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We design a Stern-Gerlach apparatus that separates quasispin components on the lattice, without the use
of external fields. The effect is engineered using intrinsic parameters, such as hopping amplitudes and on-site
potentials. A theoretical description of the apparatus relying on a generalized Foldy-Wouthuysen transformation
beyond Dirac points is given. Our results are verified numerically by means of wave-packet evolution, including
an analysis of Zitterbewegung on the lattice. The necessary tools for microwave realizations, such as complex
hopping amplitudes and chiral effects, are simulated.
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I. INTRODUCTION

Quantum emulations have been increasingly important
for theorists and experimentalists in areas such as ultracold
atoms [1–5], quantum and microwave billiards [6–9], plas-
monic circuits [10], and artificial solids in general [11,12].
The concept can be used to engineer quantum dynamics not
readily accessible in naturally occurring physical systems, e.g.,
elementary particles or charge carriers in solids [13,14]. For
some years, the effective Dirac theories emerging in honey-
comb lattices and linear chains [15–20] have led researchers
to consider the use of quasispin as an internal degree of
freedom capable of supporting the long-pursued realization
of qubits in solid-state physics. This interesting degree of
freedom has the property of being nonlocal, inherent to the
crystalline structure, and sufficiently robust as to provide
upper and lower bands around conical (Dirac) points in the
spectrum. In the same context, there has been a recent interest
in Majorana fermions [21–23], as their topological nature
may provide robustness with respect to decoherence, hence
increasing the life of qubits, and thus extending the reach
of potential applications. Several theoretical developments
take advantage of quasispin [24,25] and some experiments
in lattices have observed their effects, e.g., Zitterbewegung in
photonic structures [26].

But how does one measure quasispin on the lattice? One of
the goals of this paper is to gain access to this degree of freedom
by designing an interaction on bipartite lattices with the
following features: (a) an adjustable coupling with particles’
quasispin, (b) a localized region where the interaction occurs,
and (c) an intrinsic generation of the interaction using lattice
parameters. It is worth mentioning that the electron’s true spin
is not easily accessible when immersed in a solid [27].

Our tasks demand an exploration of tight-binding models,
oriented to an experimental setup in microwave resonators.
We establish the realization of Dirac’s equation in a one-
dimensional setting and solve the problem of how to split
the two components of the wave function, namely particle-
antiparticle components, or, in the language of solid-state
physics, the upper and lower bands. Under these circum-
stances, and using the Foldy-Wouthuysen (FW) transforma-
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tion, we design and test a spatially localized Stern-Gerlach
splitter represented by a banded matrix, to be used in the
context of Dirac-like dynamics. In this case, the experimental
restrictions imposed by most realizations come in the form
of short-range interactions. We provide a successful geo-
metric proposal in compliance with such restrictions, using
microwave resonators coupled by proximity.

We approach the problem in three different stages. First,
in Sec. II, we study the lattice structure using full-band Dirac
equations [20] and provide a generalized FW transformation
in Sec. II A. The explicit construction of the beam splitter
as a potential is achieved in Sec. II B. In Sec. III, we study
wave-packet dynamics using numerical simulations with two
important results: in Sec. III A, we show that unpolarized
beams exhibit Zitterbewegung, while in Secs. III B and III C,
we test the splitter efficiency. With the aim of ensuring the
feasibility of our model, in Sec. IV we establish the robustness
of the system under random perturbations of parameters.
Our study is applicable to any tight-binding (TB) array with
the aforementioned structure, but, as a final step, in Sec. V
we focus on plausible experiments in microwave cavities.
Section V A describes the necessary specifications for the
implementation and Sec. V B gives an explicit construction
that produces negative couplings and level inversion. We
conclude in Sec. VI.

II. INTRINSIC STERN-GERLACH APPARATUS

A. Quasispin and generalized FW transformations

Let us define our periodic system, with the aim of
generalizing the usual FW unitary rotation [28,29]. Consider
a one-dimensional lattice, with sites characterized by the
positions n ∈ Z and position basis {|n〉}n∈Z. We deal with
a typical TB model in this setting, with hopping parameter �

and potential V ,

H = �T + �T † + V

=
∞∑

n=−∞
�|n〉〈n + 1| + H.c. + Vn|n〉〈n|, (1)

where the translation operator is defined via T |n〉 = |n + 1〉
and a position-dependent potential V = ∑

n Vn|n〉〈n| has been
introduced. We have shown [20] that this Hamiltonian can be
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written in Dirac form without approximations, with suitable
definitions of Dirac matrices α in terms of projectors onto even
and odd site numbers,

H = �α · � + V, (2)

with the kinetic operators

�1 ≡ 1 + 1

2

∑
n

|n − 2〉〈n| + |n〉〈n − 2| = 1 + T 2 + (T †)2

2
,

�2 ≡ i

2

∑
n

|n − 2〉〈n| − |n〉〈n − 2| = T 2 − (T †)2

2i
, (3)

and the Dirac matrices

α1 ≡
∑
n even

|n + 1〉〈n| + |n〉〈n + 1|,
(4)

α2 ≡ i
∑
n even

|n + 1〉〈n| − |n〉〈n + 1|

satisfying the usual conditions.
Bipartite lattices with alternating on-site potential energies

E1, E2 entail the use of the potential

V = E0 + μβ, (5)

where the average energy E0 = (E1 + E2)/2 and splitting μ =
(E1 − E2)/2 are used. Additionally, we have considered the
operator β, here defined as

β ≡
∑
n even

|n〉〈n| − |n + 1〉〈n + 1|. (6)

Our lattice operators (4) and (6) satisfy the relations {αi,β} =
0,{αi,αj } = 2δij ,[α1,α2] = 2iβ. This reordering of our orig-
inal TB Hamiltonian leads to an effective Dirac Hamiltonian
of the form

H = �α · � + μβ + E0. (7)

The spectrum of H is Ek,± = E0 ±
√

4�2 cos2 k + μ2 ≡
E0 ± Ek and, most importantly, its eigenfunctions are written
as spinors with up and down components represented by
amplitudes in the even and odd sublattices. Here we remark
that this spinorial form of the eigenfunctions and, in general, of
any wave packet on the lattice is in itself an additional discrete
degree of freedom, and thus gives rise to the name: quasispin.
As previously noted, quasispin is entirely nonlocal, given that
it is a direct manifestation of the bipartite nature of the lattice.

Returning to the discussion, we have the following complete
set of eigenfunctions:

〈n|k,s〉 = eikn

(
u+

k,s

u−
k,s

)
, u±

k,s = s±1/2

√
Ek ± sμ

4πEk

, (8)

where n is an even index, k is the wave number in the reduced
Brillouin zone 0 < k < π , and s = ± is the index of upper and
lower bands. For the latter use, we introduce the parameter
κ around the conical point k = π/2 − κ/2. This yields the
following eigenvalues pi of �i :

p1 ≈ −κ2

2
, p2 ≈ κ, (9)

x

y

z

φ

H = v · σ

ΔΠ2

ΔΠ1

μ

θ

FIG. 1. A visualization of the FW transformation. Using a
rotation around the z axis by an angle φ, followed by a rotation
around y by an angle θ , would rotate the eigenstates of σz to the
eigenstates of the Hamiltonian given by Eq. (1). In this visualization,
the angles are considered to be scalars since they are operators that
commute with the Hamiltonian.

for momenta near the conical point. This shows that p2

survives, playing the role of an effective momentum of a
one-dimensional (1D) Dirac equation.

In order to show the role of quasispin in the solutions, one
can solve the eigenvalue problem without any approximation
by means of a rotation in the space (α1,α2,β). This is the
FW transformation explained in Fig. 1, which maps the
site model (even/odd sites) to a qubit system of positive
and negative energies [19,20]. In terms of Pauli matrices,
we write α1 = σ1,α2 = σ2,β = σ3 and we define a vector v
with components v1 = ��1,v2 = ��2,v3 = μ. With these
definitions, H becomes a pure spin-orbit interaction,

H − E0 = v · σ , [vi,vj ] = [vi,σj ] = 0. (10)

This allows one to rotate the vector v independently of σ , with
the aim of making it parallel to z. Equivalently, the rotation
is represented by a unitary transformation UFW which block
diagonalizes H ,

UFW = exp

(
− iφ

2
σ3

)
exp

(
− iθ

2
σ2

)
. (11)

In our case, this rotation allows us to guide the design of the
polarizer. The exponential is understood in terms of trigono-
metric functions, where the angles are operators defined by

sin θ = �(T + T †)√
�2(T + T †)2 + μ2

,

(12)
cos θ = μ√

�2(T + T †)2 + μ2
,

and

cos φ = 1

2
(T + T †), sin φ = 1

2i
(T − T †). (13)

Formula (11) involves trigonometric functions of half angles,
so we provide their expressions for completeness [we note
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here that (H − E0)2 is independent of Pauli matrices],

cos

(
θ

2

)
=

√√√√√
(H − E0)2 + μ

2
√

(H − E0)2
,

(14)

sin

(
θ

2

)
=

√√√√√
(H − E0)2 − μ

2
√

(H − E0)2
,

and

cos

(
φ

2

)
= 1

2
[T 1/2 + (T †)1/2],

(15)

sin

(
φ

2

)
= 1

2i
[T 1/2 − (T †)1/2].

With the unitary operator UFW, the transformation yields, in
a very clean way,

HFW = U
†
FWHUFW

=
(

E0 +
√

(H − E0)2 0
0 E0 −

√
(H − E0)2

)
,

where
√

(H − E0)2 =
√

�2(T + T †)2 + μ2.
Adding next-to-nearest-neighbor interaction in Eq. (1)

would require a modification of the definitions (3). However,
the program of the present section could also be carried out in
a very similar fashion. The addition of the quartic translational
terms in Eq. (3) would change Eqs. (12) and (13), and would
thus make the propagation in the two bands slightly different.
A splitter could thus also be designed, but an asymmetry in
the two components would indeed show up in the asymptotic
evolution.

B. The Stern-Gerlach apparatus as an interaction

Now that we have derived a block-diagonal Hamiltonian,
we are in the position to introduce an interaction which cou-
ples differently with positive- and negative-energy solutions.
Moreover, we shall see that the range of such interaction can
be controlled at pleasure. A diagram is shown in Fig. 2.
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FIG. 2. Lattice topologies corresponding to the polarizer, up to
second neighbors (top) and third neighbors (bottom). Thick lines
correspond to the (strongest) nearest-neighbor interaction, thin lines
are the next-to-nearest-neighbor interactions, and, finally, dashed
lines are the weakest (and in the top model neglected) third-nearest-
neighbor interactions.

In classical relativistic dynamics, the double sign of the
kinetic energy could be used to produce two types of behavior
in the presence of a potential well. If V (x) interacts attractively
for positive solutions (charges), the opposite case will be a
potential barrier acting on negative solutions (holes):

E = ±
√

c2p2 + m2c4 + V (x). (16)

Thus, one type of solution would be allowed to enter in a
certain region while the other would be rejected; we may regard
V (x) as a gate keeper. We must note, however, that quantum
dynamics gives rise to interference phenomena producing
transmission and reflection in both of the aforementioned
situations. The simplest way to separate both types of waves
is by introducing a potential of the type

V±(x) =
{
V (x) for particles
0 for holes. (17)

Since the FW transformation does the job of decoupling both
types of solutions, we introduce at the level of HFW a potential
VFW that separates the components as in (17),

H̃FW = HFW + 1 + σ3

2
⊗ VFW, (18)

or in matrix form,

(
E0 + VFW +

√
(H − E0)2 0

0 E0 −
√

(H − E0)2

)
.

In order to find the true potential V operating at the level
of lattice sites and neighbor couplings, we must return
to our original description by means of the inverse FW
transformation,

V (N ) = UFW VFW U
†
FW. (19)

Direct computations lead to a 2 × 2 block form of V . For
instance,

V11 = e−iφ/2 cos

(
θ

2

)
VFW cos

(
θ

2

)
eiφ/2. (20)

Here we may choose VFW at will, but using site number kets
makes it easier to provide locality: 〈n|VFW|n′〉 = δn,n′VFW(n).
The site dependence of V can be obtained by inserting a
complete set of Bloch waves. Let us define

I s,s ′
n

( μ

�

)
≡

∫ π

−π

dk

√
Ek + sμ

Ek

eik(n−s ′/2), (21)

with s,s ′ = ± and n ∈ Z. The potential blocks are then

〈n|V11|n′〉 = 1

8π2

∞∑
m=−∞

VFW(m)I++
n′−m(I++

n−m)∗ (22)

for even n and n′,

〈n|V21|n′〉 = 1

8π2

∞∑
m=−∞

VFW(m)I−+
n′−m(I+−

n−m)∗ (23)

for even n and odd n′, and finally

〈n|V22|n′〉 = 1

8π2

∞∑
m=−∞

VFW(m)I−+
n′−m(I−+

n−m)∗ (24)

045129-3



A. S. ROSADO et al. PHYSICAL REVIEW B 94, 045129 (2016)

FIG. 3. Top: Matrix form of the nonlocal complete polarizer
potential. The interaction zone contains different on-site energies
indicated by the alternating pixel intensities in the diagonal. Bottom:
Matrix form of a geometrical polarizer potential with range ρ = 10
and no on-site potential. Only couplings to first and second order have
been included. Both potentials are given in units of �.

for odd n and n′. It is advantageous to write our result in the
form of the series over m above: when the range of VFW is
limited, the summation over m involves only a few terms. In
the extreme case of a pointlike gate keeper in the FW picture,
m = 0 is the only contribution in V . Moreover, the limits
μ � � and μ � � provide useful approximations,

I s,s ′
n ≈ 4

√
1 + ss ′(−)n

s ′ − 2n
+ O

(
�

μ

)
, (25)

and in the opposite regime,

I s,s ′
n ≈ 4s ′(−)n

s ′ − 2n
+ O

( μ

�

)
. (26)

According to (22)–(24), these expansions show that the
resulting potentials in space are represented by banded
matrices, which we proceed to display as densities without
approximations in Fig. 3. The numerical evaluation of matrix
elements shows that a finite number of neighbors is a reason-
able approximation. For second- and third-nearest-neighbor
interactions, we depict the resulting localized arrays in Fig. 2.

III. DYNAMICAL STUDY

In this section, we shall study two different phenomena.
The first is a “free-particle” effect: Zitterbewegung. Since its
proposal by Schrödinger, Zitterbewegung has been understood

as a rapid oscillatory motion that is a product of the interference
between positive- and negative-energy states present in the
initial composition of a Dirac spinor. For this oscillatory
phenomena to be observed, these positive- and negative-energy
states must have a sufficiently large overlap in position space.
This has, in fact, been emulated in other experimental realiza-
tions of the Dirac equation [26,30,31]. In this work, we develop
a clean derivation that will allow us to make a stationary phase
approximation leading to a

√
1/t decay of the oscillatory part

of the amplitude. In addition, we shall consider the effect of
a designed potential that can spatially separate efficiently a
function in its “big” and “small” contribution. The efficiency
of the splitter shall be characterized by means of reflection and
transmission coefficients for each spin component.

A. Wave-packet dynamics

Zitterbewegung is the hallmark of unpolarized beams.
Effective relativistic wave equations produce oscillatory phe-
nomena in the evolution of single-component spinors on the
lattice [26]. At the heart of this effect lies the FW picture and
the corresponding rotated quasispin: an observable associated
to upper and lower energy bands. The outcome of the evolution
will be a superposition of “particles” and “antiparticles” as
long as the initial condition is a mixture of such quantum
number. An obvious implication is that Zitterbewegung should
be present in any theory with binary lattices. Noteworthy is
the fact that the approximation of Bloch momenta around
Dirac points is not the essential ingredient; we may find
Zitterbewegung in situations where the initial wave packet is a
superposition of all energies in both bands, with non-negligible
momentum components. We proceed to analyze such physical
situations.

Setting � = 1, we define the initial wave packet as

|ψ0〉 =
∫ π

0
dk

∑
s=±

ψk,s |k,s〉 =
∑

n

ψn|n〉. (27)

We are interested in the average position at time t . In order
to recover the usual definition of position x and momentum
p = −i∂/∂x in the continuous limit, we work with position
operators defined over dimers (pairs of sites) and lattice
constant a,

X = a

2

∑
n even

n[|n〉〈n| + |n + 1〉〈n + 1|], (28)

with the property

[T 2,X] = −aT 2, [X,σ±] = 0 (29)

(note though that it is the operator T 2 and not T that satisfies
this property). In the Heisenberg picture, we obtain

Ẋ = aσ2, �̇ = 0, (30)

which leads to

X(t) = X(0) − 2at
��2

H
+ a

[
σ2(0) − 2

��2

H

] ∫ t

0
dt e−2itH .

(31)

The first two terms describe the usual classical dynamics for
a free particle, while the oscillations (i.e., the Zitterbewegung)
come from the third term. The relevant part of the expectation
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value with respect to the state |ψ0〉 is thus

xzitt ≡
〈[

σ2(0) − 2
��2

H

] ∫ t

0
dt e−2itH

〉
ψ

. (32)

After inserting energy kets (8) and performing the time
integral, we can write

xzitt =
∑
s,s ′

Js,s ′ +
∑

s

Is, (33)

where I and J are Bloch-momentum integrals of the type

Js,s ′ ≡
∫ π

0
dk

e−iEk,s t sin(Ek,s t)

Ek,s

ψk,sψ
∗
k,s ′

× i[u+
k,s(u

−
k,s ′ )∗ − u−

k,s(u
+
k,s ′ )∗] (34)

and

Is ≡
∫ π

0
dk

e−iEk,s t sin(Ek,s t) sin k

(Ek,s)2
|ψk,s |2. (35)

These integrals can be estimated in a long-time regime using
the stationary phase approximation, where the stationary
points are approximately determined by dEk,s/dk = 0, i.e.,
k = 0,π/2,π . Since our description involves only 0 < k < π ,
we see that two stationary points lie at the edge of the interval,
and therefore their contribution appears with a factor of 1/2.
On the other hand, the midpoint k = π/2 is also the point
of maximal approach between bands, and it only contributes
when μ �= 0. From (34) and (35), we see that xzitt contains
terms with a time dependence of the form eiωt

√
1/t , after

applying the stationary phase approximation. Therefore, the
frequencies of oscillation take the values ω1 = ±μ (from
k = π/2) and ω2 = ±

√
4�2 + μ2 (from k = 0,π ), while the

effect vanishes with an envelope curve
√

1/t . We have an
expression of the form

xzitt ≈
√

1

t
[A(μ,�)e−2iω1t + B(μ,�)e−2iω2t + c.c.], (36)

FIG. 4. Zitterbewegung of the wave packet. On the left panel, we
see the oscillations of xzitt without ballistic motion, as well as the
decay of amplitude predicted by stationary phase approximations.
On the right panel, we see the same rate of amplitude decay for three
different effective masses, μ. �x is the averaged maximum amplitude
of the oscillations, while τ = t/Tχ and Tχ is the characteristic time
of the simulation given by Tχ = �/�.

where A and B are coefficients related to second derivatives of
the phase in (34) and (35). In Fig. 4, we describe the oscillations
of xzitt in log scale, showing clearly an envelope

√
1/t for long

times.

B. The potential as a beam splitter

We prepare wave packets with an adjustable width and a
proper “thrust” or “kick” by means of an additional plane-wave
factor, imprinting an average drift. Our choice corresponds to
motion from left to right. Eventually, our packets reach the gate
keeper centered at the origin described in Fig. 3, but before
they do so, Zitterbewegung is significantly observed. After the
packets collide with the potential, positive-energy components
are reflected and negative-energy components are transmitted.
This type of behavior has been verified numerically with
specific wave packets, as we discuss now. In Fig. 5, we plot
the full probability density in black, upper spin component
in blue, and lower spin in orange. The dynamics is described
in three steps: the first column corresponds to times before
the collision with the polarizer, the second column shows the
interference produced by the collision, and the third column
finally demonstrates how the components of the wave packet
are separated after the collision. Upper spin is reflected and
lower spin is transmitted. To make a quantitative analysis
in terms of probabilities, first we define the initial wave
packet as

ψn(0) = αN −P−e−an2/4λ2
eiκn + βN +P+e−an2/4λ2

e−iκn,

(37)
where |α|2 + |β|2 = 1, λ is the width of the discrete probability
density, and κ is the average momentum of the packet. P± are
the projectors onto each energy band given by

Ps =
∫ π

0
dk|k,s〉〈k,s| = UFW

(
1 + sσ3

2

)
U

†
FW. (38)

The matrix elements of these projectors are used after the
scattering event takes place in the simulation, in order to test
the sign of the spin. The results in Fig. 6 show that after our
Stern-Gerlach apparatus has done its job, only 1.2% of the
upper spin component and 100% of the lower spin component
have been transmitted. The wave packet moving to the right
still exhibits a slight hint of Zitterbewegung as it is a mixture
of components, while the wave packet moving to the left
propagates without Zitterbewegung, as it is only comprised
by the remainder 98.8% of the upper spin component. This
quantitative analysis requires the reflection capacity of the
upper spin component, denoted by R+, and transmission
capacity of the lower spin component, T−, of the polarizer for
different values of the thrust κ and the range of the polarizer
ρ. These quantities are given by

R+ = |P+|ψ(t)〉|2l
|α|2 , T+ = |P+|ψ(t)〉|2r

|α|2 ,

(39)

R− = |P−|ψ(t)〉|2l
|β|2 , T− = |P−|ψ(t)〉|2r

|β|2 ,

where subscripts l,r stand for sums over sites to the left
and right of the polarizer location, respectively. Due to
complementarity, R+ + T+ = 1 and R− + T− = 1, T+ and R−
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FIG. 5. Evolution of a wave packet going through the lattice polarizer. The first picture shows the initial condition of the complete wave
packet, whereas the second and third pictures portray the dynamics of the upper and lower band components of the wave packet. The collision
time with the polarizer is Tc = �N

2�κ
, where N is the number of sites on the lattice.

are redundant. The results for R+,T− are shown in Fig. 6. When
ρ is varied, both capacities retain near optimal values and
fall to zero only for small polarizer sizes, as expected. Since
the “kick” is a property of the wave packet—i.e., external to
the structure of the polarizer—the capacities are expected to
remain invariant for different values of κ . This is confirmed
in our simulations, except for values near κ = 0,π/2 which
correspond to purely diffusive propagation.

The results are quite satisfactory, but we should mention
that the type of polarizer (1 + σ3) ⊗ V could be modified with
more refined constructions, even with transparent potentials
previously designed using supersymmetric methods [32].

We would like to point out that the inset in Fig. 6 shows the
reflection R+ rising up very close to 1 for values of κ > π/4
(but far from π/2). This corresponds to fast wave packets.
Since our simulations consist of time-dependent scattering, we
need fast and broad distributions that overcome the spreading
of components before scattering; we are, however, limited to
a finite size of the grid. In addition, our model also allows one
to increase the intensity V, which blocks incident beams with
increasing efficiency as long as κ does not correspond to a
Ramsauer resonance.

FIG. 6. The dotted line represents the reflection coefficient for
the upper band component of the wave packet as a function of the
variables κ and the polarizer size ρ. The continuous line represents
the transmission coefficient for the lower band component of the wave
packet as a function of the same variables.

C. A purely geometric beam splitter

Engineering beam splitters by means of nonlocal potentials
include the possibility of removing all diagonal contributions
in V , in favor of the off-diagonal elements representing interac-
tions to a certain range, as shown in Fig. 3 (our approximations
may include nearest neighbors, next-to-nearest neighbors, and
so on). In the experimental setup to be described in later
sections, the couplings can be determined by proximity be-
tween sites. With this technique, we can control the interaction
range, as well as the zone where it operates, only using lattice
deformations. Wave-packet evolution is studied numerically
in this extreme situation and our results show a surprisingly
efficient separation of components. In particular, for a ρ = 10
polarizer with couplings to second-order neighbors, we see
a reflection of 67.9% of the upper spin component and a
transmission of 92.6% of the lower spin component.

IV. FEASIBILITY

In this section, we test the robustness of the splitter with
respect to the known experimental limitations. In the splitter,
three parameters must be controlled: the overall absorption,
the on-site energy, and the coupling terms. This analysis will
not include the overall absorption because it mainly affects
the width and height of the resonances without significantly
disturbing the spectral positions; therefore, it is expected that
the transmission and reflection coefficients decrease by a factor
related to the strength of the absorption.

Experiments show [9] that the on-site energy can be
controlled better than the coupling. This is the case for
microwave experiments since the variation of couplings is at
least two orders of magnitude greater than the variation of the
on-site energy. Thus, to estimate the robustness of the splitter,
we will consider a Gaussian disorder introduced randomly
on the couplings. We modify � → (1 − δ)�, where δ is a
random variable with a standard deviation σδ . Figure 7 shows
that the expected coefficients and deviations are satisfactory,
even for a poor coupling control (σδ ∼ 0.1). As expected,
an extremely poor coupling control (σδ � 0.1) destroys the
efficiency of the splitter, with the latter becoming a regular
wall unable to separate the upper and lower band components.
Thus, we have shown robustness and feasibility in laboratory
implementations.
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FIG. 7. Mean reflection (red) and transmission (blue) coefficients
as functions of the standard deviation of the coupling σδ (see text) for
a ρ = 600 splitter. The error bars represent the fluctuations obtained
from multiple realizations. The value κ = 0.5 has been chosen for
optimality.

V. EXPERIMENTAL PROPOSALS

In this section, we describe a realization of the splitter
through a microwave cavity containing a set of cylindrical
resonators between parallel plates, establishing a tight-binding
configuration. This type of experimental implementation has
been very useful for the emulation of Dirac equations [18],
graphenelike structures [6–9], chiral states [33], and anoma-
lous Anderson localization [34], among others. It is important
to mention that the following experimental proposal is not
unique since the splitter can also be achieved by plasmonic
circuits [10], optical waveguides [35], or acoustic waves [36].
The reader can notice that these implementations rely on
classical aspects of the systems mentioned. However, the
equations of motion are equivalent to, say, the Schrödinger
or Dirac’s equation, depending on the regime studied. In this
sense, we are emulating Dirac’s equation.

We show in further detail how to produce complex coupling
constants with the aim of fabricating purely geometric beam
splitters. The effect, important in its own right, rests on the
possibility of breaking the chiral symmetry of polygonal
geometries using dimers as individual sites. This opens the
possibility of producing directed couplings, emerging from
dimeric states.

A. Experimental specifications

A set of cylindrical dielectric disks can act as the sites of
the chain, for example, Temex-Ceramics disks, E2000 series,
with high dielectric permittivity (ε = 37) and low loss (quality
factor Q = 7000). Each disk has an isolated resonance defined
by the dimensions of the cylinder, e.g., for a height of 5 mm
and a radius of 4 mm, a resonance close to 6.64 GHz appears
corresponding to the lowest transverse electric mode (TE1).
This resonant frequency is equivalent to the on-site energy.
For purely geometric splitters, we have seen that on-site
energies are the same throughout the array; therefore, identical
dielectric disks must be used. On the other hand, a general type

of splitter would require disks of different dimensions and/or
dielectric constants.

Between two parallel metallic plates, each isolated reso-
nance behaves like a J0-Bessel function inside of a cylinder,
and as a K0-Bessel function outside of it. The function K0 can
be represented fairly well by an exponential tail as a function
of the distance with respect to the center. Therefore, any set
of disks interacts by proximity through the overlap of their
individual functions K0, in such a way that the response of
the whole set is well described by a tight-binding model. The
intensity of the interaction and the main contribution of first
and second neighbors can be further manipulated by changing
the distance between the plates [19].

It is possible to study the wave dynamics of the splitter by
introducing two antennas into the microwave cavity connected
to different ports of a vector network analyzer (VNA). It is
possible to measure both the spectrum and the intensity of the
wave functions by using only one probing antenna. However,
for the reconstruction of wave-packet dynamics, it is necessary
not only to measure the intensity but also the phase. Hence
a second antenna probing the transmission of the system is
mandatory.

We fix one of the antennas near to a disk whereby the
electromagnetic waves are injected, while the position of the
other antenna is varied throughout the structure, allowing one
to measure the transmission spectrum on each disk.

The evolution of the wave packet at each point of the
structure is reconstructed through a Fourier transform of
the measured spectrum at that point [37]. This is allowed
because we have access to the full spectrum of the complex
transmission.

B. Negative couplings and level inversion

In our purely geometric splitter, we find matrix elements
that are real but not positive; see, e.g., Fig. 3. Negative
couplings require the control of an extra degree of freedom
in the form of a phase factor. We show that indeed such phases
can be produced by adding more structure in our arrays. It is
worth mentioning that nonremovable phase factors in hopping
amplitudes are the equivalent of magnetic fields applied to
charged particles [38], but our goal is to emulate these effects
for a scalar wave.

First we note that any Hermitian matrix H can be rewritten
as a matrix with semipositive secondary diagonals by means
of a unitary transformation. We proceed to turn H into a purely
positive nearest-neighbor array. Consider

Usign = diag{e−i�n}, (40)

where �n = ∑
m<n arg Hm+1,m is the accumulated phase

of the elements in the first diagonal. This trivial “gauge”
transformation moves all possible phases to third diagonals or
next-to-nearest neighbors; we must now analyze the influence
of sign flips in the hopping amplitudes. The zigzag arrays
shown in Fig. 2 are made of alternating triangular blocks;
therefore, every negative sign occurring in our polarizer
corresponds to those bonds lying on the outer part of the array
(see Fig. 2). For this reason, we focus on a single triangular
block.
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FIG. 8. Configuration of disks (indicated as circles, with a
number) giving rise to the coupling structure specified by Eq. (43).
The six disks are organized in pairs (1,2), (3,4), and (5,6), each of
which interacts strongly via the coupling constant d . The inner disks
interact via the coupling constant f . The outer disks interact with
just one of the other four disks (for example, 2 with 3), as the others
remain screened geometrically. The C3v symmetry is broken by tilting
the outer disks with an angle θ .

The effect of a negative matrix element in this case produces
level inversion, as shown by the Hamiltonians

H±
Block =

⎛
⎝ E0 � ±�

� E0 �

±� � E0

⎞
⎠, (41)

which are related by the unitary transformation UBlock =
diag{−1,1, − 1} in the form

UBlockH
−
BlockU

†
Block = 2E0 − H+

Block. (42)

This compels one to consider each triangular block on the
polarizer as a level-inverting interaction. The simplest way to
produce a level-inverted band is by the introduction of dimers
instead of single-resonance sites; see Fig. 8.

In the ideal situation where only a change of sign is
intended, the dimers are placed such that the C3 symmetry
of the array is not destroyed. To this end, the orientation of the
dimers must be constrained, as shown in Fig. 9. Note, however,
that the full symmetry of an equilateral triangle C3v is now, in
general, broken. The resulting shapes are hexagonal variants

1
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6 4
5 3

f

d

1

26

4

5 3

θc

FIG. 9. Two particular realizations that keep the full C3v symme-
try are illustrated, one in which θ = θc, and the other for θ = 0 in
which screening sets g = 0.
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FIG. 10. Spectrum of the configuration shown in Fig. 8; dots cor-
respond to a full 3D simulation of a microwave cavity using COMSOL

5.2 and continuous lines correspond to tight-binding calculations. The
lower band shows the desired inversion level due to effective negative
coupling.

described by the following tight-binding matrix:⎛
⎜⎜⎜⎜⎜⎝

0 d f 0 f g

d 0 g 0 0 0
f g 0 d f 0
0 0 d 0 g 0
f 0 f g 0 d

g 0 0 0 d 0

⎞
⎟⎟⎟⎟⎟⎠. (43)

The spectrum contains two degenerate doublets and two
singlets. Moreover, their eigenfrequencies are symmetrically
disposed around E0. In essence, we have produced an addi-
tional inverted copy of the spectrum due to a splitting caused
by strong intradimer coupling. For dielectric disks, a numer-
ical simulation of Maxwell equations with space-dependent
dielectric functions has been run. The results in Fig. 10 show
that the inverted copy corresponds to eigenfrequencies sitting
to the left of the original isolated resonance at E0. Moreover,
this occurs only for θ > θc ∼ 78 deg, which establishes the
existence of a diabolic (crossing) point in the spectrum [39].
Transverse modes are shown in Fig. 11, where the panels
exhibit a change in the sign of the wave function inside at least
one dimer, due to the transition at θc.

Finally, our results show that the assembled structure of
alternating triangles must produce two bands opening around
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FIG. 11. Upper row: simulated 3D system; dielectric disks
depicted in light brown, nonreflective walls in cyan, and perfect
conductors in yellow. Lower row: lowest modes for θ = 60 (before
level inversion) and θ = 85 (after level inversion). Two different
scales have been used inside and outside the cylinders for better
visibility. The wave functions outside the cylinders exhibit the nature
of couplings.

each level of a single dimer: we may choose to work in one
or the other. A similar spectral structure has been achieved
in other contexts: nuclear resonances [40], flat microwave
cavities [41,42], and electronic circuits [43].

VI. CONCLUSION AND OUTLOOK

In this paper, we have studied a tight-binding model that
is described by a Dirac equation. We have focused on the
time-dependent dynamics in the positive- and negative-energy
bands. In the language of the Dirac equation, this corresponds
to particles and antiparticles. We have developed the theory
that allows one to split these components by means of a
localized potential; this in turn could be a first step towards
the actual measurement of quasispin using wave packets. We
have further shown that even though the interactions are long
ranged, taking as few as next-to-nearest-neighbor interactions,
in a very localized region in space, yields reasonable results.
In connection with the possibility of generating pure spin
waves with our splitter, we would like to add that waves with

vanishing average momentum have been achieved and that
quasispin can be indeed spatially transported. However, the
mechanism relies on deformations rather than the application
of external magnetic fields as in the usual case of spin. The local
nature of the interaction is highly desirable if an experimental
emulation is pursued. We have indeed explored such scenario
in the context of a bidimensional array of dielectrics in a
microwave cavity. In such an array, it has been necessary to
consider level inversion, which we have demonstrated using
a simple geometric array. The next obvious step would be to
carry out the experiment.
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APPENDIX: AN ALTERNATIVE SPLITTER

A simple alternative splitter can be designed if we replace
Eq. (17) by

V±(x) =
{
V (x) for particles
−V (x) for holes. (A1)

Then, Hamiltonian (18) would be replaced by

H̃FW = HFW + σ3 ⊗ VFW. (A2)

In formula (20), one would need an extra term,

V11 = e−iφ/2 cos

(
θ

2

)
VFW cos

(
θ

2

)
eiφ/2

+ e−iφ/2 sin

(
θ

2

)
VFW sin

(
θ

2

)
eiφ/2, (A3)

which leads to the following changes in the matrix elements:

〈n|V11|n′〉 = 1

8π2

∞∑
m=−∞

VFW(m)

× [I++
n′−m(I++

n−m)∗ + I−−
n′−m(I−−

n−m)∗], (A4)

for even n and n′,

〈n|V21|n′〉 = 1

8π2

∞∑
m=−∞

VFW(m)

× [I−−
n′−m(I+−

n−m)∗ − I++
n′−m(I−+

n−m)∗], (A5)

for even n and odd n′, and, finally,

〈n|V22|n′〉 = 1

8π2

∞∑
m=−∞

VFW(m)

× [I−+
n′−m(I−+

n−m)∗ + I+−
n′−m(I+−

n−m)∗], (A6)

for odd n and n′.
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