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We develop a diagrammatic method for the evaluation of general multiband Gutzwiller wave functions in finite
dimensions. Our approach provides a systematic improvement of the widely used Gutzwiller approximation. As
a first application, we investigate itinerant ferromagnetism and correlation-induced deformations of the Fermi
surface for a two-band Hubbard model on a square lattice.
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I. INTRODUCTION

Strongly correlated electron systems display a va-
riety of intriguing phases, such as superconductivity,
(anti)ferromagnetism, or Mott insulating phases. In order
to study the fundamental properties of strongly correlated
lattice systems, simplifying Hubbard-type models are often
employed. Unfortunately, the calculation of ground state and
dynamical properties is notoriously difficult even for these
relatively simple models.

In one dimension, the density-matrix renormalization
group (DMRG) method permits the numerical investigation
of Hubbard-type models for fairly large chains. However,
even modern variants of the DMRG such as tensor net-
work approaches [1], are not satisfactory when applied to
many-orbital models or higher-dimensional systems. In the
limit of infinite dimensions, the dynamical mean-field theory
(DMFT) [2] maps the problem onto a single-impurity model
whose spectral function must be calculated numerically. For
multiband systems, the solution of this task requires so-
phisticated quantum Monte-Carlo techniques and substantial
computational resources. Concomitantly, it is very difficult to
go beyond the mean-field limit and access multiband models
in finite dimensions.

In the absence of exact analytical or quasiexact numerical
methods, variational approaches have proven helpful. In this
work, we employ the Gutzwiller wave function approach
[3]. The evaluation of expectation values with the Gutzwiller
correlated many-particle wave function poses itself a difficult
many-body problem. Therefore even the Gutzwiller-correlated
single-band Fermi sea can be evaluated exactly only in one
dimension [4–9]. In the limit of infinite dimensions, the
so-called Gutzwiller approximation (GA) becomes exact for
the single-band Hubbard model [4,10]. Later, the method
was extended to the multiband case [11–14]. Recently, it
has been combined with the density functional theory in a
self-consistent manner to describe transition metals and their
compounds [15–25].

Despite many successes of the GA in improving our un-
derstanding of correlated metals, there are certain phenomena
which it cannot describe properly. For example, in single-band
models, the Fermi surface is independent of the local Coulomb
interaction within the GA, unless a state with broken spin
or translational symmetry is considered. This is obviously
incorrect, as can be seen already from straightforward per-
turbation theory for the paramagnetic ground state [26,27]. In
order to describe a Fermi-surface deformation, one needs to

evaluate the Gutzwiller wave function in finite dimensions.
A well established way to do this, is the “variational Monte
Carlo method” in which the Gutzwiller energy functional is
minimized numerically on finite lattices [28–30]. Although
numerically less demanding than other techniques, such as
quantum Monte Carlo, this method still has significant finite-
size limitations.

An alternative approach, which has first been proposed
in Refs. [10,31], constitutes a systematic improvement of
the GA for Gutzwiller wave functions on finite dimensional
lattices. The method has been used successfully to study
Fermi-surface deformations, d-wave superconductivity, and
quasiparticle band structures in single-band Hubbard models
[31–34], t-J models [35], and periodic Anderson models [36].

Most transition metals and their compounds cannot be
described properly by single-band models. For example, in
iron pnictides, such as LaOFeAs, all five d orbitals are
partially occupied and may have to be taken into account in
any model study that aims to describe the superconductivity
or the antiferromagnetism in these systems [37,38]. Hence,
it is clearly desirable to generalize the method, developed
in Ref. [31] for the single-band model, to the multiband
case. It is the main purpose of this work, to formulate
such a generalization. As a first application, we shall study
ferromagnetism and Fermi-surface deformations in a two-
orbital Hubbard model on a square lattice.

Our work is organized as follows. In Sec. II, we intro-
duce the multiband Hubbard model and the corresponding
Gutzwiller wave function. Moreover, we present a detailed
derivation of the diagrammatic expansion for ground-state
expectation values. In Sec. III, we discuss our results for
ferromagnetism and interaction-induced deformations of the
Fermi surface in a two-orbital Hubbard model on a square
lattice. Finally, Sec. IV summarizes our findings and gives
a brief outlook. For some technical details, we refer to
three Appendices. A more detailed derivation of the results
presented in this work can be found in Ref. [39].

II. GUTZWILLER WAVE FUNCTIONS

In this work, we employ Gutzwiller variational functions
for multiband Hubbard models. Such wave functions start
from an independent-particle picture where the electrons
are distributed over all lattice sites to optimize the single-
particle energy. This statistical distribution leads to atomic
configurations that are energetically unfavorable for finite
Hubbard interactions. In the Gutzwiller wave function, the
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weight of such configurations is reduced with the help of
the Gutzwiller “correlator,” a product of local operators,
see below. Nonlocal (“extended”) Gutzwiller correlators for
the single-band Hubbard model can be studied analytically
[40], and numerically using variational Monte Carlo [28–30].
More recently, a two-dimensional bilayer Hubbard model was
studied with the same method [41].

A. Multiband Hubbard model

In this work, we investigate Gutzwiller-correlated wave
functions for general multiband Hubbard models. Only in the
numerical applications in Sec. III, we shall be more specific
by considering a two-orbital Hubbard model on a square
lattice where the degenerate orbitals obey a px − py symmetry.
The Hubbard Hamilton operator with purely local interactions
reads

Ĥ = Ĥ0 + Û , (1)

Ĥ0 =
∑
i �=j

∑
σ,σ ′

tσσ ′
ij ĉ

†
i,σ ĉj,σ ′ , (2)

Û =
∑

i,σ1,...,σ4

Uσ1σ2σ3σ4 ĉ
†
i,σ1

ĉ
†
i,σ2

ĉi,σ3 ĉi,σ4 . (3)

Here, ĉ
†
j,σ and ĉj,σ ′ are fermionic creation and annihilation

operator, respectively. The site index is given by i and j and the
combined spin-orbital index by σ . The lattice indices run over
all lattice sites of the lattice �. Periodic boundary conditions
apply. The hopping amplitudes tσσ ′

ij and the coefficients
Uσ1σ2σ3σ4 of the on-site interaction energy are considered to
be free model parameters.

The hopping and Coulomb parameters are restricted by
symmetry. Spin conservation and rotational symmetry of the
px − py orbitals reduce the nearest-neighbor and next-nearest-
neighbor hopping amplitudes to four independent parameters.
Furthermore, the coefficients of the on-site energy can be
expressed solely in terms of the Hubbard interaction U and
the Hund’s-rule coupling J , as shown in Appendix A. Note
that the symmetry of the px − py orbitals is the same as that
of a pair of dxz − dyz orbitals in our two-dimensional model.
Therefore our two-band Hubbard model applies to px − py

orbitals and to dxz − dyz orbitals equally well.

B. Definition of Gutzwiller variational states

The Gutzwiller correlator is given by the product of the
local Gutzwiller correlators for all sites l on our lattice �,

P̂G =
∏
l∈�

P̂l. (4)

If the context does not lead to any ambiguities, the local
index l will frequently be dropped in the following. In this
work, we restrict ourselves to the homogeneous case where
the variational parameters in P̂l are the same for all lattice
sites. The local Gutzwiller operator is given by

P̂l =
∑
I1,I2

λI1,I2 (|I1〉〈I2|)l , (5)

P̂
†
l P̂l =

∑
I1,I2

λ̄I1,I2 (|I1〉〈I2|)l , (6)

with

λ̄I1,I2 =
∑

J

λI2,J λI1,J , (7)

where we already assumed that the parameters λI1,I2 are real.
The operators in (5) and (6), which act on the site i, can be
written explicitly as

(|I1〉〈I2|)i =
∏

l∈�\i
Idl ⊗ (|I1〉〈I2|)i , (8)

where Idl represents the identity operator on site l. In our
two-band application, the local indices I1,I2 run over all 16
local configurations, which can contain up to four electrons.

In order to simplify the notation, we define a product of
local creation or annihilation operators by the introduction of
the following symbols:

Ĉ
†
I =

∏
σ∈I

ĉ†σ = ĉ†σ1
. . . ĉ†σn

i < j → σi < σj , (9)

ĈI =
∏
σ∈I

ĉσ = ĉσ1 . . . ĉσn
i < j → σi > σj , (10)

where we introduced some arbitrary order of the spin-orbit
indices σ . The multiparticle states

|I 〉 = Ĉ
†
I |vac〉 (11)

are uniquely determined by the lexicographical order of their
subindices σi in (9). Note that we consider I = {σ1, . . . ,σn} as
sets of spin-orbit indices σi . Hence all standard mathematical
set operations are well defined, e.g., I\σ or I1 ∪ I2. Moreover,
we define |I | as the number of elements in I , i.e., the number
of electrons in the state |I 〉.

In this work, we will develop our diagrammtic formulism
only for systems without superconductivity. Hence we can
safely assume that the variational parameters λI1,I2 in (5)
are nonzero only when |I1| = |I2|. The generalization of our
method to superconducting systems is straightforward, see
Appendix C.

A single-particle product state (SPPS) can always be cast
in the form

|�0〉 =
∏
k,γ

ĥ
†
k,γ |vac〉 (12)

in some fermionic basis

ĥ
†
k,γ =

∑
i,σ

U i,k
σ,γ ĉ

†
i,σ . (13)

We will assume that the SPPS are normalized, 〈�0|�0〉 =
1, and that the canonical commutation relations hold,
{ĥ†

k,γ ,ĥk′,γ ′ } = δkk′δγ γ ′ . Now, we define the Gutzwiller wave
function as

|�G〉 = P̂G|�0〉. (14)

In the remaining part of this work, we optimize the Gutzwiller
correlator P̂G and the SPPS |�0〉 so that the approximate
ground-state energy

EG = 〈Ĥ 〉G = 〈�G|Ĥ |�G〉
〈�G|�G〉 (15)

becomes minimal.
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C. Diagrammatic expansion in finite dimensions

We consider the expectation value of some local operator
Ôi

〈Ôi〉G = 〈�G|Ôi |�G〉
〈�G|�G〉 . (16)

Note that the following derivation can equally be performed for
expectation values of nonlocal operators such as 〈ĉ†i,σ ĉj,σ ′ 〉G,
see Appendix C.

As a first step, we follow the analysis for the single-band
case derived in Refs. [10,31] and partly worked out for the
multiband case in infinite dimensions in Ref. [42]. In the
numerator of Eq. (16), we pull the Gutzwiller correlators with
indices l �= i to the right side of Ôi and denote the sandwich
P̂

†
i Ôi P̂i as Q̂i ,

〈�G|Ôi |�G〉 = 〈�0|Q̂i

∏
l∈�\i

P̂
†
l P̂l |�0〉. (17)

The operator Q̂i and the squares of the Gutzwiller operator
P̂

†
l P̂l can be written in terms of creation and annihilation

operators:

Q̂i =
∑
I1,I2

Q′
I1,I2

Ĉ
†
i,I1

Ĉi,I2
, (18)

P̂
†
i P̂i = λ̄∅,∅ + Â′

i = λ̄∅,∅ +
∑
I1,I2

|I1|,|I2| > 0

X′
I1,I2

Ĉ
†
i,I1

Ĉi,I2
, (19)

where the scalar contribution λ̄∅,∅ to P̂ †P̂ could always be set
to unity after rescaling the Gutzwiller wave function. However,
we will postpone this step to a later stage of our analysis.
Particle number conservation in our correlation operator (5)
only terms with |I1| = |I2| contribute in Eq. (18).

As a next step, we apply Wick’s theorem

〈�0|Q̂i

∏
l∈�\i

P̂
†
l P̂l |�0〉 =

⎧⎨
⎩Q̂i

∏
l∈�\i

P̂
†
l P̂l

⎫⎬
⎭

ρ

, (20)

where {. . .}ρ gives the sum over all possible contractions with
respect to the density matrix ρ with the elements

ρ(iσ ),(jσ ′) = ρσσ ′
ij = 〈�0|ĉ†iσ ĉjσ ′ |�0〉. (21)

For example,

〈�0|ĉ†lσ1
ĉlσ2

ĉ
†
kσ3

ĉkσ4
|�0〉 = {

ĉ
†
lσ1

ĉlσ2
ĉ
†
kσ3

ĉkσ4

}
ρ

= ρ
σ1σ2
ll ρ

σ3σ4
kk − ρ

σ1σ4
lk ρ

σ3σ2
kl . (22)

We depict the different contributions in a diagrammatic way,
as shown in Fig. 1.

Each summand of the operator Q̂ and P̂ †P̂ in Eq. (18)
defines an “external node” with weight Q′

I1,I2
or an “inter-

nal node” with weights X′
I1,I2

, respectively. Each operator
contraction can be represented by a line which is either a
“self-closing line” (also denoted as “local contractions” or
“Hartree bubbles”) or connects two different nodes. In the
following, we will simplify this diagrammatic analysis in three
steps.

First, we aim to eliminate all local contractions. Therefore
we map our operators to so called Hartree–Fock (HF) operators

FIG. 1. Diagrammatic representation of the numerator and de-
nominator of the expectation value of an local operator Ôi on
the lattice site i. The blue square and the red circles gives the
external and internal nodes, respectively. Black lines correspond to
the single-particle density matrix.

[10,42], which, by definition, have no Hartree bubbles in the
diagrammatic expansion. For example,

〈�0|
(
ĉ
†
l,σ1

ĉl,σ2

)HF(
ĉ
†
k,σ3

ĉk,σ4

)HF|�0〉
= {(

ĉ
†
l,σ1

ĉl,σ2

)HF(
ĉ
†
k,σ3

ĉk,σ4

)HF}ρ
= −ρ

σ1σ4
lk ρ

σ3σ2
kl . (23)

The mapping between the normal creation and annihilation
operators and the HF-operators depends on the local density
matrix ρσσ ′

ij as can be seen from the simplest case,

(ĉ†i,σ ĉi,σ ′)HF = ĉ
†
i,σ ĉi,σ ′ − ρσσ ′

ii .

An extension of this mapping for operator products Ĉ
†
i,I1

Ĉi,I2
is

given in Appendix B. We write the operator Q̂ and the square
of the Gutzwiller correlator as

Q̂i =
∑
I1,I2

QI1,I2

(
Ĉ

†
i,I1

Ĉi,I2

)HF
, (24)

P̂
†
i P̂i = 1 + Âi = 1 +

∑
I1,I2

|I1|,|I2| > 0

XI1,I2

(
Ĉ

†
i,I1

Ĉi,I2

)HF
, (25)

where we set the coefficient X∅,∅ = 1. As mentioned above,
this is equal to a rescaling of the Gutzwiller wave function
by a factor which is always canceled out by the denominator
in Eq. (16). Equation (24) is equivalent to Eq. (18) in the
single-band derivation of Ref. [31]. If combined with (41)
and (B16), see below, Eq. (25) corresponds to the single-band
formula (11) in Ref. [31].

All operators in Eq. (20) are normal ordered because all site
indices are different when we apply Wick’s theorem. We can
set all local entries in ρσσ ′

ii to zero because we work with the HF
operators so that all local contractions vanish automatically.
Therefore we can carry out all contractions with a new density
matrix

ρ̄σσ ′
ij = ρσσ ′

ij − δij ρσσ ′
ii (26)

and drop the HF-operator notation at the same time,{(
Ĉ

†
i,I1

Ĉi,I2

) HF
. . .

}
ρ

≡ {
Ĉ

†
i,I1

Ĉi,I2
. . .

}
ρ̄
. (27)

Without any nonzero local contraction, we get

{ĉ†i,σ ĉi,σ . . .}ρ̄ = −{ĉi,σ ĉ
†
i,σ . . .}ρ̄ . (28)

Thus we can replace the fermionic operators ĉi,σ , Ĉi,I by
Graßmann variables c̃i,σ , C̃i,I , respectively. These Graßmann
variables are nilpotent,

C̃i,I1C̃i,I2 = 0 if I1 ∩ I2 �= ∅. (29)
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FIG. 2. All nodes with internal lines cancel because the local
entries of ρ̄σσ ′

ii are set to zero.

In principle, the introduction of the HF mapping is not a
necessary step for the introduction of Graßmann operators
as we discuss in Appendix D. All local entries ρ̄σσ ′

ii of the
new density matrix vanish so that the diagrammatic expansion
cannot have nodes with self-closing lines, as shown in Fig. 2.

The coefficients QI1,I2 and XI1,I2 are not affected by our
mapping so that we can write

Q̃i =
∑
I1,I2

QI1,I2C̃
†
i,I1

C̃i,I2, (30)

Ãi =
∑
I1,I2

|I1|,|I2| > 0

XI1,I2C̃
†
i,I1

C̃i,I2. (31)

The numerator in Eq. (20) becomes⎧⎨
⎩Q̂i

∏
l∈�\i

(1 + Âl)

⎫⎬
⎭ρ =

⎧⎨
⎩Q̃i

∏
l∈�\i

(1 + Ãl)

⎫⎬
⎭ρ̄ , (32)

whereas the denominator reads{∏
l∈�

(1 + Âl)

}
ρ =

{∏
l∈�

(1 + Ãl)

}
ρ̄ . (33)

As a second step, we merge the diagrams of the numerator
and denominator with the help of the linked cluster theorem.
To this end, the lattice site restrictions on the right hand site of
Eq. (32) must be removed. Therefore we define

1 + Ãi = exp(G̃i), (34)

Q̃i = M̃i exp(G̃i). (35)

with

G̃i =
∑
I1,I2

|I1|,|I2| > 0

ZI1,I2C̃
†
i,I1

C̃i,I2
, (36)

M̃i =
∑
I1,I2

MI1,I2C̃
†
i,I1

C̃i,I2
. (37)

The exponential series expansion stays finite due to the
nilpotency of the Graßmann variables. Therefore, the new
coefficients ZI1,I2 and MI1,I2 can be written as finite poly-
nomials of the old coefficients QI1,I2 and XI1,I2 . The explicit
expressions are given in Appendix B. It is crucial that we
perform the HF mapping before we switch to the exponential
form of our correlators. Note that the explicit formulas (36)
and (37) justify the definitions in Eqs. (34) and (35).

These additional redefinitions allow us to cast Eq. (32) into
the form

〈�G|Ôi |�G〉 =
{

M̃i

∏
l∈�

exp(G̃l)

}
ρ̄

. (38)

FIG. 3. The first few connected diagrams that contribute to 〈Û〉G.
The blue square represents the external node. The red circles represent
the internal nodes. Black lines stand for the single-particle density
matrix. The second and the forth diagrams cancel out after the
introduction of a gauge in the variational parameters λI1,I2 as shown
in Sec. II D.

Note that the site index restriction l �= i disappeared. Equation
(33) can be rewritten as

〈�G|�G〉 =
{∏

l∈�

exp(G̃l)

}
ρ̄

. (39)

Now, we are in the position to apply the linked cluster
theorem (LCT), as described, e.g., in Ref. [43]. We find

〈�G|Ôi |�G〉
〈�G|�G〉 =

∑
L⊂�

1

|L|!

{
M̃i

∏
l∈L

G̃l

}conn.

ρ̄

, (40)

where the summation is performed over all subsets L of the
lattice �. The first few diagrams that are needed for the
evaluation of the potential energy are shown in Fig. 3.

Some of the polynomials of G̃l in Eq. (38) vanish due to
the nil potency of the Graßmann variables. In contrast to the
usual application of the LCT in many-body lattice theories,
we can apply our expansion for a finite lattice as well. The
nil-potency property allows us to add virtually as many nodes
as we need to regroup our diagrams in all orders. Note that
after the application of the LCT the nodes G̃l are contracted in
such a way that all nodes have to be connected to the external
nodes Mi . This invalidates the nil-potency of the Graßmann
variables inside the curly brackets. Therefore several nodes
can be located on the same site as long as these nodes are only
connected indirectly. Note that the diagrammatic rules are the
same as those for the single-band model introduced, e.g., in
Refs. [4,10].

D. Parameter gauge and the limit of infinite dimensions

An essential step in our expansion is now the elimination of
all diagrams with internal nodes that have a single outgoing and
incoming line, as illustrated in Fig. 4. This step is essential for a
rapid convergence of our expansion as has been demonstrated
for the single-band model in one dimension [31]. For this
reason, a gauge in the variational parameters is introduced
which sets the weight of these nodes to zero,

ZI1,I2 = 0 ∀|I1| = |I2| = 1. (41)

FIG. 4. The internal nodes with only two lines will be eliminated
by a gauge in the variational parameters.

045135-4



GUTZWILLER VARIATIONAL WAVE FUNCTION FOR . . . PHYSICAL REVIEW B 94, 045135 (2016)

FIG. 5. Diagrammatic analysis in infinite dimensions. The exter-
nal nodes that arise from the hopping operator Ĥ0 are colored in
purple while the external nodes that arise from the on-site interaction
operator Û are colored in blue.

This constraint must be incorporated in the optimization of the
variational parameters λI1,I2 . However, we can show that this
constraint will not reduce the variational freedom in our model
as can be understood from an investigation of the single-band
case in [31]. For a complete proof of this presumption that is
based on the symmetries of our complex two-band model we
refer the reader to Ref. [39].

Originally, the application of the gauge condition (41)
was motivated by the simplifications of the diagrammatic
expansion that arise when it is applied to a system with infinite
lattice dimensions [10]. A scaling analysis of the “kinetic
energy operator” Ĥ0 shows [8,10] that the lines of the density
matrix scale with the lattice dimension d as

ρij ∼ (
√

2d)−||i−j ||1 , (42)

where we dropped the spin-band index for notational clarity,
and ||.||1 gives the “one-norm” (or “Manhattan metric”) of the
displacement vector i − j . Then, with the scaling

tij ∼ (
√

2d)−||i−j ||1, (43)

of the hopping parameters, all contributions with an internal
node or two external nodes that are connected by three or
more independent paths scale at least as ∼1/d. Due to the
gauge condition (41), however, all diagrams with internal
nodes vanish. Hence, in the limit d → ∞, the only remaining
terms are given by

〈Ĥ0〉G =
∑
i �=j

∑
σσ ′,ττ ′

Mσ,∅(ĉ†τ )M∅,σ ′(ĉτ ′) t ττ ′
ij ρσσ ′

ij (44)

〈Û 〉G = M∅,∅(Û ), (45)

as illustrated in Fig. 5. Note that the symbolic operator
dependence in this equations is just a reminder that the
coefficients MI1,I2 in Eqs. (36) and (37) depend on the
corresponding operator in Eq. (16).

In the rest of our work, we will refer to the terms in Eqs. (44)
and (45), already derived in Ref. [13], as the “infinite-d limit.”
Furthermore, we define the order m of a diagram by the number
of its internal nodes, where m � 0. As we have explained in
this section, the constraints (41) ensure that the leading order
terms of our diagrammatic expansion correspond to the exact
Gutzwiller energy expectation value in infinite dimensions.

E. Optimization of |�0〉
In this work, we use the optimization algorithm which

was introduced in Ref. [31]. The energy (15) depends on the
variational parameters λI1,I2 and the state |�0〉, where the latter
enters the functional only through the single-particle density
matrix (21),

EG = EG
(
λI1,I2 ,ρ

σσ ′
ij

)
. (46)

As shown, e.g., in Appendix A of Ref. [25], the minimization
of EG with respect to ρ leads to the following effective single-
particle Hamiltonian:

Ĥ eff
0 =

∑
i �=j

∑
σσ ′

t
eff;σσ ′
ij ĉ

†
iσ ĉjσ ′ , (47)

t
eff;σσ ′
ij = ∂ρσσ ′

ij
EG, (48)

which has |�0〉 as a ground state. Hence, for the minimization
of (46), we need to solve

Ĥeff|�0〉 = ES |�0〉 (49)

and minimize EG with respect to λI1,I2 ,

∂λI1 ,I2
EG = 0. (50)

In order to solve these equations self-consistently, we usually
start with the ground state |�0〉(0) of the free system, i.e.,
we set t

eff;σσ ′
ij = tσσ ′

ij in (48) and (49). Then we compute the
density matrix, solve (50), and determine new parameters (48).
The optimization terminates if the change of the effective
hopping parameters between two cycles drops below some
threshold. In order to test the stability of the algorithm,
we can start from a different initial state. This initial state
may be constructed from a perturbed kinetic energy operator
Ĥ0 + δĥ0. Usually the optimization algorithm remains stable
against these perturbations but in some cases the fix point
of this map does not need to be unique, as shown in
Ref. [31] where a symmetry breaking of the Fermi surface
(Pomeranchuk phase) has been investigated.

III. RESULTS

A. Magnetism

The occurrence of a ferromagnetic phase is favored by
two conditions. The local Hamiltonian favors the formation of
local magnetic moments for positive values of the Hund’s-rule
coupling J . Then, the two-particle eigenstates of the on-site
energy Û with maximal local spin S = 1 are lowest in energy,
in accordance with Hund’s first rule. Therefore, for large values
of J , the ground state of the lattice system may show global
ferromagnetism if the preformed local moments align. In
contrast to that, the Stoner picture gives a different explanation
for the origin of ferromagnetism. In this picture, a splitting
between majority and minority bands reduces their mutual
Coulomb repulsion due to the Pauli principle. This effect
becomes significant when the density of states D(EF) at the
Fermi energy is large. In the Gutzwiller variational approach,
the number of energetically costly multiple occupancies is
reduced by an adjustment of the variational parameters. There-
fore we can expect that the Gutzwiller wave function predicts
ferromagnetism at much larger interaction strengths than the
uncorrelated SPPS. The Gutzwiller variational description
leaves room both for the Stoner band splitting and the local
moment formation as a source for itinerant ferromagnetism.

Throughout this section, we focus on the kinetic energy
operator with some particular amplitudes

t11
x = −1.0, t11

y = −0.6, t11
xy = 0.2, t12

xy = −0.4, (51)
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FIG. 6. The density of states D(n0) as a function of the den-
sity n0. The hopping amplitudes are t11

x = −1.0, t11
y = −0.6, t11

xy =
0.2, t12

xy = −0.4.

where the coefficients t11
x and t11

y give the hopping amplitudes
for a transition process between two px orbitals to its horizontal
and vertical neighbors, respectively. The coefficients t11

xy and
t12
xy give the hopping amplitude for the transition process to

the next-nearest neighbors with and without an inter-orbital
transition, see Fig. 13 in Appendix A. A detailed analysis of
the lattice symmetries and all remaining hopping coefficients
can be found in that Appendix. Note that our model parameters
(51) do not aim to reflect the situation in any real material
where, e.g., the signs of t11

x and t11
y are normally different.

The density of states D(n0) = D(E)|E=EF(n0) in Fig. 6
shows three peaks at n0 ≈ 0.069, 0.266, and 0.543. Below
we investigate the ferromagnetic transition at n0 = 0.2, 0.265,
0.275, 0.3. The densities are located near the second peak in
the density of states. We define the quantity M as

〈n̂i↑〉 = n↑ = (1 + M)n0,
(52)

〈n̂i↓〉 = n↓ = (1 − M)n0

with i ∈ {1,2}, so that 0 � M � 1, and the total density
remains constant. The total magnetization will be given
by Mtot = 2(n↑ − n↓) when both bands are considered. In
order to obtain the optimal magnetization, we will perform
a scan in the M-U plane, while we keep the ratio of J

and U fixed to J/U = 8/30. Then, we optimize the band
symmetric Gutzwiller variational parameters λI1,I2 for each
magnetization. Our diagrammatic expansion includes all lines
ρσσ ′

ij with ||i − j ||1 � 4.
As seen in Fig. 7, in the Hartree-Fock approximation

the magnetization jumps to a finite value at UHF ≈ 3.3. The
magnetization then increases monotonically until the ground
state is fully polarized at U sat.

HF ≈ 3.6. A detailed analysis
of the ground state energy shows that the nature of the
jumps can be understood as a first-order phase transition.
The Gutzwiller approach reveals a different picture. In second
order, the magnetization shows a finite magnetization for
UG ≈ 6.4 and becomes fully magnetized for U sat.

G ≈ 6.68.
This shows that the magnetization is shifted to much larger
interaction strengths in the Gutzwiller wave function. The
infinite-d approximation becomes magnetized at U∞

G ≈ 6.4
and becomes fully magnetized for U

∞,sat.
G ≈ 7.35. Therefore

FIG. 7. Magnetization of the Gutzwiller wave function. The
black, red, and blue crosses give the HF, the infinite-d , and the
second-order approximation, respectively.

the second-order diagrams in our diagrammatic expansion do
not change the results on ferromagnetism significantly.

Next, we analyze the density n0 = 0.265 that lies very
close to the second peak in the density of states, see Fig. 6.
In the Stoner picture, the large density of states causes a
finite magnetization at much smaller interaction strength.
In our second-order Gutzwiller approach, the ground state
becomes already magnetized at UG � 2 although a precise
evaluation of the threshold is hindered by numerical difficul-
ties. The magnetization in the second-order approximation
jumps to the fully magnetized state at U sat.

G = 7.6. The
infinite-d approximation lies almost on top of the second-order
expansion except at the transition to the fully magnetized
state which occurs at U

∞,sat.
G ≈ 8.1. The HF result shows the

same qualitative behavior but the onset of ferromagnetism is
at UHF < UG. Moreover, the magnetization increases more
rapidly as function of the interaction strengths and saturates
already at U sat.

HF ≈ 3.95.
For n0 = 0.275, the second-order magnetization result

jumps to a finite value at UG ≈ 4.3 and becomes fully
spin polarized at U sat.

G ≈ 7.6. The transition points of the
infinite-d (HF) approximation lie at U∞

G ≈ 4.1 (UHF ≈ 2.7)
and U

∞,sat.
G ≈ 8.05 (U sat.

HF ≈ 3.95), respectively. The magne-
tization curve shows the same qualitative behavior in all
three approximations: The magnetization jumps to a small
but finite value. Then the magnetization increases gradually
as a function of U whereby the slope is much steeper in HF
than in Gutzwiller theory. Lastly, the magnetization jumps to
full saturation at U sat.. In general, the critical values are much
larger in Gutzwiller theory than in the Hartree-Fock approach.
Note that the second-order terms to the result in d = ∞ lead
to fairly small quantitative corrections. The magnetization
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onset requires a larger interaction strength U for n0 = 0.275
because the density of states is lower for n0 = 0.275 than for
n0 = 0.265. Furthermore, we can see that the transitions to
the fully magnetized state occur at almost the same interaction
strength as for n0 = 0.265 in all approximations. This shows
that the transition to the fully polarized state depends on the
density but not on the density of states.

For n0 = 0.3, we still recover qualitatively the same
behavior as for n0 = 0.275 but the region between the onset
of ferromagnetism and the transition to the fully polarized
phase becomes smaller. Again, the critical values in Gutzwiller
theory are about a factor of two larger than in Hartree-Fock
theory.

In summary, we can state that a large density of states at
the Fermi energy promotes ferromagnetism. The Gutzwiller
approach shows, however, that ferromagnetism, in general,
requires large Coulomb interactions. Moreover, the Gutzwiller
approach leaves room in parameter space for nonsaturated
ferromagnetism. For the system parameters, considered in this
work, phases with long-range magnetic order are already well
described within the GA. This supports the use of this approxi-
mation in many earlier works, see, e.g., Refs. [25,37,38]. Note
that the magnetizations calculated in this section are based
on the optimization of our powerful but restricted class of
variational wave functions. As usual in a variational approach,
it is difficult to assess the quality of such a wave function
and its predictions for physical quantities as long as the true
ground state is unknown. The same uncertainty remains in our
calculations of the Fermi surface that are performed in the next
section.

B. Fermi surface deformations

In this section, we show that the optimization of the SPPS
can lead to a deformed Fermi surface. In some cases, the Fermi
surface even changes its topology. Note that Fermi surface
deformations within the Gutzwiller variational approach have
already been studied in Ref. [31] for the single-band Hubbard
model.

For our degenerate Hubbard model in the infinite-d
limit, neither for the Gutzwiller wave function nor within
a more sophisticated DMFT calculation, we would find any
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FIG. 8. The density of states D(n0) as a function of the density
n0. The hopping amplitudes are t11

x = −1.0, t11
y = −0.5, t11

xy =
0.4, and t12

xy = −0.2.

correlation-induced changes of the Fermi surface. Hence all
results in this section can be understood as an effect of the
finite-dimensional evaluation provided by our higher-order
expansion.

We examine the Fermi-surface deformations for the follow-
ing parameter set:

t11
x = −1.0, t11

y = −0.5, t11
xy = 0.4,

(53)
t12
xy = −0.2, U = 6.0, J = 0.8.

The amplitudes are chosen in such a way that the topology
of the Fermi surface changes near half-filling where the effect
of the Gutzwiller correlator is strongest. The density of states
is shown in Fig. 8. The peak near n0 = 0.47 is caused by the
change in the topology of the Fermi surface.

Our diagrammatic expansion includes all lines ρσσ ′
ij with

||i − j ||1 � 5. In some cases, the optimization algorithm

k
y

n0 = 0.4

0

π/2

π
nk = 2
nk = 1
nk = 2 opt
nk = 1 opt

n0 = 0.45

k
y

n0 = 0.48

0

π/2

π

n0 = 0.5

kx

k
y

n0 = 0.52

0 π/2 π
0

π/2

π

kx

n0 = 0.53

0 π/2 π

FIG. 9. Fermi surface deformations for densities n0 = 0.4, 0.45,
0.48, 0.50, 0.52, and 0.53. The local interaction strengths are set to
U = 6.0 and J = 0.8. The dashed lines give the initial Fermi edge
and the solid lines give the optimized Fermi surface. Both bands are
occupied in the region between the origin and the solid (dashed) black
line. In the region between the black and the red lines, only the lower
band is occupied. For densities n0 > 0.48, the optimized inner Fermi
edge has a closed topology while the initial Fermi surface topology
is open.
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alternates between two fix points which are energetically very
close. However, the Fermi surface of these fix points may
differ significantly. In these cases, it is useful to introduce
some damping for the effective hopping parameters (48) in the
self-consistency cycle. In our calculations, we usually find a
fix point after n < 15 iteration steps.

The single-particle states |�0〉n are calculated by a diago-
nalization of the effective Hamiltonian on the left hand side
of Eq. (49). In momentum space, each k point for a spin
σ can be empty, singly or doubly occupied. We denote the
spin-independent occupation number of the momentum k as
nk = nσ . In Fig. 9, the Fermi edges of the initial and optimized
SPPS are shown for the densities n0 = 0.4, 0.45, 0.48, 0.50,
0.52, and 0.53. The Hubbard/Hund parameters are set to U =
6.0 and J = 0.8. Although the SPPS |�0〉 can have a small
but finite magnetization in this parameter regime, we restrict
ourselves to a paramagnetic wave function. The deformation
of the inner Fermi surface between nk = 2 and 1 start for
densities n0 > 0.4. The outer Fermi edge between nk = 1
and 0 is more robust. For densities n0 > 0.48, the optimized
inner Fermi edge still has a closed topology while the initial
Fermi surface topology is open. The optimization becomes
difficult for densities larger than n0 = 0.53. Alternatively, a
particle-hole symmetry can be used to determine the optimal
Gutzwiller wave function [39]. In this way, we can show that
the deviations in the Fermi surface are small for n0 � 0.6
where the topology of the optimized Fermi surface becomes
open.

The dependence of the Fermi surface deformations on the
Hund’s-rule coupling J is shown in Fig. 10. The Fermi edge
for nk = 2 remains open for vanishing J . An increase of
the Hund’s-rule interaction strength to J = 0.4 leads to the
appearance of small islands in which both bands are filled.
These islands collapse when we further increase the interaction
strength to J = 0.8 so that the Fermi surface becomes closed.
The left panel of Fig. 12 shows that the energy gain �E

increases linearly in J and becomes vanishingly small for

kx

k
y

n0 = 0.48

0 π/2 π
0

π/2

π
J = 0.0
J = 0.4
J = 0.8
J = 1.2
J = 1.6

FIG. 10. Fermi surface deformations for different interaction
strength J . The density and the interaction strength are set to
n0 = 0.48 and U = 6.0, respectively. The deformations increase for
larger values of J . For J = 0, the Fermi surface topology (for nk = 2)
is still open.

kx

k
y

n0 = 0.48

0 π/2 π
0

π/2

π

U = 3
U = 4
U = 5
U = 6

FIG. 11. Fermi surface deformation for different interaction
strength U . The density and the Hund’s-rule coupling are set to
n0 = 0.48 and J = 0.8, respectively. Small islands appear for U = 3
in which nk = 2.

J = 0. From an energetic point of view, the transition from an
open to a closed inner Fermi surface is gradual as a function
of J . The existence of intermediate islands also shows that the
hopping matrix elements change gradually.

The change in the Fermi-surface topology as a function
of U for n0 = 0.48 and J = 0.8 is shown in Fig. 11. For an
interaction strength U = 3, the Fermi surface starts to deform
from an open to a closed topology and small islands appear.
The islands at the border of the Brillouin zone vanish for U = 6
again. The energy gain �E increases linearly in U as shown
in the right panel of Fig. 12.

In this section, we showed that the interaction-induced
Fermi surface deformations are clearly visible and may even
change the Fermi-surface topology. This is a warning against a
naive application of Fermi liquid theory if this works with the
Fermi surface of the noninteracting system. The contributions
beyond our second-order approximation still affect the Fermi
surface and the density matrix. However, a higher-order
expansion of the single-band Hubbard model [31,44] showed
that the Fermi surface deformations are true features of the
Gutzwiller wave function. Therefore we can assume that the
qualitative findings are valid in all orders of the approximation.
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FIG. 12. (Left) The energy gain �E increases linearly in J .
(Right) Energy gain �E as a function of U .
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IV. CONCLUSION AND OUTLOOK

In this work, we have given a comprehensive derivation of
a diagrammatic method that allows us to evaluate multiband
Gutzwiller wave functions in finite dimensions. Our approach
constitutes a systematic improvement of the widely used
Gutzwiller approximation, which corresponds to the zeroth
order of our expansion.

As our first application, we studied the ferromagnetic phase
transition in a two-band Hubbard model on a square lattice as
a function of the model parameters for various band fillings.
In general, a large density of states and a strong Hund’s-
rule exchange favor ferromagnetism. In the Gutzwiller wave
function, the ferromagnetic order is strongly suppressed so that
much larger interaction strength are needed than predicted by
the Hartree-Fock solution. Moreover, the regions in parameter
space where nonsaturated ferromagnetism occurs are much
broader in Gutzwiller theory. As shown in earlier studies, this
gives room for the experimental observations of nonsaturated
ferromagnetism, e.g., in transition metals such as nickel and
iron. It turned out that long-range ferromagnetic order in
our model is already well described within the Gutzwiller
approximation.

As a second application, we investigated the interaction-
induced deformation of the Fermi surface. These effects
occur for large interaction strength, when the potential energy
of the system is twice as large as the kinetic energy. For
weaker interactions and small densities, the deformations of
the Fermi surface can be neglected. Close to half band-filling
and for special choices of the electron transfer parameters, the
interactions can induce a change in the Fermi-surface topology
from open to closed constant-energy contours. These effects
are a result of the finite-order diagrams and cannot be seen in
the Gutzwiller approximation.

It will be an interesting question for future work whether
the Fermi surface deformation can lead to symmetry broken
phases (Pomeranchuk phase) as in the single-band Hubbard
model. In our two-band model, such a broken rotational
spatial symmetry leads to different orbital densities, which
are energetically unfavorable. Hence, it is an open question
if the ground state of our two-band model can have an
asymmetric Fermi surface. Another open questions concerns
the appearance of superconductivity in our model, as seen in
earlier work on two-orbital Hubbard models [45–47].
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APPENDIX A: LATTICE SYMMETRIES

Figure 13 shows the hopping processes to nearest and next-
nearest neighbors. The amplitude t11

x for the transition from
the px (σ = 1) orbitals on site i to the site i ± dx equals the
amplitude t22

y for the transition from the py orbitals (σ = 2)
on site i to the site i ± dy. The same holds for the amplitudes
t11
xy and t22

xy for the transitions between the px orbitals on i and
i ± dy and the py orbitals on sites i and i ± dx, respectively.

FIG. 13. Hopping amplitudes of our two-orbital system with
px − py symmetry. The arrows mark some hopping parameters
between p-orbitals. All others can be obtained via symmetry
considerations.

The amplitudes for the hopping processes from i to i ± dx ±
dy between the px orbitals is the same as between the py

orbitals. The symmetry of the orbitals does not allow any px −
py transition to nearest neighbors. For transitions between
next-nearest neighbors, the sign of the amplitudes t12

xy will
change after a rotation of π/2 so that t12

xy = −t12
yx . The xy

symmetry of the inter-orbital hopping processes leads to a
diagonal local density matrix ρσ,σ ′ = n0

σ δσ,σ ′ . Furthermore,
the rotational symmetry of the hopping processes within the
same orbitals guarantees that all diagonal entries of the local
density matrix are the same, ρσ,σ ′ = n0 Id.

The calculation of the on-site Coulomb interaction (3)
requires the evaluation of two-particle expectation values of
the Coulomb energy

Uσ1σ2σ3σ4 = 〈
φσ1φσ2

∣∣V̂Coul.

∣∣φσ3φσ4

〉
, (A1)

with σi ∈ {px,py}. These coefficients can be simplified after a
decomposition of the px − py orbitals in terms of Laguerre and
Legendre polynomials, respectively. The explicit derivation
of the coefficients can be found in many text books (e.g.,
in Ref. [48]) so that we simply state the result. The matrix
representation of the two-particle sector of Ûint is given by

Uint = U Id +

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 J

0 −3J 0 0 0 0
0 0 −2J −J 0 0
0 0 −J −2J 0 0
0 0 0 0 −3J 0
J 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠
(A2)

where the standard ordering |↑↓,0〉, |↑,↑〉, |↓,↑〉, |↑,↓〉, |↓,↓〉,
|0,↑↓〉 of the two-particle states has been used. Obviously,
there are no terms where only one electron switches from a px

to a py orbital or that violates spin conversation.
The variational coefficients λI1,I2 in the Gutzwiller correla-

tor (5) have the same structure (nonvanishing elements) as the
matrix elements of the on-site Coulomb interaction in Eq. (A2).
In the paramagnetic case, the variational coefficients obey a
spin-band symmetry. In the ferromagnetic case, all parameters
are symmetric under an interchange of the band index.
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APPENDIX B: HF-OPERATORS AND DIAGRAMMATIC
WEIGHTS

In this section, we give explicit results for the mapping of an
arbitrary operator product to its corresponding HF operator. We
use this mapping to define the coefficients XI1,I2 , QI1,I2 , ZI1,I2 ,
and MI1,I2 that give the weights of the internal and external
nodes in our diagrammatic expansion. A detailed derivation of
this mappings, its inversion, and a derivation of all coefficients
can be found in Ref. [39].

Consider a product of fermionic creation/annihilation
operators â1â2 . . . ân. For the corresponding HF-operator
(â1â2 . . . ân) HF, the evaluation of

{Ô(â1â2 . . . ân) HF} (B1)

shall, by definition, not include contractions between any pairs
of operators â1, . . . ,ân. We use the notation

{â1â2 . . . ân}m, (B2)

where m denotes the number of internal contractions, e.g., for
m = 1,

{â1â2 . . . ân}1 =
∑
j<k

(−1)j+k+1{âj âk}â1 . . . âj−1âj+1

. . . . . . âk−1âk+1 . . . ân. (B3)

Each internal contraction reduces the number of operators by
two. With the abbreviation (B2), we can give the following
closed expression for the HF operator of an arbitrary operator:

(â1â2 . . . ân) HF =
[n]∑
k=0

(−1)k{a1a2 . . . an}k, (B4)

where [n] denotes the next smallest even number. This result
agrees with the expressions for the definition of the HF
operators in Ref. [42].

In our diagrammatic expansion, we must express all
operators Ĉ

†
K1

ĈK2
in terms of HF-operators:

Ĉ
†
K1

ĈK2
=

∑
I1,I2

X
K1,K2
I1,I2

(
Ĉ

†
I1
ĈI2

)HF
. (B5)

Let us contract both sides with an arbitrary operator Ô. In
order to determine the value of the coefficient X

K1K2
I1,I2

, we have

to evaluate the term where the operators Ĉ
†
I1

and ĈI2
with

I1 ⊂ K1, I2 ⊂ K2 form the external contractions with Ô. We
need to shift the operators that are reserved for the external
contractions to the front of the operator Ô, and contract all
remaining operators internally. The operator Ô can be chosen
without any restrictions and just indicates which operators are
reserved for an external contraction. The contraction with Ô

can be carried out symbolically by a replacement of Ĉ
†
I1
ĈI2

with the HF operators (Ĉ†
I1
ĈI2

)HF. Thus we get

X
K1,K2
I1,I2

= [
←−−−
I1,K1]+�[

−−−→
K2,I2]−�

{
Ĉ

†
K1\I1

ĈK2\I2

}
, (B6)

where we introduced the following symbols to indicate that
we consider a sign change after a reordering of creation or
annihilation operators:

[
−→
I,J ]+� sign after splitting Ĉ

†
I∪J → Ĉ

†
I Ĉ

†
J ,

[
−→
I,J ]−� sign after splitting ĈI∪J → ĈI ĈJ ,

[
←−
J,I ]+� sign after splitting Ĉ

†
I∪J → Ĉ

†
J Ĉ

†
I ,

[
←−
J,I ]−� sign after splitting ĈI∪J → ĈJ ĈI ,

[
−→
I

←−
J ]+� sign after merging Ĉ

†
I Ĉ

†
J → Ĉ

†
I∪J ,

[
−→
I

←−
J ]−� sign after merging ĈI ĈJ → ĈI∪J . (B7)

All operators are assumed to be normally ordered before and
after the process. The reversed ordering of the annihilation and
creation operators ensures that

[
−→
I,J ]+� = [

←−
J,I ]−� = [

−−→
I \ J

←−
J ]+� = [

−→
J

←−−
I \ J ]−�. (B8)

As a next step we transform the square of the local
Gutzwiller operator into a sum of HF operators:

P †P =
∑
I1,I2

XI1,I2

(
Ĉ

†
I1
ĈI2

)HF
. (B9)

An application of the mapping (B6) gives

XI1,I2 =
∑

J1 ⊂ Ī1,J2 ⊂ Ī2
|J1| = |J2|

{
Ĉ

†
J1

ĈJ2

}
[
−→
I1

←−
J1 ]+� [

−→
J2

←−
I2 ]−�

×
∑
J3 ⊂

(I1 ∪ J1) ∩ (I2 ∪ J2)

(−1)|J3|λ̄(I2∪J2)\J3
(I1∪J1)\J3

× [
−−−−−−→
I1 ∪ J1,J3]+� [

←−−−−−−
J3,I2 ∪ J2]−�. (B10)

The external nodes defined in Eq. (17) can be written as

Q̂(Ô) =
∑
I1,I2

KI1,I2 (Ô)|I1〉〈I2| (B11)

with

KI1,I2 (Ô) =
∑
I3,I4

λI3,I1λI4,I2〈I3|Ô|I4〉. (B12)

Then we can use the HF mapping to find

Q̂(Ô) =
∑
I1,I2

QI1,I2 (Ô)
(
Ĉ

†
I1
ĈI2

)HF
, (B13)

which still depends on the operator Ô. Here,

QI1,I2 (Ô) =
∑

J1 ⊂ Ī1,J2 ⊂ I2
|J1| = |J2|

{Ĉ†
J1

ĈJ2
}[−→I1

←−
J1 ]+�[

−→
J2

←−
I2 ]−�

×
∑
J3 ⊂

(I1 ∪ J1) ∩ (I2 ∪ J2)

(−1)|J3|K (I2∪J2)\J3
(I1∪J1)\J3

(Ô)

× [
−−−−−−→
I1 ∪ J1,J3]+�[

←−−−−−−
J3,I2 ∪ J2]−�, (B14)

where the coefficients KI1,I2 play the role of the coefficients
λ̄I1,I2 in Eq. (B10).
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The internal nodes defined in Eq. (34) are given by

G̃ =
∑
I1,I2

|I1|,|I2| > 0

ZI1,I2C̃
†
I1
C̃I2

, (B15)

with

ZI1,I2 =
∑
m>0

(−1)m+1

m

∑
{(J s

1 ,J s
2 )}

s = 1, . . . ,m

�
[
J s

1 ,J s
2

] m∏
s=1

XJs
1 ,J s

2
, (B16)

where the sum in Eq. (B16) runs over all (disjunct) partitions
{(J s

1 ,J s
2 )} of the set (I1,I2) such that

⋃
s

J s
1 = I1 and

⋃
s

J s
2 = I2, (B17)

and �[J s
1 ,J s

2 ] gives the sign, which is necessary to convert
the operator product

∏
s Ĉ

†
J s

1
ĈJ s

2
into normal order again. The

weight of the external nodes in Eq. (35) can be written as

M̃ =
∑
I1,I2

MI1,I2C̃
†
I1
C̃I2

, (B18)

with

MI1,I2 = QI1,I2 −
∑
m=1

(−1)m+1
∑

{(J s
1 ,J s

2 )}
s = 0, . . . ,m

�
[
J s

1 ,J s
2

]

× QJ 0
1 ,J 0

2

m∏
s=1

XJs
1 ,J s

2
. (B19)

APPENDIX C: NONLOCAL OPERATORS AND
SUPERCONDUCTING SYSTEMS

The generalization of our derivation in Sec. II to a nonlocal
operator is straightforward. The numerator of the expectation
value of a nonlocal operator Ô2,iÔ1,j with respect to the
Gutzwiller wave function reads

〈�G|Ô2,iÔ1,j |�G〉 = 〈�0|Q̂1,iQ̂2,j

∏
l∈�\{i,j}

P̂
†
l P̂l |�0〉.

(C1)

The Gutzwiller correlators for the sites i and j are combined
with the operators Ô2,i and Ô1,j to the operators Q̂1,i and Q̂2,j .
Then, Eq. (32) generalizes to⎧⎨

⎩Q̂1,iQ̂2,j

∏
l∈�\{i,j}

(1 + Âl)

⎫⎬
⎭ρ

=
⎧⎨
⎩Q̃1,iQ̃2,i

∏
l∈�\{i,j}

(1 + Ãl)

⎫⎬
⎭ρ̄ . (C2)

Finally, the definitions (34) and (35) allow us to write

〈�G|Ô1,iÔ2,j |�G〉 =
{

M̃iM̃j

∏
l∈�

exp(G̃l)

}
ρ̄

. (C3)

Now, we are in the position to apply the LCT again.
The derivation in Sec. II is given for an arbitrary local

Hilbert space and does not rely on translational invariance. Fur-
thermore, we can generalize our derivation to systems without
particle-number conservation in superconducting systems as
treated, e.g., in Ref. [32]. To this end, we need to incorporate
contractions of the form {Ĉ†

I1
ĈI2

}ρ , with |I1| �= |I2|. These
additional contractions lead to an adjustment of some of the
index restrictions used in this work. For example, we need to
allow even differences between the absolute value of the (set)
indices I1 and I2 in Eqs. (18), (24), and (36) and between the
indices |J1|,|J2| in Eqs. (B10), (B14).

APPENDIX D: PREVIOUS APPROACHES

The diagrammatic analysis of the single-band case which
includes the HF operators was first worked out in Ref. [10].
There, the correlator Ã = xdñ↑ñ↓ is employed with xd being
the only nonvanishing XI1,I2 coefficient. In this case, we can
set

1 + xdC̃
†
↑,↓C̃↑,↓ = exp(xdC̃

†
↑,↓C̃↑,↓). (D1)

When we work with multiple bands or if we allow for terms
such as x↑c̃

†
↑c̃↑ in our correlator, an equation of the form

(D1) does not hold. Hence we need to “re-exponentiate” our
correlators as in Eq. (34). This has been overlooked in the
application of the LCT in the multiband case in Ref. [42]
although the problem was already noticed in Ref. [13].

In principle, the transformation of the ladder operators
to HF-operators is not a necessary step for the transforma-
tion to Graßmann variables. After all operators have been
brought to normal ordering every operator in the numerator
(denominator) will appear only once. The operators can be
mapped to Graßmann variables ĉ

(†)
iσ → c̃

(†)
iσ with vanishing

anticommutator {c̃†iσ ,c̃iσ } = 0. In contrast to the Graßmann
variables defined in Eq. (28), the local contractions are still
finite. The external and internal nodes can be defined as in
Eq. (18).

In this approach, the diagrams will also include local lines.
That means that we need to include the summation of an
arbitrary number of (directly connected) nodes sitting on the
same site, in order to sum up all local contractions. For the
single-band model, the diagrammatic expansion of this case
is derived in Refs. [4,6,8,9], where the cases of one and
infinite dimensions are treated analytically. A similar approach
for a three-flavor system with an Gutzwiller correlator of
the form 1 + αn̂1n̂2n̂3 can be found in Ref. [49], where the
local contractions are still present. The transformation to an
exponential function is again trivial.
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