahedron).
These terms are defined as
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and
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[
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]
. (2)

For details on how the perturbations are constructed, see
Appendix A or Ref. [26].

The operators in Hc are symmetrized so that the Hamilto-
nian is invariant under inversion as well as lattice translation.
With this we have a two-parameter Hamiltonian invariant
under an on-site A4 symmetry along with translation invariance
and inversion:

H (λ,μ) = HHeis + λHc + μHq. (3)

B. Summary of numerical results

We employ the ITEBD algorithm [28] to numerically
analyze the ground states across a range of parameters μ =
[−3,4] and λ = [−2,2] and find a wide variety of phases.
In the parameter space analyzed, a total of eight distinct
regions can be identified (labeled with letters A–H in Fig. 1).
These regions are distinguished both by the symmetries of
the ground states, and also by the classification parameters of
Ref. [18].

From the symmetry group G of the parent Hamiltonian,
which contains A4, spatial inversion, and translation symme-
tries, only the inversion and translation symmetries remain
in the ground states of region A. Regions B, C, and D,
by contrast, all respect the full set of symmetries of the
parent Hamiltonians but are differentiated by one of the
SPT parameters: namely, the overall complex phase produced
under A4 transformations. These complex phases are different
1D irreducible representations (irreps) of A4 and correspond
to distinct SPT phases protected by translation and on-site
symmetries. In phase E, the ground state breaks the symmetry
to on-site Z2 and parity. The translation symmetry in this
region is broken down from single-site translation invariance
to two-site. This broken, two-site translation symmetry is also
present in regions F and G, but here the remaining symmetries
of A4 and parity are completely preserved. Like regions B,
C, and D, regions F and G have the same symmetry but are
distinguished from one another only by the values of their SPT

FIG. 1. The phase diagram for a two-parameter Hamiltonian
constructed to have an A4 on-site symmetry group, as well as parity
symmetry and one-site translation invariance. The symmetries of
the Hamiltonian break down into five different residual symmetry
groups in the ground states. These break down further when classified
according to the relevant topological parameters, yielding eight
distinct phases overall. The diversity of phases from the comparatively
simple Hamiltonian shows the necessity of carefully accounting for
all possible symmetries and topological parameters when attempting
to characterize the phase of a ground state. For a description of the
phases A–H, see discussions in the main text.
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FIG. 2. Ground-state energy along the line μ = 2. For each
data point, numerical states are computed across a range of bond
dimensions up to χ = 200, with an energy Eχ computed for each.
As the bond dimension increases, the energy approaches a plateau.
This allows the energy value at “infinite bond dimension,” E∞, to
be extrapolated using a standard BST algorithm [33], with �E =
|E∞ − Eχ | steadily decreasing with χ . An example of this behavior
is show in the inset for the representative point λ = 0.6.
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parameters. Finally, in region H, the residual symmetry group
has an internal Z2 × Z2 symmetry and parity along with an
one-site translation invariance.

Among these eight phases, five correspond to instances of
SSB and the remaining three correspond to SPT phases without
symmetry breaking. The complete set of such parameters
classifying these phases will be described in Sec. III, and the
particular values which distinguish them from one another are
presented in Sec. IV.

Because the phases B, C, and D are not distinguished
by any symmetry-breaking criteria (and because none of
them are topologically trivial), the boundary lines between
them are of particular interest as examples of nontrivial
SPT to nontrivial SPT phase transitions. Such transitions are
considered uncommon and have recently attracted particular
interest [29–32], as compared to the more typical case of
a transition between SPT and symmetry breaking phases,
or trivial to nontrivial SPT phase transitions. Our analysis,
however, shows that this model contains direct nontrivial SPT
to SPT transitions, and that the transition is second-order in
nature. By directly calculating the ground-state energy and its
derivatives, we see sharp divergences in the second derivative,
but a continuous first derivative across the boundary between
these phases. Representative behavior is shown in Fig. 3.

The numerical methods employed here also allows us
to probe the central charge of the conformal field theory
(CFT) associated with the continuous phase transitions. As
one approaches the transition, the correlation length begins to
diverge. The central charge of the CFT appears in an important
scaling relation between this diverging correlation length and
the mid-bond entanglement entropy [34,35]. In particular, it
has been shown that

S = c

6
ln ξ, (4)
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FIG. 3. Free energy derivatives along the line μ = 2 in the
phase diagram above show the nature of the phase transitions. The
continuous first derivative (blue) contrasts with divergence in the
second derivative (red), showing a second-order transition. All three
regions are topologically nontrivial SPT phases. The data here are
numerical derivatives of the extrapolated energy values in Fig. 2.

where c is the central charge, and ξ is the correlation length
measured in units of lattice spacing. S is the entanglement
entropy, given by performing a Schmidt decomposition be-
tween sites and computing the entropy of the resulting Schmidt
coefficients λi ,

S = −
∑

i

λi ln λi. (5)

The MPS algorithms employed here to determine the ground
state are not well suited to computing ground states at the actual
critical points. This is because the numerical accuracy of these
algorithms are controlled by a tunable numerical parameter,
the so-called “bond dimension.” The closer we approach the
critical point, the bigger this parameter needs be chosen for
the ground states to be computed faithfully. By gradually
increasing the bond dimension near the critical point, we obtain
states with increasingly large correlation length, allowing us
to fit the scaling relation of Eq. (4). We can also use this data
to estimate the location of the transition, because away from
the critical point, the scaling relation will not hold, and S will
saturate for large enough ξ (or in practice, for large enough
bond dimension). We find the critical lines to be located at
λ = ±0.865(2); fits at multiple points along these lines suggest
a central charge of c = 1.35(1), as shown for example in Fig. 4.

III. REVIEW OF CLASSIFICATION OF 1D GAPPED
PHASES OF SPIN CHAINS

We now review the classification of 1D gapped phases
of spin chains following [18]. Given the group of global
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FIG. 4. Entanglement entropy vs the logarithm of the correlation
length for states very close to the transition point. The slope is
directly proportional to the central charge of the associated CFT,
via Eq. (4). Data is generated by computing ground states at the
point μ = 2,λ = 0.865, and increasing the “bond dimension” of the
numerical scheme to allow us to find states closer to the critical point
where the correlation length diverges. The largest bond dimension
used is 200. The behavior shown here is representative of that seen
elsewhere along the lines λ = ±0.865. Away from these lines, the
entanglement entropy saturates at a finite value of ξ . The best-fit line
has a slope of 0.225(1), which corresponds to a central charge of
1.35(1).
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symmetries G, the classification gives us a set of labels
whose values distinguishes all possible phases of matter that
can exist. We will systematically list these labels for various
types of symmetries. It is the value of these labels that we
extract numerically to determine the phase diagram presented
in Sec II. First, we must give a brief introduction to matrix
product state (MPS) representations of one dimensional wave
functions [36], which forms the backbone of the classification
scheme.

A. MPS formalism

Consider a one-dimensional chain of N spins. If each spin is
of d levels, i.e., the Hilbert space of each spin is d-dimensional,
the Hilbert space of the spin chain itself is dN -dimensional. A
generic state vector in this many body Hilbert space is of the
form

|ψ〉 =
d∑

i1=1

. . .

d∑
iN=1

ci1,...,iN |i1 . . . in〉. (6)

This means that the number of coefficients ci1,...,iN needed
to describe such a wave function grows exponentially with
the length of the chain. To write this wave function in the
MPS form, we need to associate for every spin site (labeled
by m = 1 . . . N ), a Dm × Dm+1-dimensional matrix Aim

m for
each basis state |im〉 = |1〉 . . . |d〉 such that (assuming periodic
boundary conditions without any loss of generality here and
henceforth)

ci1,...,iN = T r
[
A

i1
1 A

i2
2 . . . A

iN
N

]
. (7)

The matrices Aim
m (which we will call MPS matrices) can,

in principle, always be obtained via sequential singular value
decompositions of the coefficients ci1,...,iN , as described in [37];
in practice, it is useful to employ the canonical form of the
MPS [36,37]. For most of the paper, the term “MPS” shall
refer to wave functions written in the form

|ψ〉 =
∑
i1...iN

T r
[
A

i1
1 A

i2
2 . . . A

iN
N

]|i1, . . . ,iN 〉. (8)

Two important features of the MPS representation bear
relevance to the numerical methods employed in this paper.
The first is D = maxm(Dm), called the “virtual” or “bond”
dimension, which in general may need to be very large.
However, if the wave function is the ground-state of a gapped
Hamiltonian and hence has a finite correlation length, it can
be efficiently written as an MPS wave function whose bond
dimension approaches a constant value that is independent of
the size of the chain [37–39]. And as one approaches a critical
point, where the correlation length diverges, an increasingly
large bond dimension is required to faithfully capture the
ground states. Even though the ground states at criticality
therefore cannot be accurately represented by an MPS, one
can employ the scaling results discussed above and in Fig. 4,
where increasingly large correlation lengths are probed by
gradually increasing the bond dimension.

Secondly, note that when a state possesses translation
invariance, the MPS matrices themselves may be chosen to
respect the same symmetry. A state invariant under one-site
translations, for example, can be represented in the form above

with the same MPS tensor at each site, Aim
m = Aim . This, in turn,

allows a state with translation invariance of any length to be
represented by d matrices where d is the dimension of the
local Hilbert space. In general, a state with K-site translation
invariance requires Kd MPS matrices to represent it.

B. Symmetry breaking

First, we consider the possibility that the ground state
spontaneously breaks the symmetry, G of a Hamiltonian to
H . This is the subgroup H ⊂ G that still leaves the ground
state invariant. This residual symmetry group itself acts as one
of the labels to indicate the phase of matter. The case of the
ground state not breaking any symmetry itself corresponds to
H = G. However, there may exist different SPT phases where
the ground state is invariant under the same H . In such a case,
we would need more labels along with H to label the phase
of matter. These labels depend on what H itself is and will be
reviewed next.

We now consider the action of global symmetries on the
physical spins and how it translates to the action on the
MPS matrices on the virtual level. It was observed that
the representation of the symmetry on the virtual level falls
into distinct equivalence classes and these classes correspond
to the different SPT phases of matter “protected” by the
corresponding symmetry [12,13,18–21]. Here, we review
the action of various symmetries on the MPS matrices, the
different equivalence classes and the labels, which distinguish
them. The discussions here follow Ref. [18].

C. On-site/internal symmetry

Let us now consider Hamiltonians that are invariant under
the action of a certain symmetry group Gint on each spin ac-
cording to some unitary representation u(g), i.e., [H,U (g)] =
0 where U (g) = u1(g) ⊗ · · · ⊗ uN (g). If the ground state |ψ〉
does not break the symmetry of the Hamiltonian, it is left
invariant under the transformation U (g) up to a complex phase

U (g)|ψ〉 = χ (g)N |ψ〉. (9)

Equation (9) can be imposed as a condition on the MPS matrix
level as [17–20]

u(g)ijA
j

M = χ (g)V −1(g)Ai
MV (g). (10)

Note that we use the Einstein summation convention wherein
repeated indices are summed over. Because u is a group
representation, group properties constrain χ to be a 1D repre-
sentation and V generally to be a projective representation of
Gint. A projective representation respects group multiplication
up to an overall complex phase,

V (g1)V (g2) = ω(g1,g2)V (g1g2). (11)

The complex phases ω(g1,g2) are constrained by associativity
of group action and fall into classes labeled by the elements
of the second cohomology group of Gint over U(1) phases
H 2(Gint,U(1)). In other words, the different elements of
H 2(Gint,U(1)) label different classes of projective represen-
tations and hence different SPT phases of matter. In particular,
the identity element of the group H 2(Gint,U(1)) labels the
set of linear representations of Gint (which respect group
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multiplication exactly) and the corresponding phase of matter
is trivial, containing or adiabatically connected to product
ground states.

D. Lattice translation

Note that we assume an infinite system with periodic
boundary conditions for our discussions.

1. Without on-site symmetry

The group of lattice translations LT is generated by single
site shift S, which acts as follows:

S :
∑

i1,...,iN

ci1,...,iN |i1, . . . ,iN 〉 →
∑

i1,...,iN

ci1,...,iN |i2, . . . ,iN ,i1〉

=
∑

i1,...,iN

ciN i1...iN−1 |i1, . . . ,iN 〉.

(12)

In other words,

S : ci1,...,iN → ciN i1,...,iN−1 , (13)

S : Tr
[
A

i1
1 . . . A

iN
N

] → T r
[
A

i1
2 . . . A

iN−1
N A

iN
1

]
. (14)

On the MPS matrix level, the single site shift acts as

S : Ai
M → Ai

M+1. (15)

The full group, LT generated by S is

LT = 〈S〉 = {e,S±1,S±2,S±3, . . .}, (16)

Sk : Ai
M → Ai

M+k, k ∈ Z. (17)

For a finite chain with periodic boundary conditions, we have
the constraint SN = e and hence LT ∼= ZN . For an infinite
chain, LT ∼= Z. It was shown [18] that there is only 1 SPT
phase protected by LT alone.

If lattice translation is a symmetry, we can choose

Ai
M = Ai

M ′ = Ai ∀M,M ′ ∈ {1, . . . ,N}, (18)

that is, the MPS matrices can be chosen to be independent of
the site label and the same for all sites.

2. With on-site symmetry

If lattice translation is a symmetry in addition to on-site
symmetry defined by a group Gint as described in Sec. III C,
the different 1D irreducible representations (irreps) χ that can
appear in Eq. (10) also label different phases of matter. The
different SPT phases protected by G = Gint × LT are labeled
by {ω,χ}.

E. Parity

1. Without on-site symmetry

The action of inversion or parity, P in general is generated
by a combination of an on-site action by some unitary operator
w and a reflection, I that exchanges lattice sites about a point:

P = w1 ⊗ w2 · · · ⊗ wNI, (19)

where the action of I is as follows:

I :
∑

i1,...,iN

ci1,...,iN |i1, . . . ,iN 〉 →
∑

i1,...,iN

ci1,...,iN |iN iN−1, . . . ,i1〉

=
∑

i1,...,iN

ciN ,...,i1 |i1, . . . ,iN 〉.

(20)

In other words,

I : ci1,...,iN → ciN ,...,i1 ,

I : Tr
[
A

i1
1 A

i2
2 . . . A

iN
N

] → Tr
[
A

iN
1 A

iN−1
2 . . . A

i1
N

]
= Tr

[(
A

i1
N

)T (
A

i2
N−1

)T
. . .

(
A

iN
1

)T ]
.

In the last equation, we have used the fact that the trace of
a matrix is invariant under transposition. On the MPS matrix
level, the action is

I : Ai
M → (

Ai
N−M+1

)T
. (21)

The full action of parity is

P : ci1,...,iN → wi1j1 . . . wiNjN
cjN ...j1 ,

P : Ai
M → wij

(
A

j

N−M+1

)T
. (22)

Since P2 = e,w is some representation of Z2. There is a
special lattice site that has been chosen as the origin about
which we invert the lattice. It is sensible for parity to be
defined without any reference to such a special point. Hence we
assume that any system invariant under parity also has lattice
translation invariance which allows any site to be chosen as the
origin. Note that the action of inversion I and the generator of
translations S do not commute. They are related by

ISI = S−1. (23)

The full symmetry group including translation invariance and
parity, which we will call GP , generated by S and P is (for a
finite chain with periodic boundary conditions)

GP = 〈P,S|P2 = SN = e,ISI = S−1〉
∼= ZN � Z2

∼= DN. (24)

For an infinite chain, which we are interested in, we have

GP = 〈P,S|P2 = e,ISI = S−1〉
∼= Z � Z2

∼= D∞. (25)

If GP is a symmetry of the Hamiltonian, which is not broken
by the ground-state wave function |ψ〉, we have, under the
action of P ,

P|ψ〉 = α(P )N |ψ〉. (26)

The condition Eq. (26) can also be imposed on the level of the
MPS matrices that describe |ψ〉:

wij (Aj )T = α(P )N−1AiN, (27)

where α(P ) = ±1 labels even and odd parity and N has the
property NT = β(P )N = ±N . {α(P ),β(P )} label the four
distinct SPT phases protected by GP [18].
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2. With on-site symmetry

Let us consider invariance under the combination of an
on-site symmetry Gint as described in Sec. III C with parity. If
the actions of the two symmetry transformations commute on
the physical level:

U (g)P|ψ〉 = PU (g)|ψ〉, (28)

i.e., G = Gint × GP , this imposes constraints on the matrix N

defined in Sec. III E as [18]

N−1V (g)N = γP (g)V ∗(g). (29)

Where, γP (g) is a one-dimensional irrep of Gint that arises from
the commutation of on-site and parity transformations [18]
and V (g) is the representation of Gint acting on the virtual
space as discussed in Sec. III C. Note that we can rephase
V (g) �→ α(g)V (g) without changing anything at the physical
level. However, Eq. (29) is modified replacing γP (g) �→
γP (g)/α2(g). Hence the 1D irreps γP and γP /α2 are equivalent
labels for the same phase for all the 1D irreps α of Gint.
Different SPT phases of matter protected by G = Gint × GP
are labeled by {ω,χ (g),α(P ),β(P ),γP (g)} [18], where, as
defined before ω ∈ H 2(Gint,U(1)) with ω2 = e and γP ∈
G/G2 where G is the set of 1D representations of Gint.

Because our Hamiltonian is not invariant under time rever-
sal, we do not review the classification of SPT phases protected
by time-reversal invariance and combinations with other
symmetries here. We include the same in the Appendix B 1
for the sake of completion. The techniques used in this paper
can be extended easily to include time-reversal invariance.

IV. USING THE PARAMETERS TO UNDERSTAND THE
PHASES OF THE A4 HAMILTONIAN

A. Details of the phase diagram

Armed with the family of parameters described in the last
section, {ω,χ,α,β,γP }, we now describe in detail the different
phases of the Hamiltonian of Eq. (3) seen in Fig. 1. The internal
symmetry is A4, which is a group of order 12 and can be
enumerated by two generators with the presentation

〈a,x|a3 = x2 = (ax)3 = e〉. (30)

The 3D representations of these generators are

a =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, x =

⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠. (31)

This can be visualized as the rotational symmetry group of the
tetrahedron.

First, we briefly outline the steps followed. (1) For every
point in parameter space μ = [−3,4],λ = [−2,2] of the
Hamiltonian of Eq. (3), we use the ITEBD algorithm [28]
to compute the ground state. (2) We determine the residual
symmetry H ⊂ G of the full symmetry group G = A4 × GP
that leaves the ground state invariant. This includes checking
the level of translation invariance, which may be broken down
from one-site to two-site or beyond. (3) We determine the
labels (subset of {ω,χ (g)α(P ),β(P ),γP (g)}) that characterize
the fractionalization of residual symmetry and measure their
values using the appropriate MPS order parameters.

Several of these steps involve important numerical consid-
erations. Full details of our implementation of these steps can
be found in Sec V.

We find that there are eight different phases in total. These
phases, labeled “A” through “H” as indicated to match the
phase diagram in Fig. 1, are characterized as follows.

(1) Phase A. Parity and one-site translation only, i.e.,
H = GP (all internal symmetries are broken). This region is
therefore classified by the values of {α(P ),β(P )} and is found
to have values {α(P ) = −1,β(P ) = −1}.

(2) Phases B, C, and D. No unbroken symmetries. The
ground states in these three regions are invariant under
the full symmetry group G = A4 × GP . The relevant labels
are {ω,χ (g),α(P ),β(P )}. (Since all three 1D irreps of A4

are equivalent under the relation γP ∼ γP /χ2,γP (g) is a
trivial parameter). The MPS matrices in all three regions
transform projectively, i.e., these are nontrivial SPT phases
with ω = −1, where H 2(A4,U(1)) ∼= Z2

∼= {1, − 1}. Also,
α(P ) = −1,β(P ) = −1 for all three phases. However, they
can be distinguished by the values of χ , i.e., observing that
the 1D irrep produced under the A4 symmetry transformation
[Eq. (9)] in the three regions corresponds to the three
different 1D irreps of A4. The values of the set of parameters
that characterize the regions are as follows. (i) Phase B:
{ω = −1,χ : {a = e

i2π
3 ,x = 1},α = −1,β = −1}. (ii) Phase

C: {ω = −1,χ : {a = 1,x = 1},α = −1,β = −1}. (iii) Phase
D: {ω = −1,χ : {a = e− i2π

3 ,x = 1},α = −1,β = −1}.
(3) Phase E. Parity,Z2, and two-site translation. This region

possesses a hybrid parity GP , generated not by inversion
alone but rather the combination of inversion and the order
2 element axa2 of A4. Additionally, there is an unbroken
on-site Z2 action with elements {e,x}. The relevant labels are
{χ (g),α(P ),β(P ),γP (g)} with values {χ : {e = 1,x = 1},α =
1,β = 1,γP = {e = 1,x = 1}}.

(4) Phases F and G. These regions possess the same parity
and on-site A4 symmetry as phases B, C, and D, but have
translation invariance that is broken down to the two-site level.
They are also distinct from the above phases because the MPS
matrices transform under a linear representaion of A4, and
have a trivial representation of parity at the two site level.
The relevant labels are parameters are {ω,χ (g),α(P ),β(P )}
with values: (i) phase F: {ω = +1,χ : {a = e− i2π

3 ,x = 1},α =
+1,β = +1}, and (ii) phase G: {ω = +1,χ : {a = e+ i2π

3 ,x =
1},α = +1,β = +1}.

(5) Phase H. In this final region, the on-site symmetry
is broken down to a Z2 × Z2 subgroup with elements
{e,x,a2xa,axa2}. Parity and translation symmetries are both
fully retained. It is therefore the only region in our sample
phase diagram that requires all five labels {ω,χ,α,β,γP } to
characterize. The values here are {ω = +1,χ = {1, − 1,1, −
1},α = +1,β = +1,γP = {1,1,1,1}}.

Note here that for compactness, the set of values given χ

and γ refer to the four elements {e,x,a2xa,axa2}, respectively.
The diversity of phases seen in this phase diagram show

the importance of carefully checking for both conventional
symmetry-breaking phases and SPT phases. The phases
present here also underscore the importance of considering
the different possible instances of parity and translation
invariance that can occur, since in addition to traditional
one-site translation invariance and inversion, one might find,
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e.g., translation breaking without inversion breaking (phases
F and G), or inversion which only exists when hybridized with
an on-site symmetry (phase E). In the subsequent section, we
show the wide variety of phases that could potentially exist
given the symmetries of this parent Hamiltonian.

B. Counting the possible phases of with on-site A4

and parity symmetries

Looking beyond the eight phases, which are observed in
our phase diagram, we now count the different phases that are
possible with the symmetry group that we considered:

G = A4 × GP . (32)

GP is the group generated by lattice inversion and translation
that was described in Sec. III E and A4 is the alternating group
of degree four, i.e., the group of even permutations on four
elements. The order of this group is 12 and can be enumerated
with two generators:

〈a,x|a3 = x2 = (ax)3 = e〉. (33)

We list the full set of 12 elements in terms of these generators
for convenience:

A4 = {e,a,a2,ax,a2x,xa,xa2,xax,xa2x,x,axa2,a2xa}
(34)

We use the results of Refs. [17,18], which were reviewed
in Sec. III, and list the possible phases by the two possible
mechanisms: (1) symmetry breaking of G into the different
possible subgroups and (2) SPT phases of the residual
symmetry, H .

The possible symmetry breaking patterns are enumerated
by listing all possible subgroups of G = A4 × GP . Since in the
thermodynamic limit, this is a group of infinite order formally
isomorphic to A4 × D∞, we cannot list all possible subgroups.
In particular, since the symmetry group we are interested
in contains lattice translation LT , generated by single site
shifts, in principle, it can spontaneously break into various
subgroups generated by two site shifts, three site shifts and
so on when the ground state dimerizes, trimerizes, etc. To
keep things simple, here, we will list the possible phases
where translation invariance is not broken. This means the
effective group is A4 × P , which is formally isomorphic to
A4 × Z2. Including all isomorphisms, there are 26 different
subgroups contained in A4 × P , which can label the different
residual symmetries, H of the ground state at different levels
of symmetry breaking. We shall list some of the nontrivial
groups and the associated SPT phases. The counting would be
similar when the ground state is invariant under, say, two-site
translation invariance by considering two sites as one supersite
and repeating the analysis similarly for the rest of the unbroken
symmetry transformations.

(1) H = A4 × P .
(i) The set of labels that classify the different phases are

{ω,χ,α(P ),β(P ),γP }.
(ii) For on-site A4, we have H 2(Gint,U(1)) = Z2, which

gives us two choices for ω.
(iii) Since A4 has three different 1D irreps, we have

three choices for χ .

(iv) From the equivalence of 1D irreps described in
Sec. III E, all 1D irreps of A4 are equivalent to each other
and γP has only one choice.

(v) α(P ) and β(P ) have two choices each given by ±1.
(vi) For H = A4 × P , we have 2 × 3 × 2 × 2 × 1 =

24 possible phases.
(2) H = Z2 × Z2 × P .

(i) There is one instance of Z2 × Z2 ⊂ A4 with Z2 ×
Z2 = {e,x,axa2,a2xa}.

(ii) The set of labels that classify the different phases is
{ω,χ,α(P ),β(P ),γP }.

(iii) For on-siteZ2 × Z2, we have H 2(Gint,U(1)) = Z2,
which gives us two choices for ω.

(iv) SinceZ2 × Z2 has four different 1D irreps, we have
four choices for χ .

(v) Since each 1D irrep of Z2 × Z2 squares to 1, all
four of them are valid choices for γP .

(vi) α(P ) and β(P ) have two choices each given by ±1.
(vii) For H = Z2 × Z2 × P , we have 2 × 4 × 2 × 2 ×

4 = 128 possible phases.
(3) H = Z3 × P .

(i) There are four instances of Z3 ⊂ A4:
(a) ZA

3 = {e,a,a2},
(b) ZB

3 = {e,xax,xa2x},
(c) ZC

3 = {e,ax,xa2},
(d) ZD

3 = {e,xa,a2x}.
(i) The set of labels that classify the different phases for

each instance are {ω,χ,α(P ),β(P ),γP }.
(ii) For on-siteZ3, we have H 2(Gint,U(1)) = {e}, which

gives us one choice for ω.
(iii) Since Z3 has three different 1D irreps, we have

three choices for χ .
(iv) From the equivalence of 1D irreps described in

Sec. III E, all 1D irreps of Z3 are equivalent to each other
and γP has only one choice.

(v) α(P ) and β(P ) have two choices each given by ±1.
(vi) For H = Z3, we have 1 × 3 × 2 × 2 × 1 = 12

phases for each of the four instances and hence a total
of 48 possible phases.
(4) H = Z2 × P .

(i) There are three instances of Z2 ⊂ A4:
(a) ZA

2 = {e,x},
(b) ZB

2 = {e,axa2},
(c) ZC

2 = {e,a2xa}.
(i) The set of labels that classify the different phases for

each instance are {ω,χ,α(P ),β(P ),γP }.
(ii) For on-siteZ2, we have H 2(Gint,U(1)) = {e}, which

gives us one choice for ω.
(iii) Since Z2 has 2 different 1D irreps, we have two

choices for χ .
(iv) Since each 1D irrep of Z2 squares to 1, both 1D

irreps are valid choices for γP .
(v) α(P ) and β(P ) have two choices each given by ±1.
(vi) For H = Z2, we have 1 × 2 × 2 × 2 × 2 = 16

phases for each of the three instances and hence a total
of 48 possible phases.
(5) H = Parity generated by lattice inversion only.

(i) There is one instance of this H = P = {e,I}, i.e.,
all generators are A4 are broken.

045136-7



ABHISHODH PRAKASH, COLIN G. WEST, AND TZU-CHIEH WEI PHYSICAL REVIEW B 94, 045136 (2016)

(ii) The set of labels that classify the different phases
are {α(P ),β(P )}.

(iii) α(P ) and β(P ) have two choices each given by ±1.
(iv) For H = P , we have a total of 2 × 2 = 4 possible

phases.
(6) H = Parity generated by lattice inversion combined

with on-site Z2 operation.
(i) There are three possibilities:

(a) PA = {e,xI},
(b) PB = {e,axa2I},
(c) PC = {e,a2xaI}.

(i) The set of labels that classify the different phases for
each instance are {α(P ),β(P )}.

(ii) α(P ) and β(P ) have two choices each given by ±1.
(iii) For H = PA/B/C , we have of 2 × 2 = 4 for each of

the three instances and hence a total of 12 possible phases.
(7) H = Z2 × PA/B/C .

(i) There are three possibilities:
(a) ZA

2 × PB = {e,x,a2xaI,axa2I},
(b) ZB

2 × PC = {e,xI,a2xaI,axa2},
(c) ZC

2 × PA = {e,xI,a2xa,axa2I}.
(i) The set of labels that classify the different phases for

each instance are {ω,χ,α(P ),β(P ),γP }.
(ii) With the number of choices for the labels being the

same as mentioned in (3), there are 1 × 2 × 2 × 2 × 2 = 16
phases for each of the three instances and hence a total of
48 possible phases.
There are also other possibilities which include the different

subgroups of A4 with parity being broken completely, in which
case we ignore the labels α(P ),β(P ),γP . It is clear that even
in the limited set of residual symmetries we have listed, there
is a rich set of phases when combined with SPT order.

V. NUMERICAL METHODS FOR OBTAINING
THE PHASE DIAGRAM

For gapped 1D spin chains, the authors of
Refs. [11,12,20,40] describe ways of numerically determining
the SPT parameter described above, and distinguishing
different SPT orders. We build on the technique developed
in Ref. [20] where the authors obtain the SPT labels using
the representations of symmetry at the virtual level. The
numerical characterization of the phase diagram of a general
parametrized Hamiltonian H (λ,μ, . . .) proceeds according
to the following steps. (1) Identify the group of symmetries
of the Hamiltonian, G of the Hamiltonian. (2) For each
point in parameter space {λ,μ, . . .}, obtain the ground state
|ψ(λ,μ, . . .)〉 of the Hamiltonian H (λ,μ, . . .) numerically
as a MPS. (3) For each point in parameter space {λ,μ, . . .},
identify the subgroup of symmetries H ⊂ G that leaves the
ground state |ψ(λ,μ, . . .)〉 invariant. In our case, this means
checking each of the 24 elements of G = A4 × P . We also
must explicitly check the translation invariance. (4) Obtain
the relevant virtual representations for the elements of H ,
i.e., χ,V,α(P ), and N . (5) From the representations and their
commutation relations, obtain all other labels that completely
characterize the phase.

In general, this process results in calculating the full family
{χ,ω,α(P ),β(P ),γ (P )} for each point in parameter space.
However, in some cases, the elements of H are such that

not all such parameters are necessary or even well-defined.
For example, if the subgroup H does not contain the parity
operator, then α(P ),β(P ), and γ (P ) do not exist. Similarly,
if H = Z3, there is only one possible value of ω, and hence
we do not need it to distinguish the phase. The complete set
of cases potentially relevant to our Hamiltonian was discussed
above in Sec. IV B.

A. Ground-state preparation

Having constructed our Hamiltonian with an explicit
symmetry group G = A4 × P , the next step is to obtain
the ground states. For this, we use the numerical “ITEBD”
algorithm [28,41,42] to compute the ground states over a
range of parameters, λ ∈ [−2,2] and μ ∈ [−3,4] (this range is
simply chosen based on our results to include a large but not
necessarily comprehensive sample of different SPT phases).
The algorithm computes the ground state of a Hamiltonian H

through the imaginary time evolution of an arbitrary initial
state |ψ〉, since |ψ〉 can be expanded in the energy eigenbasis
of Hamiltonian as |ψ〉 = ∑

i ci |Ei〉 and hence e−τH |ψ〉 will
suppress all such components except for the ground state |E0〉
in the large-τ limit. Except where otherwise noted, data in this
paper were prepared with a random initial state represented as
an MPS with bond dimension χ = 24, and evolved according
to a fixed sequence of time steps, which were chosen to be
sufficient to converge the energy to the level of 10−8 at the most
numerically “difficult” states. Within each phase, a random set
of points have also been recomputed using states with a series
of larger bond dimensions (χ = 36,42, and 60) and a longer
sequence of imaginary time steps, in order to verify that the
observed characteristics are not likely to be artifacts of the
numerical parameters.

While the numerical details of the ITEBD algorithm have
been extensively documented elsewhere and are outside the
scope of our concern here, there is one salient point which
must be remarked upon. For a Hamiltonian H with two-body
interactions, the algorithm relies on a decomposition of the
Hamiltonian into two sets of terms, those acting first on an even
site (HA) and those acting first on an odd site (HB), so that H =
HA + HB . As such the imaginary time evolution operator can
be approximated by the Suzuki-Trotter decomposition [43,44],
which, to second order, gives

e−τH ≈ (e−δτHA/2e−δτHB e−δτHA/2)N, (35)

with δτ = τ/N . The total operator can then be applied as a
sequence of smaller operators, acting either on an even site
first, or an odd site first. This distinction, then, requires the
state to be represented with at least two tensors, A

j

A and A
j

B ,
even if the resulting state is expected to possess a one-site
translation invariance (which would generally allow it to be
represented by only a single tensor Aj . This fact will have
relevance in later sections, when the translational invariance
of the MPS is explicitly discussed).

For now, however, let us simplify the discussion by
considering a translationally invariant, infinite ground state,
represented by the tensor Aj . Note that there is some gauge
freedom allowed in the representation of an infinite MPS
state—the tensors Aj and eiφXAX−1 both represent the
same one-site translationally invariant state, for example. This
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freedom allows us to make some choices about the structure
of the representation which will prove useful in subsequent
calculations. In particular, we can choose our MPS to be
represented in the so-called “canonical form” [36,42], in which
the state satisfies the property

A
j

α,β (A∗)jα′,β ′δ
β,β ′ = δα,α′ . (36)

This condition can also be thought of in terms of the
state’s transfer matrix (see Fig. 5). This object, a common
construction used in MPS formalism to compute things like
expectation values, is given by

T
(αα′)

(ββ ′) ≡ A
j

α,β (A∗)jα′,β ′ . (37)

Now consider the dominant eigenvector of T , which will
be some vector X(β,β ′). Because the outgoing indices of T are
a composite of smaller indices (β,β ′), any eigenvector of this
matrix can also be thought of as a (smaller) matrix in its own
right, by interpreting X(β,β ′) as X

β

β ′ . The original vector X(β,β ′)

is called the vectorization of the matrix X
β

β ′ . Now, the condition
for canonical form can be rephrased as the requirement that
the dominant eigenvector of the state’s transfer matrix is a
vectorization of the identity matrix, i.e.,

(T )(αα′)
(ββ ′)δ

(ββ ′) = δ(αα′). (38)

This property of a transfer matrix in canonical form (graph-
ically depicted in Fig. 5) will be quite useful in subsequent
calculations.

Because it represents a contraction of the physical indices
of the tensors Aj , the transfer matrix can be thought of as
containing the overlap of the state with itself at a single
site. In other words, in an N -site periodic state with one-site
translation invariance, the norm square of the state is given by

==

α

α'

β

β'
TT

(α, α’) (β, β’)

α

α'

β

β'

A

j

α

α'

β

β'

T
β

δ = δ

α

α'

(a)

(c)

= T T T T Tψ ψ = Tr limN → ∞ TN( )

(b)

A*

FIG. 5. The transfer matrix of a translationally invariant matrix
product state, demonstrated in graphical tensor notation. In (a), the
construction of the transfer matrix is shown as a contraction of two
MPS matrices, with the virtual indices grouped to form a single
matrix. In (b), the relationship between the transfer matrix and the
norm square of the state is shown. Finally, in (c), we show graphically
the behavior of a matrix product state in canonical form: such a state
has a transfer matrix whose dominant eigenvector is a vectorized
version of the identity matrix.

taking a product of N transfer matrices (one for each site) and
then tracing over them:

〈ψ |ψ〉 = Tr[T N ]. (39)

This fact in turn produces a relationship between the
eigenvalues λj of the transfer matrix, and the norm of the state.
Consider, for example, an infinite-length, translation-invariant
state with unique largest eigenvalue λ1, whose norm is given by
limN→∞ T r[T N ] = ∑

j λN
j ≈ λN

1 . This state is normalized if
|λ1| = 1. Hence, in practice, computing the largest eigenvalue
of the transfer matrix gives us a convenient way to ensure
normalization.

A general iMPS computed via ITEBD will not necessarily
be in exactly canonical form. However, because this form is
ultimately so useful, it is worthwhile to enforce it for the
ground state representations at the time of their calculation. In
Ref. [42], Orus and Vidal have given an analytical prescription
was given for placing an arbitrary iMPS in canonical form.
However, successive Schmidt decompositions of the state
during an ITEBD algorithm are themselves equivalent to
enforcing canonical form, so long as the operators being
applied to the state are unitary. Of course, when one computes
a ground state using imaginary time evolution, the operators
which are used, of the form e−δτH [see Eq. (35)], are not in
general unitary. However, for δτ very small, they will be quite
close. Since a typical ITEBD algorithm ends with a sequence
of very small time step evolutions, the resulting states are
also typically “close” to canonical form [45]. To take this to
its logical extension, it is a good practice to terminate every
ITEBD algorithm with, e.g., 100 steps of evolution in which we
apply only the identity gate (which corresponds to the exact
δτ = 0 limit). Of course, this identity gate evolution is both
explicitly unitary and incapable of changing the underlying
state. In this way, one can ensure that the states computed via
ITEBD algorithm are exactly in canonical form (up to numerical
precision).

B. Symmetry detection and extraction of order parameters

1. States with one-site translation invariant representations

The general numerical scheme for extracting the topolog-
ical order parameters from a numerical MPS was presented
in Ref. [20], where it was principally used to study the
order parameters ω,βP , and βT , a parameter for time-reversal
symmetry. Here we emphasize that it can be used to extract
other parameters like the 1D representation χ as well. We
consider the situation first for on-site symmetries and assume
that the infinite state possesses one-site translation invariance
and is represented by a tensors Aj . The generalization to other
symmetries and to different levels of translation invariance will
be considered subsequently.

To check for symmetry and ultimately access the topo-
logical parameters, one first defines a “generalized” transfer
matrix Tu, which extends the definition in Eq. (37) to include
the action of some on-site operator u between the physical
indices, i.e.,

Tu ≡ Ajuj,j ′ (A∗)j
′
, (40)

where, this time, we have suppressed the external indices
of the matrix (see Fig. 6 for a graphical depiction). In the
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α'
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β'
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β

β'

A
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(b)

TP TP

A*

A†
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ω

FIG. 6. The notion of the transfer matrix can be generalized to
include (a) on-site operation U = ⊗

j uj or (b) a parity operation
Pω. Generalizations to other symmetries are possible, but outside the
scope of this paper as they are not present in our model.

same manner that the original transfer matrix T represents the
contribution of one site to the overlap 〈ψ |ψ〉, in this case, the
generalized transfer matrix Tu represents the contribution of
one site to the expectation value 〈ψ |U |ψ〉, where U = ⊗

j uj

represents the application of u to every site on the chain (see
Fig. 6). And just as an iMPS is not normalized unless T has
largest eigenvalue 1, so too is such state only symmetric under
U if Tu has largest eigenvalue with unit modulus.

To study the SPT classification of a state, we thus begin by
determining the symmetry. To check if the state is symmetric
under the application of U , then we first construct Tu and
compute the dominant eigenvector X and the associated
eigenvalue λ1. Note that, when the dimensions of Tu is large,
it is numerically far easier to use some iterative procedure
such as a power or Lanczos algorithm [46–48] to extract
this, since only the largest eigenvalue is required and not
the entire spectrum. If |λ1| < 1, the state is not symmetric
under U because 〈ψ |U |ψ〉 = limN→∞T (u)N will vanish. If,
however, the unique largest eigenvalue gives |λ1| = 1, then we
can proceed with the analysis.

Consider now a normalized iMPS in canonical form, which
is invariant under a set of symmetries u(g) at each site for
g in some symmetry group H ∈ G. Per Eq. (10) above, this
invariance implies the existence of a set of matrices V (g),
which are generally projective representations, and χ (g), a
one-dimensional representation. As shown in Ref. [20], one
can extract both the projective and a one-dimensional repre-
sentation parameters directly from the dominant eigenvector
and eigenvalue of the generalized transfer matrix. In particular,
if X is the dominant eigenvector (or more precisely, if X

β

β ′
is a matrix and it’s vectorization X(ββ ′) is the dominant
eigenvector), then V = X−1. The one-dimensional rep χ (g)
is simply equal to the dominant eigenvalue itself. In other
words,

(Tu)(αα′)
(ββ ′)(V

−1)(ββ ′) = χ · (V −1)(αα′). (41)

To see this, consider the left-hand side of the equation
(in many ways, this line of argument is clarified when
represented by graphical notation; see also Fig. 7). Combining
the definition of the generalized transfer matrix, Eq. (40), with

=

α

α'

β

β'

ρ σ VA

j

βββ'

ββ

ββ'

α

jT δ δ= = =

χ

α
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β

β'
Tu

β

V-1

V-1

V-1

A*

=

α

α'

β

β'

ρ σ V ββ

βββ'ββ'

χ
V-1

V-1T

V-1 ρ σ

β'α'

χ χ χ

α

α'

V-1

V-1

α

α'

FIG. 7. The projective representation V of a symmetry can be
obtained from a state’s generalized transfer matrix because the
dominant eigenvector of said matrix will be the vectorization of,
V −1, so long as the original state is in canonical form. This relation
is demonstrated graphically for the case of an on-site symmetry, but
easily generalizes to the parity case.

the symmetry fractionalization condition in Eq. (10), we have

(Tu)(αα′)
(ββ ′) = χ · (V −1)αρAj

ρσ V σβ(A†)jα′β ′

= χ · (V −1)αρT
(ρα′)

(σβ ′) V σβ.

When this is inserted in the left-hand side of Eq. (41), the
resulting cancellation of V and V −1 gives us

(Tu)(αα′)
(ββ ′)(V

−1)(ββ ′) = χ · (V −1)αρT
(ρα′)

(σβ ′) δσβ ′
. (42)

Then, relabeling the dummy indices ρ and σ into α and β, we
can appeal to the canonical form condition of Eq. (38) to see
that

(Tu)(αα′)
(ββ ′)(V

−1)(ββ ′) = χ · (V −1)αα′
, (43)

which proves that V −1 (vectorized) is an eigenvector with
eigenvalue χ . Furthermore, because the state is normalized and
because we required as a condition for symmetry that |χ | = 1,
this proves that V −1 is the dominant eigenvector, up to an
overall phase factor in V . Hence, any procedure to numerically
extract the dominant eigenvector and largest eigenvalue from
the generalized transfer matrix is sufficient to extract both the
1D representation χ and the projective representation required
to compute the projective parameters ω as defined above.

In the foregoing, we have considered only on-site symme-
tries applied globally to every site on the state [20]. To include
other types of symmetries, one simply generalizes further the
notion of the already-generalized transfer matrix. For example,
the parity symmetry defined by Eq. (19) can be studied by
means of the matrix

TP ≡ Ajwj,j ′ (A†)j
′
. (44)

In comparison to Eq. (40), we have simply inserted the
action of the inversion operator I by performing a transpose
on the virtual indices of the second MPS tensor. In this way, the
resulting generalized transfer matrix still represents a one-site
portion of the overlap 〈ψ |P|ψ〉. By the same arguments as
above, and by analogy between Eqs. (10) and (27), one can
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see that the quantities α(P ) and N can be extracted from the
dominant eigenvector and eigenvalue as before, with the latter
used to compute the parity parameter β(P ) as described above.

2. States without one-site translationally invariant representations

Thus far, we have also assumed a state with one-site
translation invariance. However, even when the ground state
being studied does possess a one-site translational symmetry,
the tensors in the MPS representation of this state may not,
because the gauge freedom of an MPS is not itself constrained
to be translationally invariant. For example, consider a set of
translationally invariant tensors {A1,A2,A3 . . . } and the gauge
transformation

Aj →
⎧⎨
⎩

XAjZ−1, j even

ZAjX−1 j odd
(45)

for any appropriately-dimensioned matrices X and Z. Such a
gauge transformation results in an MPS representation of the
state whose tensors at even and odd sites may look dramatically
different. But both sets of tensors (before and after the
transformation) collectively represent the same, translationally
invariant state. Cases like this are of particular interest here
because, as noted above, the ITEBD method (like other MPS
ground-state preparation algorithms) necessarily results in an
MPS representation with different tensors at even and odd
sites, regardless of the translational symmetry of the physical
state.

This feature does not affect our numerical calculation of
the SPT order parameters ω and β(P ), which are obtained
as eigenvectors of the generalized transfer matrices, but has
important significance for the one-dimensional parameters
χ,α(P ), and γ (P ). Consider, for example, a state which is
represented by k sets of tensors {Aj1 , . . . ,Ajk }, either because
the underlying state has only a k-site symmetry, or perhaps sim-
ply because our particular numerical representation requires it.
The symmetry condition of Eq. (10) must still hold on a k-site
level, i.e., we will have

u(g)IJ AJ = χ (g)kV −1(g)AJ V (g), (46)

where AJ = Aj1Aj2 · · · Ajk is now a tensor representing the
entire block of spins, which are the unit cell of the translation
invariance, and the composite indices I and J are equal to
(i1i2 · · · ik) and (j1j2 · · · jk). Clearly, if we now define a k-site
generalized transfer matrix

T (k)
u ≡ AJ uI,J ′ (A∗)J

′
, (47)

then the arguments from the preceding section show that V −1

can still be found as the dominant eigenvector of T (k)
u .

The largest eigenvalue, on the other hand, is now equal
not to χ , but to χk . In the typical case of an ITEBD state,
where k = 2, this is problematic because for many common
symmetry groups, the values of χ (g) will be ±1, so a numerical
calculation which gives only χ2 will be unable to distinguish
between the different phases. More generally of course, a
k-site representation will always leave us initially unable to
distinguish the cases where χ is a kth root of unity.

Of course, if the underlying state has a one-site translation
invariance (despite being represented by tensors with only a

two-site invariance), one expects that by use of some suitable
gauge transformations it should be possible to transform the
representation itself back into a translationally invariant form.
Here, we show how this can be done in practice. Suppose
we have a translationally invariant state with, say, a two-site
representation {Aj ,Bj+1} and an even number of total spins,
such that the state in question is given by either

|ψ〉 =
∑
j1...

T r[Aj1Bj2Aj3 . . . BjN ]|j1j2 . . . jN 〉, (48)

or |ψ〉 =
∑
j1...

T r[Bj1Aj2Bj3 . . . AjN ]|j1j2 . . . jN 〉. (49)

To recover a one-site representation, we first construct a new
tensor of the form

Ãj =
(

0 Bj

Aj 0

)
. (50)

This new tensor in fact describes the same wave function
|ψ〉. This can be seen by considering the product

∏
j

Ãj =
(

Aj1Bj2Aj3Bj4 · · · 0
0 Bj1Aj2Bj3Aj4 · · ·

)
. (51)

If we take Ãj to be the tensor specifying a new MPS and
compute the coefficients, we will have

|ψ̃〉 =
∑
j1···

T r[Ãj1 . . . ÃjN ]|j1 . . . jN 〉

=
∑
j1···

T r

⎛
⎝∏

j

Ãj

⎞
⎠|j1 . . . jN 〉, (52)

and thus, upon substituting Eq. (51), we find

|ψ̃〉 =
∑
j1···

T r[Aj1Bj2 · · · ]|j1 . . . 〉 (53)

+
∑
j1···

T r[Bj1Aj2 · · · ]|j1 . . . 〉 (54)

= 2|ψ〉. (55)

In other words, the state described by the tensor Ãj is
essentially identical to the state specified by the original tensors
{Aj ,Bj+1}. The only difference is that the correct product of
tensors needed to give the coefficients of the state in Eq. (48)
will always appear twice, differing only by an irrelevant one-
site translation (because the underlying state has a one-site
translation invariance to begin with, these two copies of the
state are still equivalent).

Because the new tensor Ãj now contains two degenerate
descriptions of the same state, it can be placed in a block
diagonal form by appealing to the procedure given in Ref. [36]
for block diagonalizing an MPS representation (see also
Appendix C in Ref. [49]). The resulting blocks will each
independently represent the state, but with one-site translation
invariance.

The procedure, briefly outlined, is as follows: first, one
must ensure that the tensor Ãj is itself in the canonical form,
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in the sense that it satisfies Eq. (36). To do this, construct the
transfer matrix for Ãj and compute the dominant eigenvector.
This may result in a degenerate manifold of eigenvectors, but
by properties of the transfer matrix, at least one of these will
be the vectorization of some positive matrix X [50]. Since
this X is invertible, we can then take Ãj → X−1/2ÃjX1/2.
By construction, this new definition of Ãj will satisfy the
canonical form.

From this, we once again construct a transfer matrix and
compute its dominant eigenvector(s). At least one corresponds
to a matrix Z, which is not proportional to the identity
matrix (up to numerical precision). Furthermore, since the
vectorization of Z† is also an eigenvector of the transfer matrix
in canonical form, we can take Z → (Z + Z†)/2 so that Z

is Hermitian [unless (Z + Z†)/2 is itself proportional to the
identity, in which case one can always choose instead Z →
i(Z − Z†)/2p. Finally, we compute the largest magnitude
eigenvalue z1 of this new matrix Z, so that we can construct
a matrix W = 1 − (1/z1)Z to be a matrix which is manifestly
not full rank. Let P be a projector onto the support of W , and
P ⊥ the projector onto its complement. We can now decompose
Ãj around theses spaces, as

Ãj = P ÃjP + P ⊥ÃjP ⊥ + P ÃjP ⊥ + P ⊥ÃjP . (56)

The reason for the construction of the matrix W from
a fixed point now becomes clear, as it has been shown
that for such matrix W and its associated projector P , we
have ÃjP = P ÃjP [36]. Consequently, the final term in
Eq. (56), which represents one of two off-diagonal blocks
in Ãj , vanishes identically. This, in turn, ensures that the
remaining off-diagonal block cannot mix with either of the
diagonal blocks in any product Ãji ˜Aji+1 · · · . It therefore does
not participate in the calculation of the coefficients of the
corresponding states, and can be ignored.

The remaining terms, P ÃjP and P ⊥ÃjP ⊥, represent the
relevant blocks along the diagonal of the tensor. We remark
that in principle, one may need to carry out the above procedure
iteratively for each such block (PÃjP and P ⊥ÃjP ⊥) to see
if further block reduction is possible. But in practice, for the
two-site ITEBD ansatz, a single iteration should suffice. Then,
by construction of Ãj , each will be an equivalent representation
of the same state, and each can represent the state with only
a one-site translation invariance. In other words, if we simply
treat P ÃjP as the tensor representing the state, we can use
all the procedures in the preceding section to directly compute
the entire family of SPT parameters.

An alternative method for extracting the one-dimensional
parameters when their values are kth roots of unity would
be to compute the ground state with a version of the ITEBD

algorithm designed to act on an n-site unit cell, where n

does not divide k. In this case, the dominant eigenvalue of
the generalized transfer matrix will be χn, from which χ

can now be calculated without ambiguity. Such generalized
ITEBD algorithms have been employed successfully (see, for
example, Ref. [51]), but may be less numerically stable, and
cannot be used for a general state unless one is sure that n

is commensurate with the underlying translation invariance of
the state. Nevertheless, both methods are possible in practice,

and we have used both to cross-check one another in the results
presented in this paper.

3. States with broken translation invariance

Finally, it may also be the case that a state lacks a one-site
translationally invariant representation precisely because the
ground state is not one-site translationally invariant. When this
occurs, one can still compute topological order parameters for
on-site symmetries, but only once they and the associated
symmetries have been suitably redefined to be consistent
with the translational invariance. In other words, if the state
has a k-site translation invariance and is represented by the
k tensors {Aj1Aj2 . . . Ajk }, one combines the tensors in the
same manner contemplated above, forming a new tensor
AJ = Aj1Aj2 · · ·Ajk with an enlarged physical index which is
given by the composite index J = (j1j2 . . . jk). We then also
reinterpret the on-site symmetry operation to be uI

J = u
i1
j1

⊗
u

i2
j2

⊗ . . . u
ik
jk

under the same convention. Once again, with the
tensors merged so they continue to represent an individual
“unit cell” of the state, then the relation of Eq. (10) will still
hold, and we can compute the projective representations of
the symmetry from the dominant eigenvalue of the transfer
matrix. Unlike the situation described above, however, where
the dominant eigenvalue did not give the one-dimensional
representation χ (but rather χk), in this case the eigenvalue for
the merged cell still gives an order parameter. Indeed, there is
no longer a physical meaning to the kth root of the eigenvalue,
because one-site translation is no longer a symmetry.

For such states, it is also essential to carefully verify the
level of any residual translation symmetry. As discussed above,
the traditional ITEBD algorithm assumes a two-site invariant
representation of the state; hence, if this algorithm produces a
state that appears to have translation symmetry which is broken
on the one-site level but present at a two-site level, it cannot
be assumed that two-site translation is a symmetry of the true
ground state; such symmetry may instead have been forced
by the algorithm. In this work, whenever one-site translation
symmetry is broken, we recompute the ground state using a
version of ITEBD with a larger (say, four-site) unit cell. If the
two-site translation invariance is still present after such a test,
it can then be safely assumed to be a genuine property of the
true ground state, and not a property forced by the numerical
ansatz. In general, an algorithm with an k-site ansatz cannot
by itself confirm translation invariance at the k-site level.

C. Obtaining the SPT labels {ω,β(P),γ (g)}
It is clear how the one-dimensional representations χ and

α(P ) can be used by themselves to label a phase, since each is a
single number. Now, however, we must discuss how to extract
similar numerical labels from the projective representations
and other matrices obtained above (V,N, etc). Hence we must
define a procedure to obtain an order parameter from these
matrices. A good order parameter that gives us an SPT label has
to satisfy the following conditions. (1) It should be sensitive to
the fractionalization of the symmetry at the virtual level. (2) It
should be invariant under the allowed gauge transformations
of MPS states V �→ XV X−1,V �→ eiθV where V is some
symmetry acting on the virtual level.
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1. ω ∈ H2(Gint,U(1))

The authors of Ref. [20] show that tracing over products of
elements of the form V (g1)V (g2)V †(g1)V †(g2) satisfies both
the above requirements and also gives us the information
to extract the class of ω. We will now consider Gint =
A4 and its subgroups (H = Z2 × Z2,Z2,Z3 and the trivial
group) for which H 2(Gint,U(1)) = Z2 (H = A4,Z2 × Z2) or
the trivial group (everything else). For groups, which have
H 2(Gint,U(1)) = Z2, we will list order parameters, which
picks the value ±1 depending on whether the representation
is linear or projective indicating if the SPT phase of matter is
trivial or nontrivial. [Note that as defined before, D refers to
the bond dimension and V (g) is the representation of on-site
symmetry at the virtual level (10).]

(1)
(i) Gint = A4 = 〈a,x|a3 = x2 = (ax)3 = e〉.
(ii) H 2(A4,U(1)) = Z2.
(iii) ω = 1

D
T r[(V (a)V (x)V †(a)V †(x))2] = ±1.

(2)
(i) Gint = Z2 × Z2 = 〈x1,x2|x2

1 = x2
2 = (x1x2)2 = e〉.

(ii) H 2(Z2 × Z2,U(1)) = Z2.
(iii) ω = 1

D
T r[V (x1)V (x2)V †(x1)V †(x2)] = ±1.

(3)
(i) Gint = Z3 or Z2 or the trivial group.
(ii) H 2(G,U(1)) = trivial group.
(iii) ω = 1 (no projective representations).

2. β(P) and γ (g)

It was shown in Ref. [20] that β(P ) can be obtained as

β(P ) = 1

D
Tr[NN∗]. (57)

From Eq. (29), we can see that γ (g) that results from the
commutation of on-site and parity can be obtained as

γ (g) = 1

D
Tr[N−1V (g)NV T (g)]. (58)

Here, however, an important technical point arises. Al-
though Eq. (58) has a similar form to the equations used to
compute ω and β, it differs in an important respect. Recall that,
as calculated above, the matrices V and N are obtained only up
to arbitrary overall phase factors. These phases are irrelevant
to the calculation of ω and β, as both V and V ∗ appear equally
in the equations which define them. In Eq. (58), however, the
matrix V T will fail in general to cancel the phase contributed
by V .

Since the V (g) can carry a different phase for each g, we
must find a way to self-consistently fix the phase factors of
each. In principle, this can always be done by appealing to the
properties of projective representations. The extracted matrices
V should satisfy a set of relationships

V (g1)V (g2) = ω(g1,g2)V (g1g2), (59)

with the phases ω(i,j ) forming the “factor system” of the
representation. Since the matrices which we numerically
extract by the above procedure do not automatically satisfy
this relationship, let us label them Ṽ , with Ṽ (g) = θgV (g) for
some phase factor θg . From this, one can conclude that the

numerical matrices obey a similar relation:

Ṽ (g1)Ṽ (g2) = θg1g2

θg1θg2

ω(g1,g2)Ṽ (g1g2). (60)

By analogy to Eq. (59), let us define

ω̃(g1,g2) = θg1g2

θg1θg2

ω(g1,g2). (61)

Note that these phases ω̃(g1,g2) can be computed numerically
from (1/D)T r[Ṽ (g1)Ṽ (g2)Ṽ (g1g2)−1]. Furthermore, since
parity is assumed to be a symmetry of the state in question
(if it is not, then the concept of a γ parameter is undefined
and the phase factors θ are irrelevant), then we must have
ω(g1g2)2 = 1 [18]. Inverting Eq. (61) and applying this
condition tells us that

θ2
g1

θ2
g2

ω̃(g1,g2)2 = θ2
g1g2

. (62)

Since the ω̃ are known, this set of equations, which run over
all the group elements g, are sufficient to solve for the phases
θ . In fact, when V is unitary, it is clear from the definition of γ

in Eq. (58) that only θ2, and not θ itself, is needed to correct for
the spurious phase factors, which further simplifies the system
of equations which must be solved.

In practice, another convenient way to fix these phase
factors is by interpreting the projective representations of the
group, Ṽ as linear representations of the covering group (or at
least, one of the covering groups). For example, in the case of
Z2 × Z2, the quaternion group Q8 is a covering group. Hence
the elements of the projective representation of Z2 × Z2,V (g)
can have their overall phases fixed so that they obey the
structure of this group; in particular, for the representation
of the identity element we must have V (e)2 = 1, and for all
others, V (g)2 = −1.

VI. SUMMARY AND FUTURE DIRECTIONS

In this paper, we have studied the phase diagram of a
quantum spin-1 lattice with an on-site A4 symmetry along
with invariance under lattice translation and inversion. Using
numerical methods, we obtain the ground state of the Hamil-
tonian for a range of parameters and using appropriate matrix
product state order parameters, we study the phase diagram.
In the parameter range we study, we detect eight gapped
phases characterized by a combination of symmetry breaking
and symmetry fractionalization. In a recent paper [31], the
authors study continuous phase transitions between two SPT
phases (which do not break symmetry) and determine that
the central charge of the conformal field theory (CFT) that
describes that system at the phase boundary has a central
charge c � 1. In our phase diagram, we observe that the phase
boundaries separating phases B and C and also C and D by
continuous phase transitions are characterized by a CFT with
c ≈ 1.35 which is consistent with c � 1. However, there is a
distinction that must be noted. The authors of Ref. [31] state
their result for phase transitions between two distinct SPT
phases protected by on-site symmetries, i.e., when two phases
have linear and projective representations in the virtual space.
For our case, the phases B, C, and D are distinct because of the
presence of translation invariance in addition to the internal
A4 symmetry. Specifically, the ground states belonging to
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three phases are invariant under A4 transformations up to U (1)
factors that corresponds to the three 1D representations of A4

rather than projective representations. In fact, all three phases
have nontrivial projective representations in the virtual space.
Furthermore, the authors of Ref. [29] conjecture that there can
exist no continuous phase transitions between nontrivial SPT
phases when the internal symmetry is discrete at all length
scales. The phase transitions mentioned above appear to be
counter examples. However, at the moment we do not know
whether the discrete symmetry in our model is enhanced to a
continuous one at the transitions between the A4 SPT phases.
It seems, however, that the transitions seen in this model
are not the result of fine-tuning, as they appear in a finite
range of the parameter μ. These observations suggest that it
is interesting to study the nature of phase transitions and the
physics involved in the phase boundary when the protecting
symmetry has both internal and on-site symmetries. Further
analysis in this direction is left for future exploration.
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APPENDIX A: CONSTRUCTING THE
SYMMETRIC HAMILTONIAN

We provide details of the construction of the Hamiltonian in
Sec. II. We remind the reader that the group of on-site symme-
tries we consider is A4, the alternating group of degree four and
the group of even permutations on four elements. The order of
this group is 12 and can be enumerated with two generators:

〈a,x|a3 = x2 = (ax)3 = e〉. (A1)

The on-site representation, u(g) we consider that the spins
transform under is the faithful 3D irrep of A4 with generators

a =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠, x =

⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠. (A2)

We use group invariant polynomials as building blocks to
construct Hermitian operators invariant under group action.
A group G invariant n-variable polynomial f (x1,x2, . . . xn)
is unchanged when the n tuplet of variables (x1,x2 . . . xn) is
transformed under an n-dimensional representation of the
group U (g):

f (x ′
1,x

′
2, . . . ,x

′
n) = f (x1,x2, . . . ,xn), (A3)

x ′
i = U (g)ij xj . (A4)

If we have n Hermitian operators Xi=1,...,n that are
n-dimensional and transform covariantly like the n variables
of the polynomial xi=1...n,i.e. U (g)XiU

†(g) = U (g)ijXj ,
then we can elevate the group invariant polynomials to group
invariant operators as f (x1,x2, . . . ,xn) → f (Xi,X2, . . . ,Xn)
carefully taking into account that unlike the numbers xi , the
operators Xi do not commute.

Since we need three-dimensional operators of A4, we
consider the set of independent three variable polynomials
invariant under the action of the 3D irrep of A4 [52]:

f1(x,y,z) = x2 + y2 + z2, (A5)

f2(x,y,z) = x4 + y4 + z4, (A6)

f3(x,y,z) = xyz. (A7)

We know that the spin operators Si satisfying [Si,Sj ] =
iεijkS

k transform covariantly under any SO(3) rotation, in
particular for the finite set of rotations that corresponds to
the subgroup A4 ⊂ SO(3). Thus, to find invariant operators
for the three-dimensional representation, we need to take the
spin operators in the appropriate three-dimensional basis in
terms of the spin-1 states |J = 1,mz〉 ∼= |mz〉 = {| ± 1〉,|0〉}
so as to get the irrep defined above:

|x〉 = 1√
2

(| − 1〉 − |1〉),|y〉 = i√
2

(| − 1〉 + |1〉),|z〉 = |0〉,

and elevate the polynomials f1,f2,f3 to operators as

F1 = Sx
a Sx

b + Sy
a S

y

b + Sz
aS

z
b, (A8)

F2 = (
Sx

a Sx
b

)2 + (
Sy

a S
y

b

)2 + (
Sz

aS
z
b

)2
, (A9)

F3 = Sx
a S

y

b Sz
c + Sz

aS
x
b Sy

c + Sy
a Sz

bS
x
c

+ Sy
a Sx

b Sz
c + Sx

a Sz
bS

y
c + Sz

aS
y

b Sx
c , (A10)

where the indices a,b,c label any other quantum numbers
collectively like lattice sites and can be chosen as per
convenience, say to make the operators local as we will do
next. As a model Hamiltonian, we could use any function of the
invariant operators F1, F2, and F3 and ensure that everything
is symmetric under the exchange of lattice labels to impose
inversion symmetry.

We start with the Hamiltonian for the spin-1 Heisenberg
antiferromagnet, which is constructed using F1 with {a,b}
chosen to make the interactions nearest-neighbor:

HHeis =
∑

i

�Si · �Si+1, (A11)

where �Si · �Si+1 ≡ Sx
i Sx

i+1 + S
y

i S
y

i+1 + Sz
i S

z
i+1.

We add the two other combinations to the Heisenberg
Hamiltonian so as to break the SO(3) symmetry to A4 by
using F2 and F3 as follows:

Hq =
∑

i

�S2
i · �S2

i+1, (A12)

where �S2
i · �S2

i+1 ≡ (
Sx

i Sx
i+1

)2 + (
S

y

i S
y

i+1

)2 + (
Sz

i S
z
i+1

)2
,

and

Hc =
∑

i

[
(SxSy)iS

z
i+1 + (SzSx)iS

y

i+1 + (SySz)iS
x
i+1

+ (SySx)iS
z
i+1 + (SxSz)iS

y

i+1 + (SzSy)iS
x
i+1

+ Sx
i (SySz)i+1 + Sz

i (SxSy)i+1 + S
y

i (SzSx)i+1

+ Sx
i (SzSy)i+1 + Sz

i (SySx)i+1 + S
y

i (SxSz)i+1
]
.

(A13)
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The operators are symmetrized so that the Hamiltonian is
invariant under inversion as well as lattice translation. With
these pieces, we arrive at the total Hamiltonian, which is
invariant under A4 × GP :

H = HHeis + λHc + μHq. (A14)

APPENDIX B: REVIEW OF CLASSIFICATION OF SPT
PHASES PROTECTED BY TIME-REVERSAL SYMMETRY

1. Without on-site symmetry or parity

The time reversal symmetry group GT is generated by the
antiunitary action T , which is a combination of an on-site
unitary operator v and complex conjugation θ :

T = v1 ⊗ v2 · · · ⊗ vNθ, (B1)

where, if the basis at each site |i〉 is real, the action of θ is
simply

θ : ci1,...,iN → c∗
i1,...,iN

, (B2)

θ : Tr
[
A

i1
1 . . . A

iN
N

] → Tr
[(

A
i1
1

)∗
. . .

(
A

iN
N

)∗]
. (B3)

T 2 = ±1 in general. However, it was shown in Refs. [17,18]
that only the case of T 2 = 1 corresponds to gapped phases and
we will consider only this case. GT = {e,T }. The action on
the MPS matrices is

T : Ai
M → vij

(
A

j

M

)∗
. (B4)

If GT is a symmetry of the Hamiltonian which is not broken
by the ground state |ψ〉, we have, under the action of T ,

T |ψ〉 = |ψ〉. (B5)

Note that the possibility of α(T ) analogous to α(P ) of
Sec. (III E) can be eliminated by re-phasing the spin basis (see
Refs. [18,26]). The condition (26) can also be imposed on the

level of the MPS matrices that describe |ψ〉:
vij

(
A

j

M

)∗ = M−1Ai
MM. (B6)

Here, M has the property MT = β(T )M = ±M . β(T ) = ±1
labels the two SPT phases protected by GT [18].

2. With parity

If the actions of parity and time-reversal commute, the
eight SPT phases protected by GP × GT are labeled by
{α(P ),β(P ),β(T )} as defined before in Secs. III E and B 1 [18].

3. With on-site symmetry

If the action of the on-site symmetry transformation U (g)
commutes with T , we have a similar result to Eq. (29):

U (g)T |ψ〉 = T U (g)|ψ〉, (B7)

this imposes constraints on the matrix M defined as [18]

M−1V (g)M = γT (g)V ∗(g). (B8)

The different SPT phases protected by G × T are labeled
by {ω,β(T ),γT (g)} where, ω ∈ H 2(Gint,U(1)), which satisfy
ω2 = e,γT ∈ G/G2 using the same arguments as Sec. III E 2.
If translation invariance is also a symmetry, the set of 1D
representations χ (g) in Eq. (10), which satisfy χ (g)2 = 1 also
label different phases in addition to the ones already mentioned
before [18].

4. With on-site and parity

The different SPT phases protected by G × T × GP
are labeled by {ω,χ (g),α(P ),β(P ),β(T ),γ (g),γT (g)} where,
ω ∈ H 2(Gint,U(1)), which satisfy ω2 = e,γ (g) and γT (g) ∈
G/G2,χ (g)2 = 1 and G is the set of 1D representations of
Gint [18].
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[25] J. Haegeman, D. Pérez-Garcı́a, I. Cirac, and N. Schuch, Order
Parameter for Symmetry-Protected Phases in One Dimension,
Phys. Rev. Lett. 109, 050402 (2012).

[26] A. Prakash and T.-C. Wei, Ground states of one-dimensional
symmetry-protected topological phases and their utility as
resource states for quantum computation, Phys. Rev. A 92,
022310 (2015).

[27] G. K. Brennen and A. Miyake, Measurement-Based Quantum
Computer in the Gapped Ground State of a Two-Body Hamil-
tonian, Phys. Rev. Lett. 101, 010502 (2008).

[28] G. Vidal, Classical Simulation of Infinite-Size Quantum Lattice
Systems in One Spatial Dimension, Phys. Rev. Lett. 98, 070201
(2007).

[29] J.-Y. Chen and Z.-X. Liu, Symmetry protected topological
phases in spin-1 ladders and their phase transitions, Ann. Phys.
362, 551 (2015).

[30] L. Tsui, H.-C. Jiang, Y.-M. Lu, and D.-H. Lee, Quantum phase
transitions between a class of symmetry protected topological
states, Nucl. Phys. B 896, 330 (2015).

[31] L. Tsui, F. Wang, and D.-H. Lee, Topological versus landau-like
phase transitions, arXiv:1511.07460.

[32] H. Ueda and S. Onoda, Symmetry-protected topological phases
and transition in a frustrated spin-1/2 xxz chain, Phys. Rev. B
90, 214425 (2014).

[33] R. Bulirsch and J. Stoer, Numerical treatment of ordinary
differential equations by extrapolation methods, Numer. Math.
8, 1 (1966).

[34] P. Calabrese and J. Cardy, Entanglement entropy and quantum
field theory, J. Stat. Mech. (2004) P06002.

[35] F. Pollmann, S. Mukerjee, A. M. Turner, and J. E. Moore, Theory
of Finite-Entanglement Scaling at One-Dimensional Quantum
Critical Points, Phys. Rev. Lett. 102, 255701 (2009).

[36] D. Perez-Garcia, F. Verstraete, M. M. Wolf, and J. I. Cirac,
Matrix product state representations, Quant. Info. Proc. 7, 401
(2007).

[37] G. Vidal, Efficient Classical Simulation of Slightly Entan-
gled Quantum Computations, Phys. Rev. Lett. 91, 147902
(2003).

[38] M. B. Hastings, An area law for one-dimensional quantum
systems, J. Stat. Mech. (2007) P08024.

[39] Itai Arad, Z. Landau, and U. Vazirani, Improved one-
dimensional area law for frustration-free systems, Phys. Rev.
B 85, 195145 (2012).

[40] S. Singh, Identifying quantum phases from the injectivity of
symmetric matrix product states, Phys. Rev. B 91, 115145
(2015).

[41] G. Vidal, Efficient Simulation of One-Dimensional Quantum
Many-Body Systems, Phys. Rev. Lett. 93, 040502 (2004).

[42] R. Orús and G. Vidal, Infinite time-evolving block decimation
algorithm beyond unitary evolution, Phys. Rev. B 78, 155117
(2008).

[43] M. Suzuki, General theory of higher-order decomposition of
exponential operators and symplectic integrators, Phys. Lett. A
165, 387 (1992).

[44] I. P. Omelyan, I. M. Mryglod, and Reinhard Folk, Optimized
forest–ruth-and suzuki-like algorithms for integration of motion
in many-body systems, Comput. Phys. Commun. 146, 188
(2002).

[45] J. Schachenmayer. Dynamics and long-range interactions in
1d quantum systems, Master’s thesis, Technischen Universität,
Muünchen (2008).

[46] Cornelius Lanczos, An Iteration Method for the Solution of
the Eigenvalue Problem of Linear Differential and Integral
Operators (United States Governm. Press Office, Los Angeles,
CA, 1950).

[47] D. Calvetti, L. Reichel, and D. C. Sorensen, An Implicitly
restarted lanczos method for large symmetric eigenvalue prob-
lems, J. Electron. Trans. Num. Anal. 2, 1 (1994).

[48] D. C. Sorensen, Implicitly restarted Arnoldi/Lanczos methods
for large scale eigenvalue calculations, Parallel Numerical Algo-
rithms, edited by D. E. Keyes, A. Sameh, and V. Venkatakrishnan
(Springer, Netherlands, 1997), pp. 119–165.

[49] X. Chen, Z.-X. Liu, and Xiao-Gang Wen, Two-dimensional
symmetry-protected topological orders and their protected
gapless edge excitations, Phys. Rev. B 84, 235141 (2011).

[50] D. E. Evans and R. Høegh-Krohn, Spectral properties of positive
maps on c*-algebras, J. London Math. Soc. 2, 345 (1978).

[51] H.-L. Wang, Y.-W. Dai, B.-Q. Hu, and H.-Q. Zhou, Bifurcation
in ground-state fidelity for a one-dimensional spin model with
competing two-spin and three-spin interactions, Phys. Lett. A
375, 4045 (2011).

[52] P. Ramond, Group Theory: A Physicist’s Survey (Cambridge
University Press, Cambridge, UK, 2010).

045136-16

http://dx.doi.org/10.1103/PhysRevB.90.184418
http://dx.doi.org/10.1103/PhysRevB.90.184418
http://dx.doi.org/10.1103/PhysRevB.90.184418
http://dx.doi.org/10.1103/PhysRevB.90.184418
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.83.035107
http://dx.doi.org/10.1103/PhysRevB.84.235128
http://dx.doi.org/10.1103/PhysRevB.84.235128
http://dx.doi.org/10.1103/PhysRevB.84.235128
http://dx.doi.org/10.1103/PhysRevB.84.235128
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.83.075103
http://dx.doi.org/10.1103/PhysRevB.86.125441
http://dx.doi.org/10.1103/PhysRevB.86.125441
http://dx.doi.org/10.1103/PhysRevB.86.125441
http://dx.doi.org/10.1103/PhysRevB.86.125441
http://dx.doi.org/10.1103/PhysRevB.84.165139
http://dx.doi.org/10.1103/PhysRevB.84.165139
http://dx.doi.org/10.1103/PhysRevB.84.165139
http://dx.doi.org/10.1103/PhysRevB.84.165139
http://dx.doi.org/10.1103/PhysRevB.40.4709
http://dx.doi.org/10.1103/PhysRevB.40.4709
http://dx.doi.org/10.1103/PhysRevB.40.4709
http://dx.doi.org/10.1103/PhysRevB.40.4709
http://dx.doi.org/10.1007/BF02097239
http://dx.doi.org/10.1007/BF02097239
http://dx.doi.org/10.1007/BF02097239
http://dx.doi.org/10.1007/BF02097239
http://dx.doi.org/10.1103/PhysRevLett.100.167202
http://dx.doi.org/10.1103/PhysRevLett.100.167202
http://dx.doi.org/10.1103/PhysRevLett.100.167202
http://dx.doi.org/10.1103/PhysRevLett.100.167202
http://dx.doi.org/10.1103/PhysRevLett.109.050402
http://dx.doi.org/10.1103/PhysRevLett.109.050402
http://dx.doi.org/10.1103/PhysRevLett.109.050402
http://dx.doi.org/10.1103/PhysRevLett.109.050402
http://dx.doi.org/10.1103/PhysRevA.92.022310
http://dx.doi.org/10.1103/PhysRevA.92.022310
http://dx.doi.org/10.1103/PhysRevA.92.022310
http://dx.doi.org/10.1103/PhysRevA.92.022310
http://dx.doi.org/10.1103/PhysRevLett.101.010502
http://dx.doi.org/10.1103/PhysRevLett.101.010502
http://dx.doi.org/10.1103/PhysRevLett.101.010502
http://dx.doi.org/10.1103/PhysRevLett.101.010502
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://dx.doi.org/10.1103/PhysRevLett.98.070201
http://dx.doi.org/10.1016/j.aop.2015.08.025
http://dx.doi.org/10.1016/j.aop.2015.08.025
http://dx.doi.org/10.1016/j.aop.2015.08.025
http://dx.doi.org/10.1016/j.aop.2015.08.025
http://dx.doi.org/10.1016/j.nuclphysb.2015.04.020
http://dx.doi.org/10.1016/j.nuclphysb.2015.04.020
http://dx.doi.org/10.1016/j.nuclphysb.2015.04.020
http://dx.doi.org/10.1016/j.nuclphysb.2015.04.020
http://arxiv.org/abs/arXiv:1511.07460
http://dx.doi.org/10.1103/PhysRevB.90.214425
http://dx.doi.org/10.1103/PhysRevB.90.214425
http://dx.doi.org/10.1103/PhysRevB.90.214425
http://dx.doi.org/10.1103/PhysRevB.90.214425
http://dx.doi.org/10.1007/BF02165234
http://dx.doi.org/10.1007/BF02165234
http://dx.doi.org/10.1007/BF02165234
http://dx.doi.org/10.1007/BF02165234
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1088/1742-5468/2004/06/P06002
http://dx.doi.org/10.1103/PhysRevLett.102.255701
http://dx.doi.org/10.1103/PhysRevLett.102.255701
http://dx.doi.org/10.1103/PhysRevLett.102.255701
http://dx.doi.org/10.1103/PhysRevLett.102.255701
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1103/PhysRevLett.91.147902
http://dx.doi.org/10.1088/1742-5468/2007/08/P08024
http://dx.doi.org/10.1088/1742-5468/2007/08/P08024
http://dx.doi.org/10.1088/1742-5468/2007/08/P08024
http://dx.doi.org/10.1103/PhysRevB.85.195145
http://dx.doi.org/10.1103/PhysRevB.85.195145
http://dx.doi.org/10.1103/PhysRevB.85.195145
http://dx.doi.org/10.1103/PhysRevB.85.195145
http://dx.doi.org/10.1103/PhysRevB.91.115145
http://dx.doi.org/10.1103/PhysRevB.91.115145
http://dx.doi.org/10.1103/PhysRevB.91.115145
http://dx.doi.org/10.1103/PhysRevB.91.115145
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevLett.93.040502
http://dx.doi.org/10.1103/PhysRevB.78.155117
http://dx.doi.org/10.1103/PhysRevB.78.155117
http://dx.doi.org/10.1103/PhysRevB.78.155117
http://dx.doi.org/10.1103/PhysRevB.78.155117
http://dx.doi.org/10.1016/0375-9601(92)90335-J
http://dx.doi.org/10.1016/0375-9601(92)90335-J
http://dx.doi.org/10.1016/0375-9601(92)90335-J
http://dx.doi.org/10.1016/0375-9601(92)90335-J
http://dx.doi.org/10.1016/S0010-4655(02)00451-4
http://dx.doi.org/10.1016/S0010-4655(02)00451-4
http://dx.doi.org/10.1016/S0010-4655(02)00451-4
http://dx.doi.org/10.1016/S0010-4655(02)00451-4
http://dx.doi.org/10.1103/PhysRevB.84.235141
http://dx.doi.org/10.1103/PhysRevB.84.235141
http://dx.doi.org/10.1103/PhysRevB.84.235141
http://dx.doi.org/10.1103/PhysRevB.84.235141
http://dx.doi.org/10.1112/jlms/s2-17.2.345
http://dx.doi.org/10.1112/jlms/s2-17.2.345
http://dx.doi.org/10.1112/jlms/s2-17.2.345
http://dx.doi.org/10.1112/jlms/s2-17.2.345
http://dx.doi.org/10.1016/j.physleta.2011.09.014
http://dx.doi.org/10.1016/j.physleta.2011.09.014
http://dx.doi.org/10.1016/j.physleta.2011.09.014
http://dx.doi.org/10.1016/j.physleta.2011.09.014



