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Buildup of the Kondo effect from real-time effective action for the Anderson impurity model
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The nonequilibrium time evolution of a quantum dot is studied by means of dynamic equations for time-
dependent Green’s functions derived from a two-particle-irreducible (2PI) effective action for the Anderson
impurity model. Coupling the dot between two leads at different voltages, the dynamics of the current through
the dot is investigated. We show that the 2PI approach is capable of describing the dynamical buildup of the Kondo
effect, which shows up as a sharp resonance in the spectral function, with a width exponentially suppressed in the
electron self-coupling on the dot. An external voltage applied to the dot is found to deteriorate the Kondo effect
at the hybridization scale. The dynamic equations are evaluated within different nonperturbative resummation
schemes, within the direct, particle-particle, and particle-hole channels, as well as their combination, and the
results compared with those from other methods.
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I. INTRODUCTION

Studying electron transport experimentally in nanodevices,
including artificially designed quantum dots, nanotubes, and
single molecules, has become a standard nanoscale technology
with many applications ranging from advanced materials to
medicine [1–5]. Recently, ultracold atomic gases have been
proposed as alternative systems to study strongly correlated
transport at the quantum level [6–10] and dots considered as a
means for quantum computing [11–15].

The single quantum dot serves as a seemingly simple but
inherently versatile testing ground for theoretical methods:
When coupled to an environment it entails intricate many-body
effects, as well as nonequilibrium dynamics in a regime where
linear response theory does not apply. The Kondo effect in a
quantum dot coupled to two electrodes leads to an enhanced
differential conductance through the dot at zero-bias voltage
between the leads and at low temperatures [16–21]. The
mathematical description of correlation phenomena underly-
ing the Kondo effect and, in particular, the emergence of the
Kondo temperature scale have represented a special challenge.
In this work, we study the single-impurity Anderson model
within a self-consistent functional field-theoretic approach
and compute the transient dynamics leading to the buildup of
the Kondo effect. Our results are consistent with a minimum
time the Kondo effect needs to build up, which is inversely
proportional to the respective Kondo temperature scale [22].
An external voltage applied to the dot is found to deteriorate
the Kondo resonance [23,24] at the hybridization scale.

The Kondo effect in thermal equilibrium can be described
in terms of exact solutions of the single-impurity Anderson
model (SIAM) obtained by means of a Bethe ansatz [25,26].
Dynamical properties encoded in the spectral function are
well understood in equilibrium [27], but the precise time
evolution from a given initial to the stationary state is still
a matter of research. Also, the stationary electrical current
for large bias voltages between the leads, beyond the linear-
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response regime, is subject to continuing debate. Out of
equilibrium, the Kondo regime has been investigated within
the Kondo model, obtained in the noncrossing approximation
at infinite local coupling U [17,22], as well as integrability
of the Anderson model [28]. Perturbative studies made use of
Fermi liquid theory [29,30] and its extensions for computing
full counting statistics [31,32]. Further studies were based
on the perturbative evaluation of nonequilibrium Green’s
functions [33], diagrammatic Monte Carlo methods [24],
self-consistent perturbation theory [34], renormalized [35–38]
and cluster perturbation theory [39], and an auxiliary master
equation approach [40,41].

Several renormalization-group methods have been used to
investigate the stationary state of the system: the perturbative
real-time renormalization group (RG) [42–44], nonequilib-
rium extensions of perturbative RG [23,45–48], and the
functional RG approach in its generalization to nonequilibrium
situations; see, e.g., Refs. [43,49–61]. Further methods include
Bethe-Salpeter equations in parquet approximation [62,63],
the slave-boson approach [64], and Chebyshev expansion us-
ing matrix product states [65]. The numerical renormalization
group (NRG) method has also been successful in describing
dynamical correlations of such systems [66–71].

The quantum Monte Carlo (QMC) method [72] is nu-
merically exact, but the sign problem permits only short
simulation times at small temperatures. In recent years, the
quantum-information-inspired time-dependent density matrix
renormalization group (tDMRG) approach has been applied
to the single-impurity problem [73–77], as well as real-time
Monte Carlo methods [78–80] and the iterative sum of path
integrals (ISPI) approach [81,82], which is numerically exact,
but depends on the correlation time of the system being small.
Further methods including the time-dependent Gutzwiller
approach [83], excitation states [84], and influence functional
path integral (INFPI) [85] were employed to quantum impurity
models. Several of these theoretical methods were recently
compared in Ref. [86], which also contains a concise list of
related previous studies.

In this article we use the two-particle-irreducible (2PI)
effective action [87], originally termed �-functional [88,89],
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to derive Kadanoff-Baym dynamic equations describing the
transient and stationary transport through a quantum dot. This
method ensures that, for the case of a closed system, vital
symmetries such as the total energy and particle number
are conserved during the time evolution, irrespective to the
approximation chosen. The method has been successfully used
to describe thermalization of relativistic and nonrelativistic
systems of bosonic and fermionic fields in different dimen-
sions; see, e.g., Refs. [90–99].

Here we use this method to compute the transient filling
dynamics of an initially empty dot coupled to zero-temperature
leads, the dynamical buildup of the Kondo resonance in
the spectral function of the dot electrons, as well as the
current-voltage characteristics in the Kondo regime. We show,
in particular, that the width of the Kondo resonance in the
stationary state exhibits the expected exponential suppression
in the interaction strength on the dot.

Expanding upon our previous work [100], we have de-
veloped methods for evaluating the resulting equations with
higher precision and within different possible approximation
schemes. We use three different truncations, as well as their
combination, to approximate the effective action and, with
it, the self-energy of the quantum dot: One resummation
scheme includes the contribution of the spin-aligned bubble
chains summed to all orders (direct or s channel), as well
as two different ones summing ladder chains in the particle-
particle and particle-hole (each with opposite spins) channels,
also termed t and u channels, respectively. Summing the
three nonperturbative self-energies gives a third, combined
(“stu”) scheme. As shown below, the result of each of these
resummations is a frequency-dependent four-point vertex. In
our approach, we integrate out the leads and thus take them
into account in an exact fashion. The result of this is a separate
contribution to the self-energy of the dot electrons.

The paper is organized as follows. The SIAM and its most
important properties are summarized in Sec. II. In Sec. III,
we lay out the 2PI effective-action approach for Fermions
on a quantum dot coupled to two leads. In Sec. IV we
present our numerical results for the transient and stationary
dynamics of the strongly correlated dot. Here our main
focus is on comparing results obtained within the different
resummation schemes. Section V contains our results for a
quantum dot subject to a bias voltage. We draw our conclusions
in Sec. VI. The Appendixes comprise technical details and
include additional data allowing for an extensive comparison
of the different approximation schemes.

II. THE SINGLE-IMPURITY ANDERSON MODEL

Our study is based on the Anderson impurity model Hamil-
tonian describing interacting electrons on a single quantum
dot coupled to free-electron carrying leads,

H = Hdot + Hleads + Htunnel =
∑

σ

E0σ nσ + Un↑n↓

+
∑
k�σ

εk�c
†
k�σ ck�σ −

∑
k�σ

(t�c
†
k�σ dσ + t∗� d†

σ ck�σ ). (1)

Here σ ∈ {1,2} � {↑,↓} is the electrons’ spin index. The
index � ∈ {+,−} � {L,R} labels the leads on the left and
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FIG. 1. Schematic representation of the energy levels in the
Anderson model of a quantum dot for the case of a vanishing magnetic
field. The lower energy level of the dot corresponds to a half-filled
dot; the upper level corresponds to a filled one. These levels are
separated by the interaction energy U . The energy zero is set to the
Fermi edges of the leads, μL = μR = 0. �L,R measure the tunneling
rates of electrons between the dot and the leads. The right panel
depicts qualitatively the shape of the spectral function ρ(E) of the
dot at low temperatures, where a sharp Kondo resonance rises up
around the Fermi edge when the dot is tuned to the particle-hole
symmetric point, i.e., for E0 = −U/2. This resonance sits between
the two side peaks which reflect the tunneling processes into/out of
the empty/filled dot.

right, respectively and k the momentum of the lead electrons.
The chemical potentials μ� = �eV/2 of the left and right
leads determine the relative bias voltage. The single-electron
energies on the leads are denoted as εk�. The occupation-
number operator on the dot, nσ = d†

σ dσ , enters the on-dot
interaction term ∼U taking into account Coulomb repulsion.
The one-electron energy on the dot, E0σ = E0 + σB, is
controlled experimentally through the gate voltage (first term)
and the Zeeman shift in a magnetic field B (second term). The
energy level scheme is shown in Fig. 1.

The tunneling strength t� controls the coupling of the
dot and the leads which, in this work, we assume to be
symmetric, τ = tL = tR . We assume that the leads are in
thermal equilibrium at some temperature T and consider the
wideband limit with a constant density of states ρ around the
Fermi surface. The dimensionful quantities of the system can
be expressed in units of the hybridization as � = 2π |τ |2ρL,
which quantifies the dressing of the dot by the leads. In
this article, we give all quantities in units of �, setting the
elementary charge and the Planck and Boltzmann constants to
e = h = kB = 1.

We remark that, while universal properties in the Kondo
regime are expected to be well described by the above model,
real (semiconductor) quantum dots require a description
beyond the two-level approximation [101–104]. Besides the
possibility that the spin of the ground state of the dot is
S > 1/2 [101,102] the narrow spacing of the dot’s single-
electron levels as compared to the charging energy causes
nonuniversal properties to be different from those of the
Anderson model [103,104].

In this article, we employ a functional-integral approach to
the Anderson quantum field model. This requires determining

045108-2



BUILDUP OF THE KONDO EFFECT FROM REAL-TIME . . . PHYSICAL REVIEW B 94, 045108 (2016)

an action functional which for the Hamiltonian (1) consists of
the terms

Sdot =
∫
C
dt

∑
σ

d†
σ (i∂t − E0σ )dσ − Ud

†
↑d↑d

†
↓d↓, (2)

Sleads =
∫
C
dt

∑
k�σ

c
†
k�σ (i∂t − εk�)ck�σ , (3)

Stunnel =
∫
C
dt

∑
k�σ

(t�c
†
k�σ dσ + t∗� d†

σ ck�σ ). (4)

In this paper, we are in particular interested in the Kondo
characteristics of the quantum dot coupled to leads at a
temperature below the so-called Kondo scale. This Kondo
temperature marks the onset of the Kondo effect, which is
due to the formation of singlet states of itinerant and localized
dot fermions and characterized by a rising resistivity of the
dot at low temperatures. The exact expression for the Kondo
temperature in terms of the Hamiltonian parameters can be
obtained by means of a Bethe ansatz [26] and reproduced by
the numerical renormalization group [27]

TK =
√

U�

2
exp

(−πU

8�

)
(5)

for the particle-hole symmetric system, where E0 = −U/2.
To reveal the Kondo characteristics we, among other

correlations to be introduced below, study the time-dependent
current through the dot,

I (t) = −iπe
∑
k�σ

(�t�〈c†k�σ dσ 〉 − �t∗� 〈d†
σ ck�σ 〉). (6)

This can also be written as I = (IL − IR)/2, where I� =
−eṄ�(t) and N�(t) = 〈∑kσ c

†
k�σ ck�σ 〉 is the number of elec-

trons on the leads. The stationary current can simply be
obtained by waiting for the transient behavior to die out, such
that the system is sufficiently close to the final, stationary state.

III. DYNAMIC EQUATIONS FOR THE INTERACTING
QUANTUM DOT COUPLED TO LEADS

In this article, we make use of Kadanoff-Baym-type
dynamic equations for correlation functions, derived within the
2PI effective-action formalism, also known as the �-derivable
approach [87–89]. In the following, we briefly summarize
known basics about this approach and recall its implementation
for the Anderson model [100]. Since we are interested in
initial-value problems, specifically in the evolution of two-time
correlation functions starting from values given by some initial
state, we work in the Heisenberg picture. In the corresponding
functional-integral formulation, the time integrations in the
action are defined to run along a Schwinger-Keldysh contour
C, which leads from the initial time t0 to some final time t and
then back to t0 [105,106].

A. Effective action and equations of motion

The Kadanoff-Baym equations determine the evolution of
the time-ordered two-point function,

Dσλ(t,t ′) = �C(t − t ′)〈dσ (t)d†
λ(t ′)〉 − �C(t ′ − t)〈d†

λ(t ′)dσ (t)〉,
(7)

where �C(t − t ′) is a � function on the Schwinger-Keldysh
contour and evaluates to 1 (0) if t is later (earlier) than t ′ along
the contour. Hence, on the backward contour this amounts to
anti-time-ordering.

Neglecting at first the leads, the 2PI effective action [87]
reads

�2PI[D] = −i Tr
[
lnD−1 + D−1

0 D
] + �2[D] + const., (8)

where the free inverse propagator is defined as

iD−1
0,σλ(t,t ′) = (i∂t − E0σ )δC(t − t ′)δσλ. (9)

�2[D] is the sum of all closed 2PI diagrams constructed
from bare vertices and full propagators. Those diagrams which
do not fall apart upon cutting two lines are two-particle
irreducible [87]. Taking into account all such diagrams, the
effective action in Eq. (8) gives exact solutions of the system.
Here we approximate �2[D] by taking into account only
certain classes of diagrams in �2[D], as laid out in detail
in Sec. III C.

As an example, we show in Eq. (10) the diagram of lowest
order in the bare coupling U , represented as a black dot:

�
(1)
2 [D] =

= −U

∫
C

dtD↑(t,t)D↓(t,t). (10)

Solid lines denote the full propagator or two-point function D,
with different spin components indicated by different colors.

The Kadanoff-Baym equations of motion result from the
Hamilton stationarity conditions for the action,

δ�2PI[D]

δDλσ (t ′,t)
= 0. (11)

This equation can be written as the well-known Dyson equation
D−1

σλ (t,t ′) = D−1
0,σλ(t,t ′) − �σλ(t,t ′), where the self-energy is

determined by �2,

�σλ(t,t ′) = −i
δ�2[D]

δDλσ (t ′,t)
. (12)

We use the decomposition

Dσλ(t,t ′) = Fσλ(t,t ′) − i

2
ρσλ(t,t ′)sgnC(t − t ′) (13)

of the time-ordered two-point function (7) into commutator
and anticommutator contributions,

Fσλ(t,t ′) = 1
2 〈[dσ (t),d†

λ(t ′)]〉,
(14)

ρσλ(t,t ′) = i〈{dσ (t),d†
λ(t ′)}〉,

representing the statistical and spectral correlation functions
in real-time representation, respectively. Here sgnC(t − t ′) =
−1 + 2�C(t − t ′) is a sign function on the contour. For the
equal-time arguments the identities

Fσσ (t,t) = 1
2 − nσ (t), ρσλ(t,t) = iδσλ, (15)

hold, where nσ (t) is the mean number of fermions occupying
the dot level with spin σ at time t . The equation for
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ρ(t,t) follows from the fermionic equal-time anticommutation
relations. These definitions imply that the symmetry relations

Fσλ(t,t ′) = Fλσ (t ′,t)∗, ρλσ (t,t ′) = −ρσλ(t ′,t)∗, (16)

hold. Rewriting the Dyson equation for D(t,t ′) in terms of two
equations for F (t,t ′) and ρ(t,t ′) removes the singularity due
to the time ordering on the contour, whereby the time integrals
over the contour C are replaced by simple integrations along
the real-time axis.

We assume that correlations between up- and down-spins
vanish initially. Then the number-conserving 2PI equations
conserve Dσλ ∼ δσλ at all times. Introducing the notation
Dσσ ≡ Dσ (without summation) the 2PI or Kadanoff-Baym
equations of motion result as

[i∂t − Mσ (t)]ρσ (t,t ′) =
∫ t

t ′
du�ρ

σ (t,u)ρσ (u,t ′),

[i∂t − Mσ (t)]Fσ (t,t ′) =
∫ t

0
du�ρ

σ (t,u)Fσ (u,t ′)

−
∫ t ′

0
du�F

σ (t,u)ρσ (u,t ′), (17)

where the self-energy decomposes into local, as well as F -
and ρ-type terms,

�σ (t,t ′) = −i �(0)
σ (t)δ(t − t ′) + �F

σ (t,t ′)

− i

2
sgnC(t − t ′)�ρ

σ (t,t ′). (18)

The energy term in Eq. (17) local in time is given by

Mσ (t) = E0σ + �(0)
σ (t) (19)

and includes the mean-field shift originating from the double-
bubble diagram in Eq. (10). Assuming that � is derived from
the full action �2, the above integro-differential equations are
equivalent to the exact Kadanoff-Baym equations and include
higher-order correlations through the non-Markovian memory
integrals on their right-hand side.

Including only the leading-order “double-bubble” diagram
in Eq. (10) yields a perturbative (in the skeleton-graph sense)
small-coupling approximation of �2[D]. This corresponds
to the tadpole approximation of the self-energy, leading to
the mean-field approximation of the dynamic equations (17)
(see [100] for more details),

�MF
σ (t,t ′) = −iUnσ̄ δ(t − t ′). (20)

The energy shift resulting from this term determines the
position of the Kondo resonance. Depending on the mean
occupation nσ of the dot with an electron of spin σ and the
strength of the on-site repulsion U it shifts the mean energy for
the opposite spin orientation σ̄ = 3 − σ away from the bare
energy E0σ̄ ; see Fig. 1.

B. Coupling of the dot to the leads

The coupling of the strongly interacting spins on the
quantum dot with the low-temperature, degenerate Fermi
sea of lead electrons plays a crucial role in the emergence
of the Kondo effect. It allows for the buildup of strong
spin-singlet-character correlations of dot and lead fermions

if the dot is tuned to the particle-hole symmetric point where
the mean energy of the dot electrons is at the level of the
Fermi edge of the leads. In the following we briefly review
the coupling of the single-dot system to the leads, taking into
account the terms (3) and (4) in the action. For more details,
see Ref. [100].

The effect of coupling to the leads can be computed exactly,
since (3) and (4) include terms only up to quadratic order.
Integrating these contributions out, the free inverse propagator
of the thermal lead electrons appears as part of the free
propagator of the dot electrons. After decomposition one finds
that the effect of a single lead-electron mode of frequency ε

can be included into the self-energy of the dot electrons �F

and �ρ , giving the additional contributions

�
F (1)
lead (t,t ′) = −|τ |2[ 1

2 − f (ε − μ)
]
e−iε(t−t ′), (21)

�
ρ(1)
lead (t,t ′) = −i|τ |2e−iε(t−t ′), (22)

where f (x) = 1/[1 + exp(βx)] is the Fermi function. Recall
that τ is the (L-R-symmetric) tunneling strength. Integrating
over a continuum of lead energy levels, one obtains

�lead =
∫ D

−D

dερL(ε)�(1)
lead. (23)

In the wideband limit one approximates the leads’ density of
states ρL(ε) as a constant and obtains, with Eq. (22),

�
ρ

lead(t,t ′) = −2i|τ |2ρL

sin D(t − t ′)
t − t ′

D→∞= −i�δ(t − t ′),

(24)
where � = 2π |τ |2ρL is called hybridization. �F can be
determined analytically only at zero temperature, where it
results as the principal-value contribution,

�F
lead,T =0(t,t ′) = i|τ |2 P e−iμ(t−t ′)

t − t ′
. (25)

At the initial time t = 0, we assume the quantum dot to be
uncorrelated, with mean occupation numbers nσ (0) for the two
spin components and imagine the coupling to the leads, at equal
chemical potentials μ = μL = μR , to be switched on for t �
0. Taking into account only mean-field interactions of the dot
electrons, simplified dynamic equations result from Eqs. (17)
and (20) in the long-time limit. Rewriting these equations in
Wigner coordinates s = t − t ′ and T = (t + t ′)/2, we obtain
the s-evolution equation for ρ(s,T ) in the limit of large T �
2π/� as

∂sρσ (s,T ) = −i [Mσ (T ) − i �sgn(s)] ρσ (s,T ). (26)

This gives a frequency dependence of the asymptotic spectral
function of

ρσ (ω) = 2i�

(ω − Mσ )2 + �2
. (27)

As required by the conservation of the equal-time anticommu-
tator [cf. Eq. (15)], this Lorentzian distribution is normalized
to

∫
dω ρσ (ω)/(2π ) = i.

Analogously, the T -evolution equation for Fσ (0,T ) =
1/2 − nσ (T ) yields the dynamic equation for the occupation
number in the T � 2π/� limit. In the zero-temperature limit
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we obtain

∂T nσ (T ) = −�
[
nσ (T ) − nasym

σ

]
, (28)

with asymptotic occupation number

nasym
σ = 1

2

[
1 − 2

π
arctan

(
E0σ + Un

asym
σ̄

�

)]
. (29)

This set of two coupled transcendental equations determines,
for a given set of detunings E0σ , the two occupations nσ , i.e.,
the mean occupation and spin polarization of the dot.

In the following we consider mostly the unpolarized case,
with E0↑ = E0↓ = E0. In the weak-coupling limit between
dot and leads, � → 0, Eq. (29) then evaluates to

nasym
σ

∣∣
�→0 =

{
1 − θ (E0), |E0 + U/2| > U/2,

−E0/U, |E0 + U/2| < U/2.
(30)

In the case that U = 0, this is equivalent to the basic result
that the dot fills up (runs empty) if its energy is tuned below
(above) the Fermi energy of the leads. Including the mean-field
shift, U > 0, this behavior remains in place for E0 < −U for
which the on-site repulsion between the electrons even in a
completely filled dot does not lift the total energy above the
Fermi edge, as well as for E0 > 0. In the interval E0 ∈ [−U,0],
however, the shift induces a continuous transition, allowing for
any mean occupation between zero and one electron for each
spin orientation.

C. Nonperturbative self-energy of the dot electrons

Computing the buildup of the Kondo effect in real-time
evolution requires a nonperturbative determination of the time-
dependent self-energy of the dot electrons, which accounts for
the strong correlations building up between dot and leads.
In this section we describe the resummation of the classes
of diagrams which we found to be necessary to account for
Kondo correlations. The approach used here leads substantially
beyond the mean-field approximation introduced above, as
well as beyond any coupling approximation higher than the
leading double-bubble diagram truncation, including, e.g., to
second order in U , the “basketball” diagram shown in Eq. (61).
We find it necessary to perform resummations of s-channel
bubble as well as t- and u-channel ladder chains, often also
termed resummations in the direct, particle-particle (pp), and
particle-hole (ph) channels. In the direct channel, bubbles with
alternating spins make up the chains where, in each bubble,
the two propagators describe the same spin component. This
is similar to the next-to-leading-order 1/N approximation for
N -component scalar fields exploited extensively in dynamic
2PI calculations [90,107]. Here we also require the t and u

channels, for which the chains take the form of a ladder, with
the two rails being made up by propagators of opposite spin,
with the same spin throughout the rail. The two channels differ
by the direction of the arrows, i.e., ordering of dσ and d†

σ in
the propagator, distinguishing between the t-channel (pp) and
the u-channel (ph) interactions.

1. Hubbard-Stratonovich transformation

An elegant way to perform the resummations involves a
Hubbard-Stratonovich (HS) transformation. Since the interac-
tion vertex couples “up” -spins with “down” -spins, the bubbles

in the s-channel chains have alternating spins, while the rails
in the t- and u-channel ladders have opposite spins. The action

Sdot =
∫
C
dt

∑
σ

d†
σ (i∂t − E0σ )dσ − Ud

†
↑d↑d

†
↓d↓ (31)

is rewritten using auxiliary scalar fields χ1 and χ2 by use of
the substitution

−JA−1J → χT Aχ + 2J T χ, (32)

where

χ =
(

χ1

χ2

)
, A = 1

2U

(
0 1
1 0

)
. (33)

The J operators for the three channels read

Js = 1

2

(
d
†
↑d↑

d
†
↓d↓

)
, Jt = 1

2

(
d
†
↑d

†
↓

d↓d↑

)
, Ju = 1

2

(
d
†
↑d↓

d↑d
†
↓

)
. (34)

The resulting action is

Sdot,ξ [dσ ,d†
σ ,χi] =

∫
C
dt

∑
σ

d†
σ (i∂t − E0σ )dσ

+ 1

U
χ1χ2 + Sint,ξ [dσ ,d†

σ ,χi], (35)

with the resummation-scheme-dependent interaction term
(ξ = s,t,u),

Sint,s = d
†
↑d↑χ1 + d

†
↓d↓χ2, (36)

Sint,t = d
†
↑d

†
↓χ1 + d↓d↑χ2, (37)

Sint,u = d
†
↑d↓χ1 + d↑d

†
↓χ2. (38)

The free inverse propagators are read off from the quadratic
part of the action

iG−1
0 (t,t ′) = 2Aδ(t − t ′), (39)

iD−1
0,σ (t,t ′) = (i∂t − E0σ + χ̄σ )δ(t − t ′), (40)

where the free propagator G0 of the scalar fields is a 2 × 2
matrix. Accordingly, we call G the propagator of the scalars,
and χ̄i = 〈χi〉 is the one-point function or expectation value
of the auxiliary fields which is nonzero only in the s-channel
case ξ = s.

The corresponding 2PI effective action can be written as

�ξ [G,D,χ̄ ]

= Sdot,ξ [d†
σ = dσ = 0,χ̄ ] − iTr

[
lnD−1 + D−1

0 D
]

+ i

2
Tr

[
lnG−1 + G−1

0 G
] + �2,ξ [D,G] + const., (41)

where �2[D,G] contains all closed 2PI diagrams built from
the three-point vertices of the action (35) and full scalar
and fermion propagators. The lowest-order contributions are
shown explicitly in Eqs. (47), (51), and (55).

2. Schwinger-Dyson equations

The stationarity conditions give the Schwinger-Dyson
equations. The field average of the scalar fields χi , in contrast to
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that of the fermionic fields, is nonzero, so we have stationarity
conditions of the form δ�/δχ̄ = 0. The resulting equations
read, for the s-channel resummation,

χ̄1(t) = UD↓↓(t,t), χ̄2(t) = UD↑↑(t,t), (42)

while, for the t- and u-channel resummations, the mean values
χ̄i are given by correlation functions Dσλ with σ �= λ which we
have assumed to vanish from the outset. The Dyson equations
for the propagators read

D−1
0 D = � ∗ D + δ, (43)

G−1
0 G = � ∗ G + δ, (44)

where we again suppressed the time arguments, and ∗ stands
for convolution on the contour C,

(A ∗ B)(t,t ′) =
∫
C
dzA(t,z)B(z,t ′). (45)

� and � are the self-energy of the fermion and the boson
fields, respectively:

�σ (t,t ′) = −i
δ�2[D,G]

δDσ (t ′,t)
, �σλ(t,t ′) = 2i

δ�2[D,G]

δGλσ (t ′,t)
.

(46)

3. s-channel resummation

In the direct or s-channel resummation the �2 part of the
action, to lowest order in the auxiliary-field-fermion coupling,
reads

�2,s[D,G] = i

2

⎡
⎣ +

⎤
⎦

= i

2

∑
σ

∫
C
dxdy Dσ (x,y)Dσ (y,x)Gσσ (x,y),

(47)

where the wiggly lines represent the bosonic propagator
corresponding to an infinite sum of odd numbers of fermionic
loops with alternating spins,

= + + O U 6 ,

= + + O U 6 .

(48)

Hence, one obtains

�σ (t,t ′) = Dσ (t,t ′)Gσσ (t,t ′),

�σλ(t,t ′) = −Dσ (t,t ′)Dσ (t ′,t)δσλ, (49)

where σ,λ ∈ {↑ = 1, ↓ = 2} is used for the fermionic field
indices. The equations determining the scalar fields represent
constraints which do not contain any time derivatives, because
the χ fields are auxiliary, nondynamical fields. From the

constraint equation (44) for G, one can see that

G = iUδ

(
0 1
1 0

)
− U 2

(
�22 0

0 �11

)

− iU 3

(
0 �22 ∗ �11

�11 ∗ �22 0

)

+U 4

(
�22 ∗ �11 ∗ �22 0

0 �11 ∗ �22 ∗ �11

)
+ · · · ,

(50)

where we have again omitted the (t,t ′) arguments. Inserting
G11 and G22 into the self-energy � of the fermions in Eq. (46),
one finds a sum of bubble chains with alternating spins being
generated. For the decomposition of G and the self-energies
into statistical and spectral parts, see Ref. [100].

4. t-channel resummation

In particle-particle or t-channel resummation, we obtain

�2,t [D,G] = i

2

⎡
⎣ +

⎤
⎦

= i

2

∑
σ

∫
C
dxdy Dσ (x,y)Dσ̄ (x,y)Gσσ̄ (x,y),

(51)

where σ̄ = 3 − σ and we draw explicitly the two identical
loop graphs. Hence, the bosonic propagator Gσσ̄ is identical
to the sum over the unidirectional fermionic loop chains,

= + + O(U 4). (52)

The self-energies read

�σ (t,t ′) = Dσ̄ (t ′,t)Gσσ̄ (t ′,t),

�σσ̄ (t,t ′) = −Dσ (t ′,t)Dσ̄ (t ′,t) = �σ̄σ (t,t ′), (53)

�11(t,t ′) = �22(t,t ′) = 0.

In analogy to the s-channel case, we find

G12 = G21 = iUδ − U 2�12 − iU 3�12 ∗ �12

+U 4�12 ∗ �12 ∗ �12 + · · · . (54)

Note that the mean-field tadpole term is now included as the
leading-order term in the resummed scalar propagator G12.

5. u-channel resummation

In particle-hole or u-channel resummation, one obtains

�2,u[D,G] = i

2

⎡
⎣ +

⎤
⎦

= i

2

∑
σ

∫
C
dxdy Dσ (x,y)Dσ̄ (y,x)Gσσ̄ (x,y),

(55)
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with

= + + O(U 4). (56)

The self-energies result as

�σ (t,t ′) = Dσ̄ (t,t ′)Gσσ̄ (t ′,t),

�σσ̄ (t,t ′) = −Dσ (t,t ′)Dσ̄ (t ′,t) = �σ̄σ (t ′,t), (57)

�11(t,t ′) = �22(t,t ′) = 0,

and hence the expansion of G12 given in Eq. (54) applies also
here, however, with

G12(t,t ′) = G21(t ′,t). (58)

6. stu-channel resummation

Above, we discussed the three different chain resummations
allowed by the vertex and distinguished by the spin contrac-
tions and direction of the fermionic propagators in the loops of
the Feynman diagrams. All of them are directly derived from
the underlying theory and therefore contribute to the physics
but the terms can be of different relevance depending on the
physical situation. To include all possibilities, it is natural to
define a new resummation scheme where all three different
channels are taken into consideration at the same time. While
this is possible as the respective diagrams all contribute to �2,
one needs to be careful to avoid double counting of diagrams.
We thus define

�2,stu[D,G] = �2,s[D,G] + �2,t [D,G]

+�2,u[D,G] − �2,∩[D,G], (59)

where �2,∩ denotes

�2,∩ = �2,s ∩ �2,t + �2,s ∩ �2,u

+�2,t ∩ �2,u − �2,s ∩ �2,t ∩ �2,u, (60)

which prevents multiple counting of diagrams as the operator ∩
singles out all diagrams that belong to both actions it connects.
Inserting the leading diagram of the sums in Eqs. (48), (52),
and (56) into Eqs. (47), (51), and (55), respectively, we find
that the second-order diagram

�2nd
2 [D] = (61)

is included in all channels and hence must be subtracted twice
from the sum of all channels. Hence, the stu-channel nonlocal
self-energy which enters the dynamic equations is given by

�stu
σ (t,t ′) = �s

σ (t,t ′) + �t
σ (t,t ′) + �u

σ (t,t ′) − 2�2nd
σ (t,t ′).

(62)

Note that the time-local self-energy contribution arising from
the double-bubble diagram is treated separately.

D. Resummed self-energies in the stationary limit

We close this section with a brief analysis of the self-energy
in the stationary long-time limit, as obtained within the

different resummation schemes and give closed expressions in
terms of effective coupling strengths. Details of the derivation
are given in Appendix B 2. From these expressions for �(ω),
the long-time spectral function ρ(ω) can be determined
using standard kinetic-theory arguments as summarized in
Appendix C. From the resummed 2PI part of the action we can
derive the self-energy of the dot electrons. In the following we
give explicit expressions for the spin-symmetric case which is
realized when there is no magnetic field and when the initial
Gaussian state is characterized by equal occupation numbers
n↑(0) = n↓(0) = n(0) for the two spin orientations and thus
D↑(0,0) = D↓(0,0). For all later times t,t ′ > 0 this implies

D↑(t,t ′) = D↓(t,t ′). (63)

After initial effects have died out, in the stationary state, all
two-point functions will depend only on the differences of the
time coordinates, and thus n↑(t) = n↓(t) ≡ n. In this case we
can push the initial time to negative infinity and express all
quantities in Fourier space.

For the s-channel resummation, taking the definition (49)
of the fermion self-energy � in terms of the loop �, we find
the frequency-dependent components [see Eq. (18)]

�(0) = Un,

�F = F ∗ (Ueff�
F ) − ρ ∗ (Ueff�

ρ)/4, (64)

�ρ = ρ ∗ (Ueff�
F ) + F ∗ (Ueff�

ρ),

where

Ueff,s(ω) = U
1 + |�R(ω)|2

|1 − [�R(ω)]2|2 (65)

is a real, ω-dependent effective coupling function expressed in
terms of the retarded part of the loop function �. Details of its
derivation are given in Appendix B 1. As Ueff,s(ω) replaces the
bare coupling U in the two-loop self-energy, the resummation
leads effectively to the appearance of a frequency-dependent
four-point vertex. This vertex depends on a single frequency
only because of its structure of consisting of loop chains
connecting fields at two points in time. For the t- and u-channel
resummations, the same expressions for the components of �

apply as those in Eq. (64), with the effective couplings now
given by

Ueff,t = Ueff,u = U

|1 − �R|2 . (66)

Details of their derivation can be found in Appendix B 2.

IV. TRANSIENT DYNAMICS AND STATIONARY STATE
OF THE STRONGLY CORRELATED DOT

In the following we present our numerical results for the
transient buildup of the population on the strongly interacting
quantum dot coupled to two leads without chemical potential
difference, i.e., without a voltage driving a current through
the dot. We consider different initial states, self-couplings on
the dot, detunings of the free dot level from the band edge
of the leads, as well as temperatures and bandwidths. As
we show, our results underline the necessity to go beyond
the perturbative coupling expansion of the 2PI part �2 of
the effective action. Our results in particular corroborate the
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necessity of the particle-hole (u-) channel resummation as it
has been used within different theoretical approaches before.

We point out that our approach makes it possible to compute
the buildup of Kondo correlations, i.e., in particular of the
exponential narrowing of the Kondo resonance in accordance
with the Bethe-ansatz result (5).

A. Filling dynamics of the quantum dot

We first consider the transient evolution of the electron
population on the quantum dot after a sudden switch-on of
the coupling to the leads, given a particular self-coupling
U on the dot. We thereby study the effect of the different
resummation schemes introduced in Sec. III C. We choose
an initially empty dot, n↑(0) = n↓(0) = 0. These occupation
numbers determine the initial values of Fσσ (0,0), and we
choose all other contributions Fσσ̄ (0,0) to vanish, implying
the absence of correlations between the spin orientations. If
not otherwise stated, we consider a vanishing magnetic field,
B = 0, the detuning E0 = −U/2 as for the weakly interacting
dot at the particle-hole symmetric point, and a vanishing
leads temperature of T = 0. We evolve with a time-step size
�t = (300�)−1 up to tmax = 6.6�−1, which amounts to a
maximum number of N = 2000 time steps integrated over
in the memory integrals; see Appendix A for details of the
numerical implementation.

In Fig. 2 we compare the time dependence of the population
of the dot as obtained with the full 2PI equations of motion
for different resummation schemes applied within the 2PI
part �2 of the effective action. The different panels show
the results obtained with the dot self-energy in (top panel)
particle-particle (t-) channel, (bottom panel) stu-channel
resummations. The evolution in the direct (s-) and particle-hole
(u-) channel resummation case was found to not differ from
that shown in the combined stu-resummation scheme. Note
that the exact evolution for U = 0 is given by

n(t) = 1
2 (1 − e−2�t ). (67)

We benchmarked our numerics with the exact solution in the
noninteracting case and found a numerical error after the first
time step of |nexact − nnumerical| = 10−9, which exponentially
decreases during the time evolution to an error of 10−15, when
the occupancy becomes stationary at n = 1/2.

In Ref. [108], a similar analysis was done with perturbation
theory and Monte Carlo (MC) methods with results in good
concordance with ours, especially with respect to the MC data.
The main discrepancy occurs in the time range up to �t �
0.15. Initially, it seems that the MC data for the occupation
number starts with a higher exponent before it continues to
increase linearly. Note that, in contrast to our wide flat-band
approximation, in Ref. [108] a more realistic model with a soft
cutoff for the leads is taken into account.

Here we used the particle-hole symmetric setup, which
means that the single- and double-occupation levels in the
quantum dot are symmetrically situated around the Fermi edge
of the leads. Therefore, we expect a stationary occupation
of n = 0.5, which is indeed obtained in all resummation
schemes. For later times than are shown in Fig. 2, we find
no change in the occupation until our maximum evolution
time tmax = 6.6�−1. Numerical instabilities observed in the
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FIG. 2. Comparison of the transient populations n(t) = n↑(t) =
n↓(t) of the quantum dot at the particle-hole symmetric point starting
from zero occupation, after a sudden switch-on of the coupling to
the zero-temperature bath represented by the leads, for different
interactions between ↑- and ↓-spin electrons on the dot. U and t−1

are given in units of the hybridization �. The results are obtained
with the dot self-energy in the particle-particle (t-) channel (top) and
(stu-) channel resummations (bottom). The evolution in the direct
(s-) and particle-hole (u-) channel resummation case was found to
not differ from that shown in the bottom panel.

t-channel scheme at later times are found to decrease with
smaller time stepping.

B. Long-time stationary occupation of the dot

The stationary occupation number at the end of the finite
time evolution is shown for the different channel approxima-
tions and also away from the particle-hole symmetric scenario
in Fig. 3. The two black solid lines in each panel mark
the particle-hole symmetric case discussed before. Within
all resummation schemes, the occupation number reaches
the expected value n↑ = n↓ = 0.5 for all probed interaction
strengths at the particle-hole symmetric point.

We distinguish three regions. First, in the case of a gate
voltage much lower than the negative interaction strength,
−E0/U � 1, both energy levels lie below the Fermi edges and
the quantum dot is fully occupied with two electrons, which
means n = 1 for the single electron. Second, the dot is empty,
n = 0, for gate voltages much larger than zero, −E0/U � 0,
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FIG. 3. The long-time stationary occupation number arising in
our real-time evolutions of the Kondo dot coupled to zero-temperature
leads, starting from zero initial occupation, as a function of the gate
voltage E0 in units of the interaction strength U for different U . The
data shown as lines are obtained in the particle-particle (t) channel
(top) and (stu) channel (bottom). Symbols mark the mean-field
solution (68). The respective data found in the direct (s-) channel
and particle-hole (u-) channel approximations do not differ from that
in the stu channel. The vertical and horizontal black solid lines in
each panel mark the particle-hole symmetric setup for which the
entire time evolution is shown in Fig. 2.

because both energy levels lie above the chemical potentials
of the leads. Third, in the regime around the particle-hole
symmetric point, −E0/U � 0.5, the quantum dot is singly
occupied, n = 1/2. The transition between the three regions
is determined by the width of the energy levels, which means
by the value of the transition strength τ .

Besides the numerical results shown by the lines in each
panel, we show the corresponding mean-field solutions for the
stationary occupation number, obtained from

nσ = 1

2
− 1

π
arctan

(
E0 + Unσ̄

�

)
(68)

and denoted by symbols in the respectively same colors. In the
case of a vanishing magnetic field, Eq. (68) simplifies because
both occupation numbers are equal.

For small interaction strengths, the results obtained from
the nonperturbative resummation of the 2PI effective action

agree very well with the mean-field approximation. An explicit
deviation, as expected, is visible for larger interaction strengths
in the stu-channel approximation. The particle-particle (t-)
channel results remain closer to the mean-field values. All
nonperturbative resummations approach the expected values
for large negative values of the gate voltage, where the
quantum dot is doubly occupied, as well as for large gate
voltages, where the quantum dot is empty. For large interaction
strengths it is expected that near the particle-hole symmetric
point the derivative of the occupancy with respect to the
gate voltage −E0 is smaller than predicted in the mean-field
approximation (68). Our data show a weakening of this
derivative for interaction strengths above U = 4�, although
not as far as found in NRG calculations [109] for U = 8�.
Note that the consistency checks discussed in Sec. IV E point
to finite-size effects for U � 4�.

C. Spectral function: Kondo resonance

We begin our discussion of the stationary spectral function
with its dependence on the interaction strength U of the on-site
Coulomb repulsion. We let the quantum dot, which is adjusted
to the particle-hole symmetric point, evolve in time until
the total time tmax = 20�−1, with a time-step size of �t =
(800�)−1. In Fig. 4, the imaginary part of the spectral function
ρ(t) = ρ(tmax,tmax − t), at the end of the time evolution, is
shown as obtained in the stu-channel approximation, for
U = 5�, tmax = 20�−1 and different time-step sizes �t (top
panel) as well as for a fixed �t = (800�)−1 and varying
maximum evolution times (bottom panel). In Fig. 5 (top
panel), the imaginary part of the spectral function is shown
again as obtained in the stu-channel approximation for small,
U = 2�, to large interaction strengths, U = 10�. During the
time evolution we calculate the real and imaginary parts of the
spectral function in the whole real-time plane. In the figure, we
show only the imaginary part at the end of the time evolution
for positive relative times because the real part is zero and
the imaginary part is symmetric according to the symmetry
relation in Eq. (16). For a comparison of the data shown with
that obtained in the other channels, see Appendix E.

The spectral function for the symmetric SIAM without a
bias voltage, at very low temperatures, shows three peaks.
The Hubbard side peaks, corresponding to the single- and
double-occupation states, have a width of the order of �, while
the central, very narrow Kondo peak, located at the Fermi edge
has a width of the order of the Kondo temperature TK. Thus,
the spectral function in the time domain can be approximately
written as

ρ(t) = Ae−�|t | cos(Ut/2) + Be−TK|t |/2, (69)

where the first term describes the side peaks with width
(full width at half maximum) 2�, located at points ω =
±U/2 and the second term describes the central Kondo
peak. While the real solution will differ from this functional
form, its characteristics should be similar. We see that the
first term approaches zero much faster than the second one
because the width of the side peaks is much larger than the
Kondo resonance, 2� � TK. While the short-time behavior
is dominated by the first term describing the coupling to
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FIG. 4. (Top) The imaginary part of the spectral function ρ(t) =
ρ(tmax,tmax − t), obtained in the stu channel, for an interaction
strength U = 5� and a maximum evolution time tmax = 20�−1, for
different time-step sizes as indicated. (Bottom) Same function, as
obtained in the stu-channel scheme, for U = 5�, �t = (800�)−1

and different maximum times tmax. The system is chosen in the
particle-hole symmetric setup, E0 = −U/2, at zero temperature, and
t , �t , and tmax are given in units of �−1, while ρ(t) is dimensionless.

leads, the late-time characteristics is determined by the Kondo
correlations encoded by the second term.

Comparing the above parametrization with the data shown
on a log-linear scale in Fig. 5 (top panel), we find the two
exponentials to be clearly visible in stu channel, as well as
in the s, u, and t channels separately; see Appendix E. The
initial dropoff depending on the interaction strength follows
the behavior predicted by the cosine. Some indications of
oscillations can be seen at the time of transition between the
exponentials in the stu-channel case, while these are not seen
in the channels separately; see Appendix E.

In the bottom panel of Fig. 5, we show the corresponding
spectral functions in Fourier space to the same order as shown
in the top panel. The spectral functions give indications of the
expected Hubbard side bands, and the shape of the function
does not change much with increasing interaction strength.
This is different for the other three approximation schemes;
see Appendix E. Besides the Kondo peak at the origin, there are
side peaks located at ω = ±U/2. These peaks become visible
at interaction strengths of U � 4. In the stationary limit, the
spectral function can be expressed in terms of the spectral part
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FIG. 5. (Top) Imaginary part of the spectral function ρ(t) =
ρ(tmax,tmax − t), as obtained in the stu channel, with tmax = 20�−1

and a time-step size of �t = (800�)−1, for different interaction
strengths U in the particle-hole symmetric setup, E0 = −U/2. The
inset shows the transition region from large to small exponential
decay. (Bottom) Im[ρ(ω)], as obtained by Fourier transform of the
functions shown in the top panel. The narrowing of the central Kondo
resonance is easily seen. U , t−1, ω, and [Im ρ(ω)]−1 are given in units
of �.

�ρ of the self-energy; see Appendix C for details,

ρ(ω) = �ρ

(ω − Re�)2 + |�ρ/2|2 , (70)

with

Re�(ω) = −P
∫ ∞

−∞

dω′

2π

�ρ(ω′)
ω − ω′ . (71)

Exemplary graphical representations of �ρ and Re� are given
in Fig. 20 in Appendix E.

D. Dynamical buildup of the spectral function

Figure 6 shows the imaginary part of the spectral function
ρ(t,t ′) in the real-time plane (t,t ′) as obtained with the different
resummation schemes (top to bottom: s, t , u, stu) and for
different interaction strengths (left to right: U/� = 2, 4, 6),
as before in the particle-hole symmetric case, E0 = −U/2,
and for zero temperature. As indicated by Fig. 7, for early
times the results do not depend on the time-step size in the
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FIG. 6. The imaginary part of the spectral function in the real-
time plane, Imρ(t,t ′). The data is obtained within the s-, t-, u-, and
stu-channel resummation schemes (from top to bottom), for different
interaction strength U/� = 2, 4, 6 (from left to right), in the particle-
hole symmetric setup and for zero-temperature leads. ρ is normalized
to unity on the time diagonal. The time-step size was chosen as
�t = (50�)−1. Times are given in units of �−1.

range �t = (100�)−1–(800�)−1. Here we set the step size to
�t = (50�)−1. We point out that only in the combined stu case
does the buildup of the Kondo tail with suppressed exponential
decay in relative time |t − t ′| set in after a delay period
of (t + t ′)/2 � 2�−1. This sharp onset contains signatures
of an oscillating spectral function in relative time and thus
of the Hubbard side bands which are clearly visible in the
stu-channel spectral function in Fig. 5.

E. Friedel sum rule

The height of the peak of ρ(ω) at ω = 0 is decreasing
with increasing interaction strength U , implying that the area
under the temporal spectral function in time is not conserved.
This is in disagreement with the Friedel sum rule [110–112]
which provides an exact relation between the additional states
induced below the Fermi energy by a scattering center and
the respective scattering phase shift. It also holds true for
interacting systems. The generalized Friedel sum rule [39]
connects the quantum dot occupation number with the density
of states, i.e., the spectral function in Fourier space at the Fermi
edge. At zero temperature and in the particle-hole symmetric
case, the exact relation reads

ρ(0) = 2i

�
sin2

(
π [n↑ + n↓]

2

)
, (72)
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FIG. 7. Friedel sum rule. The spectral function ρ(ω = 0), as a
function of the interaction strength U , obtained in the stu-channel
resummation scheme, for different time-step sizes and a total
evolution time tmax = 20�−1 (top) and for different evolution times
and a step size of �t = (800�)−1 (bottom). The leads’ temperature
is T = 0, and the dot is tuned to the particle-hole symmetric point
E0 = −U/2. U , t−1

max, and (�t)−1 are given in units of �. The figures
show that for a given coupling U , the Friedel sum rule ρ(ω = 0) = 2
is the better obeyed the longer the total time at fixed step size or the
shorter the step size at fixed total time is.

independent of the interaction strength U . Hence, the sum rule
requires a constant height of the peak at the Fermi edge. Note
that the mean-field expression (27) fulfills the sum rule.

In Fig. 7, we show the results obtained from the nonpertur-
bative resummation of the 2PI effective action in the combined
stu-channel scheme. Results obtained for the s- and u-channel
resummations do not visibly differ from the data shown while
in the t-channel case the sum rule is obeyed as long as the
numerical calculation remains stable; see Appendix E. The
top panel shows ρ(ω = 0) for different time-step sizes and a
total evolution time tmax = 20�−1, while in the bottom panel,
the evolution time is varied, keeping a constant step size of
�t = (800�)−1. The leads’ temperature is chosen to vanish,
T = 0, and the dot is tuned to the particle-hole symmetric point
E0 = −U/2. Our results indicate that the nonperturbative 2PI
approach fulfills the sum rule which is expected to apply in
the stationary limit, i.e., at long evolution times. Deviations
from the rule are due to a finite total evolution time as well
as time resolution. We find such deviations irrespective of
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FIG. 8. The Kondo temperature, extracted from an exponential
fit to the imaginary part of the spectral function (top panel of Fig. 4)
within t = (12–14)�−1, as a function of the interaction strength U , for
different time-step sizes. U , TK, and (�t)−1 are given in units of �. We
compare with the analytical predictions given in Eqs. (5) (solid black
line) and (74) (solid pale blue line). The curves interpolate 13 data
points between U = 0 and U = 12� in unit steps and intermediate
data points at U/� = 2.5, 3.5, 4.5, 5.5, 14, and 16.

the correct occupation number at the particle-hole symmetric
point. Increasing the evolution time tmax by a factor of two
extends the range of U for which the sum rule is obeyed by
roughly �. For the spectral functions shown in the previous
section, the sum rule is obeyed for U � 2�. Increasing the
number of evolution time steps by a factor α increases the
total computing time by a factor of α3 and the required size of
memory by a factor of α2; see Appendix A for details of the
numerical implementation.

F. Kondo temperature

We extract the Kondo temperature from an exponential fit
to the spectral function in the time domain,

ρfit = Bfit exp
{−T fit

K |t |/2
}
. (73)

We fit this exponential at late evolution times within the
range t = (12–14)/� in order to avoid the bending down
near t = tmax. The Kondo temperature we could extract in
this manner is depicted in Fig. 8 as a function of U , for
the stu-channel case and different time steps �t (as usual
indicated in units of �−1). As before, only in the t-channel case
are there significantly different predictions; see Appendix E.
To emphasize the significance of the 2PI results, we compare
with the U dependence of the Kondo temperature as given by
the standard equilibrium expression [Eq. (5) (black line)], as
well as by the effective Kondo temperature,

TK,eff(t) = TK/ tanh[TKt/4], (74)

predicted in Ref. [22], on the basis of the Kondo Hamiltonian,
to apply at a finite evolution time t after a sudden connection
of the dot to the leads. The solid pale blue line shows TK,eff(t)
at the maximum evolution time t = tmax = 20�−1.

The above results give evidence that the nonperturbative re-
summation of the self-energy applied within the 2PI approach
to the Anderson-model dynamics quantitatively recovers the

E

− 1
2V

E0

0

E0 + U

1
2V

U

ΓL ΓR
μL

μR

lead leaddot

FIG. 9. Schematic representation of the energy levels in the
Anderson model of a quantum dot for the case of an applied bias
magnetic field; cf. Fig. 1. μL = −μR = V/2 are the energies of the
Fermi edges of the leads, separated by the applied voltage V .

dynamic buildup of the Kondo resonance. Specifically, the
expected Kondo temperature, which exponentially decreases
with U , is recovered within a limited regime of coupling
strengths around U = 4�. We emphasize that our results
are consistent with the prediction (74) obtained within the
approximations of the Kondo model [22] that building up the
Kondo temperature scale takes a time t � tK ∼ 1/TK .

At U � 3�, our method of fitting an exponential to the
tail of ρ(t) cannot distinguish the Kondo and the side-peak
resonances such that the Kondo temperature rises to TK = 2�,
which corresponds to the noninteracting case and is required by
the Friedel sum rule. For U � 4�, we expect the deviation of
our numerical data from the expected exponential suppression
be due to the finite time span and resolution, as indicated by
the comparison of different choices for �t reachable with
the computing resources which were available to us. We
have checked numerically that, to recover the exponential
suppression of TK in U [cf. Eq. (5)] for U � 4�, the width
of the spectral function must be correct to order O(U 7).

V. QUANTUM DOT SUBJECT TO A BIAS VOLTAGE

We now study the nonequilibrium case by applying a
bias voltage to the quantum dot as depicted in Fig. 9. We
investigate the transient current through the quantum dot as
well as the current-voltage characteristics of the stationary
current. We compare with results obtained with functional
renormalization-group (FRG) methods [51], as well as the
iterative sum of path integrals (ISPI) [81,82,113]. With
this we generalize previous studies presented in Ref. [100],
where 2PI results obtained in the direct (s-) channel scheme
were compared with FRG, ISPI, real-time quantum Monte
Carlo [72,114–117], and time-dependent density matrix renor-
malization group (tDMRG) results [73–76,118–120]. We
remark that in Ref. [76] FRG and tDMRG results and in
Ref. [86] FRG, tDMRG, ISPI, and rtQMC results were
compared in the Kondo as well as the mixed valence regime.

As before, we start with an initially empty quantum dot
decoupled from the thermally equilibrated leads. For this we
instantaneously couple the noninteracting metallic leads to
the quantum dot by quenching the hybridization parameter τ ,
interaction strength U , and bias voltage V . The left lead is
assumed to have a lower chemical potential than the right one,
μL = −μR = V/2, implying a bias voltage V = μL − μR. As
before, we assume the leads to stay in thermal equilibrium over
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FIG. 10. The transient current I (t) through a quantum dot coupled
to leads at a temperature T = 0.1�, as obtained within the stu-
channel resummation scheme, for different applied bias voltages
V . The interaction strength is U = 4� and the time-step size
�t = (300�)−1. The particle-hole symmetric case, E0 = −U/2, is
assumed. t−1, I , and V are given in units of �.

the entire time evolution and adjust the gate voltage such that
the quantum dot stays at the particle-hole symmetric point,
E0 = −U/2.

A. Transient electric current

To determine the transient electric current building up after
the dot is coupled to the leads, we evaluate the expression

I (t) = �Im
∑

σ

∫ D

−D

dε

∫ t

0
dt ′[f (ε − μL) − f (ε − μR)]

× exp{−iε(t − t ′)}ρσ (t ′,t), (75)

where D denotes the half-width of the band taken into account
around the Fermi edge of the leads. The derivation of Eq. (75)
is given in Appendix D. In Fig. 10, we show the buildup
dynamics of the electric current I (t), obtained in the stu

channel for different bias voltages V , for an on-site interaction
strength U = 4� and a time-step size of �t = (300�)−1. For
the other channels we did not find any qualitative differences.
We observe three characteristic regions for all considered
resummation schemes. The initial linear rise of the current
is determined by the applied bias voltage,

dI

dt

∣∣∣∣
t=0

= 2V. (76)

Recall further that the initial slope of the rising dot occupation
number was found to be independent of the probed Coulomb
repulsion strengths up to U = 16�. Since the dot is initially
empty, this is also true for the current.

Second, the (over-) damped oscillations following the linear
rise are affected by both the interaction strength and the applied
bias voltage. The time when a steady current is reached is of
the order of tstat ∼ �−1.

The frequency of the oscillations depends linearly on
voltage and interaction strength [43,77],

ω(V,U ) = (V + U )/2. (77)

The time dependence of the electrical current can be calculated
analytically at mean-field order, assuming a constant dot
occupation. In the particle-hole symmetric case, E0 = −U/2,
and with symmetrically adjusted chemical potentials the
stationary occupation number is n = 0.5. Therefore, the
effective mass term Mσ in Eq. (26) for the spectral function
at mean-field order vanishes. Inserting into Eq. (75) one
obtains the exact expression for the electrical current at
zero U ,

I (t) = 4
∫ t

0

du

u
e−�u sin(V u/2). (78)

This is expected to be a good approximation at early times
because of the dot initially being empty, and it provides the
voltage dependence of the frequency quoted above.

We extract the frequency from the time between maxima
and minima for five values of the bias voltage, V = (16–20)�,
for fixed interaction strength. A linear fit gives

ω(V,2�) = 0.51V − 0.10�,

ω(V,4�) = 0.54V − 0.94�. (79)

Our results are in fair agreement with Eq. (77) concerning the
voltage dependence, while we cannot confirm the predicted
dependence on the interaction strength.

Finally, the system reaches a steady state characterized by
a current which depends on both bias voltage and interaction
strength. We discuss the stationary current in more detail
below.

B. Stationary electric current and conductance

The stationary electric current is given by the Meir-
Wingreen formula

I = �

2
Im

∑
σ

∫ D

−D

dε[f (ε − μL) − f (ε − μR)]ρσ (ε,T ),

(80)

where D denotes the half-width of the band taken into account
around the Fermi edge of the leads. The derivation of Eq. (80)
is given in Appendix D. In the top panel of Fig. 11 we show
our results for the electrical current obtained in the direct (s-),
particle-particle (t-), particle-hole (u-), and stu-channel cases
for interaction strength U = 4� and compare them with results
obtained within the FRG scheme of Ref. [86]. In the bottom
panel, we show the corresponding differential conductance,
where we continue the values to negative voltages using the
antisymmetry of I .

In Appendix D, we recall that the maximum electrical
current through the quantum dot is Imax = 2π�. Any trun-
cation of the 2PI effective action conserves the value of the
equal-time spectral function −iρ(t,t) = 1 and thus leads to
results obeying this upper limit for the current. For large bias
voltages, V > U + 2�, our numerical results approach the
maximum current asymptotically and fit well with the FRG
results for arbitrary interaction strengths. The best agreement
is found with the stu-channel scheme. Note that a significant
electrical current can flow only when the bias voltage is of the
order of the interaction strength, V ≈ U , because both states
in the quantum dot are then energetically accessible. This
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FIG. 11. The stationary current I through the dot (top) and the
differential conductance (bottom) as functions of the bias voltage
V , obtained in different resummation channels in the particle-
hole symmetric case, E0 = −U/2. We compare our results those
obtained within the functional renormalization-group (FRG) scheme
of Ref. [86]. “MF” denotes the mean-field result, Eq. (78), for
the current. The interaction strength is U = 4�; the temperature is
T = 0.1�. The system was evolved to the total time tmax = 40�−1 for
bias voltages V � 0.5� and tmax = 6�−1 otherwise, with a time-step
size of �t = (300�)−1. For smaller U , the agreement between the
different approximation schemes increases, see Appendix E.

is an important requirement for charge transport. However,
from the numerical data, one sees that already a small bias
voltage induces an electric current. This behavior is highly
nontrivial and governed by the Kondo effect, which gives
rise to additional states at the Fermi edges of the leads.
As a consequence, the conductance reaches its maximum,
the conductance quantum defined as G0 = 2e2/h for zero
bias voltage, Gdiff(0) = G0. In our data, the peak in the
differential conductance at zero bias voltage reaches almost
Gdiff(0) = 2.

Compared with the smaller interaction strengths (see
Appendix E), the electrical current shows more varied char-
acteristics. Two side peaks are seen in the conductance at
V = ±U because the two energy levels in the quantum dot
are separated by the interaction strength U . When the bias
voltage reaches that value, one of the two chemical potentials
of the leads is located at the gate voltage and the other at
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FIG. 12. Imaginary part of the frequency-dependent spectral
function, Im[ρ(ω)], as obtained in the stu channel, for U = 4�,
with tmax = 40�−1 (6.7�−1 for V � �) and a time-step size of
�t = (300�)−1, for different voltages V applied to the dot in
the particle-hole symmetric setup, E0 = −U/2. The narrow Kondo
resonance decreases with increasing voltage and is strongly reduced
already at V � TK (U ) � 0.3�, while it entirely disappears only for
V � �; cf. the results reported in Ref. [24]. No satellite peaks [23]
are observed.

the doubly occupied level, implying an enhanced differential
conductance.

C. Voltage-induced deterioration of the Kondo peak

The strong decay of the stationary differential conductance
with increasing voltage applied to the dot as shown in Fig. 11
indicates that the Kondo resonance is strongly affected by
the voltage. In Fig. 12 we show, for the same situation, the
imaginary part of the spectral function, Im[ρ(ω)], for U = 4�

for different voltages between V = 0.02� and V = 4.0�, in
the stationary limit when the current no longer changes in
time. We find that the narrow Kondo resonance decreases with
increasing voltage and is strongly reduced already at V �
TK (U ) � 0.3�, while it entirely disappears only for V � �.
Hence, our results partly corroborate the conclusion drawn
on the basis of diagrammatic Monte Carlo methods applied
in Ref. [24] that voltages on the order of V � TK (U ) lead to
a strong deterioration of the Kondo resonance. However, as
the figure demonstrates, � is found to play a role even in the
presence of the Kondo effect, in addition to the scale TK (U ).
We furthermore emphasize that we do not find signs of satellite
Kondo peaks arising at nonzero voltage [23], which may be
due to the relatively small values of U/� considered here.

D. Temperature dependence of the stationary current

Keeping the same physical setup as in the previous cases, we
repeated our computations for different temperatures, T/� =
0.4, 1.0, 2.0, 4.0. In Fig. 13 we show the results obtained in the
stu-channel scheme for U = 2� and compare with the FRG
and ISPI data from Ref. [86]. With increasing temperature, the
electrical current decreases. Further data shown in Appendix E
indicate that the FRG results are in best agreement with the
s-channel case.

045108-14



BUILDUP OF THE KONDO EFFECT FROM REAL-TIME . . . PHYSICAL REVIEW B 94, 045108 (2016)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
V [Γ]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
I
[Γ

]

2PI

FRG

ISPI

FIG. 13. Stationary current I through the quantum dot coupled to
leads at a temperature of T/� = 0.4, 1.0, 2.0, 4.0 (from steep to flat
slopes) in the particle-hole symmetric case, E0 = −U/2, as functions
of the applied voltage V , obtained in the stu-channel scheme, with
an interaction strength U = 2�. We compare with the FRG and ISPI
results of Ref. [86]. The system was evolved to the total time tmax =
6�−1, with a time-step size of �t = (300�)−1.

E. Stationary current and conductance in a magnetic field

We finally study the influence of a constant external
magnetic field applied to the dot on the current-voltage
characteristics of the quantum dot; see Fig. 14. For a small
interaction strength U = 2� we expect, from our above
findings, good agreement with FRG data and thus to be
able to isolate the magnetic-field effect on the data. Under
a nonvanishing bias voltage, the Kondo resonance splits into
two maxima due to the Zeeman effect. The arising peaks are
shifted away from the Fermi energies of the two leads. This
leads to a smaller electrical current for small bias voltages and
a smaller differential conductance even for zero bias voltage.

The results obtained within the different resummation
schemes are very close to each other. Deviations show up
in the close-up view of the split Kondo peak. The deviation
between the 2PI and the FRG results are at the maxima and
minima of the differential conductance. However, in general,
both methods show good agreement with each other.

VI. CONCLUSIONS

We have studied the real-time evolution of a quantum
dot out of equilibrium after coupling the initially empty dot
to two leads at zero or nonvanishing low temperature. The
dynamics is evaluated in terms of time-dependent Green’s
functions solving Kadanoff-Baym equations of motion. These
dynamic equations are derived from a 2PI effective action
for the Anderson impurity model derived in the framework
of a Schwinger-Keldysh functional integral. In this way,
correlations between the dot and the leads are taken into
account in a nonperturbative manner by determining the
frequency-dependent self-energy of the dot electrons by means
of three different resummations. These include summations
over bubble- and ladder-chain diagrams, forming the direct (s-
channel), particle-particle (t), and particle-hole (u) channels,
as well as their combination (stu), and are introduced through
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FIG. 14. Voltage dependence of the stationary current I (tmax)
through the dot (top) and of the differential conductance (bottom) for
an interaction strength U = 2� and a temperature T = 0.1� in the
particle-hole symmetric case, E0 = −U/2, as obtained with different
resummation schemes and in the FRG scheme of Ref. [86]. An
external magnetic field B = 1.2� is applied. The system was evolved
to the total time tmax = 6�−1 with a time-step size of �t = (300�)−1.

Hubbard-Stratonovich transformations. While this approach
requires a considerable numerical effort, it is nevertheless
possible with state-of-the-art computers. Considering the
effective coupling, one finds that the resummation can be
thought of as using a frequency-dependent four-point vertex.
The leads were taken into account by integrating them out
exactly within a grand-canonical scheme.

Our central result is the demonstration that, with our
nonperturbative approach, we can describe the dynamical
buildup of the Kondo effect. This shows up, in the case that
the dot is tuned to the particle-hole symmetric configuration
in the development of a sharp resonance peak in the spectral
function at zero frequency. At long evolution times, inverse
proportional to the Kondo scale TK , which measures the
width of the peak, TK is found to be suppressed exponentially
in the dot coupling U , in agreement with the perturbative
renormalization-group prediction obtained for the simpler
Kondo model. Furthermore, a similar resonance is seen in
the differential conductance near zero bias voltage, leading to
stationary currents in good agreement with expected values.
We find little quantitative differences in the results obtained

045108-15



BOCK, LILUASHVILI, AND GASENZER PHYSICAL REVIEW B 94, 045108 (2016)

within the s, u, and stu schemes, while the t-channel scheme
does not give the Kondo scaling.
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Württemberg, and by the Excellence Programme FRONTIER
of Heidelberg University.

APPENDIX A: NUMERICAL IMPLEMENTATION

In this Appendix we summarize the numerical methods
used to solve the equations of motion (17), which we refer to
in the form

∂tρ(t,t ′) = f1(t,t ′),

∂tF (t,t ′) = f2(t,t ′), (A1)

with f1 and f2 containing the memory integrals:

f1(t,t ′) = − iM(t)ρ(t,t ′) − i

∫ t

t ′
du�ρ(t,u)ρ(u,t ′), (A2)

f2(t,t ′) = − iM(t)F (t,t ′) − i

∫ t

0
du�ρ(t,u)F (u,t ′)

+ i

∫ t ′

0
du�F (t,u)ρ(u,t ′). (A3)

Equation (A1) forms a system of partial integro-differential
equations which we solve by means of multistep methods
which contain information from the past time evolution.
In each time step we use a third-order Adams-Bashforth
predictor-corrector method which makes use of the values
at the three previous points in time. For example, the
discretization of the spectral function is given by

ρ(tk+1,tj ) = ρ(tk,tj ) + �t

24
[55f1(tk,tj ) − 59f1(tk−1,tj )

+ 37f1(tk−2,tj ) − 9f1(tk−3,tj )], (A4)

with tk = k�t and �t being the step size. After the point
ρ(tk+1,tj ) has been calculated, we implement an Adams-
Moulton step as a corrector; i.e., we use the calculated data
point and and determine it again by means of

ρ(tk+1,tj ) = ρ(tk,tj ) + �t

24
[9f1(tk+1,tj ) + 19f1(tk,tj )

− 5f1(tk−1,tj ) + f1(tk−2,tj )]. (A5)

When solving the 2PI equations, we set ρ(t,t) = i explicitly, as
prescribed by the anticommutation relations, and set the initial
occupation at n0. The memory integrals are in Volterra form;
i.e., for a particular time t they require only field values in
the past which have been computed already before. Therefore,
our scheme allows an explicit calculation of each time step
from known quantities. The integrations are performed by
means of a seventh-order closed Newton-Cotes formula. Our
typical choice of the step size is within the range of �t ∈
[0.0025,0.01].

The numerical effort of the presented method was as
follows. Choosing a maximum number of time steps N =
tmax/�t , the correlation functions F , ρ, �, etc., each require
memory space of N2 real or complex numbers with double
precision. Since performing a single memory integral involves
N complex multiplications, the total computing time scales as
N3. Our computations were performed on machines equipped
with AMD Opteron processors 6282 (16 cores) and 256GB
RAM, using a maximum of N = 16 000 time steps, each run
requiring between a few days and several weeks.

APPENDIX B: THE AUXILIARY-FIELD PROPAGATOR G

1. Decomposition of G into statistical and spectral parts

According to Eqs. (39) and (44), the propagator G(t,t ′)
of the bosonic auxiliary field can be written as G(t,t ′) =
Ḡ(t,t ′) + iUσ1δ(t − t ′), where σ1 is the first Pauli matrix. The
equation for Ḡ reads

(
Ḡ21 Ḡ22

Ḡ11 Ḡ12

)
= iU� ∗ Ḡ − U 2

(
�12 �11

�22 �21

)
. (B1)

As defined in Eq. (13) for fermions, the scalar propagator is
decomposed in the same way into a statistical and a spectral
part:

Ḡστ (t,t ′) = ḠF
στ (t,t ′) − i

2
sgnC(t − t ′)Ḡρ

στ (t,t ′). (B2)

The scalar constraint equation (B1) is then decomposed by
means of

(iA ∗ B)(t,t ′) =
∫ t

0
dzAρ(t,z)BF (z,t ′)

−
∫ t ′

0
dzAF (t,z)Bρ(z,t ′) − i

2
sgnC(t − t ′)

×
∫ t

t ′
dzAρ(t,z)Bρ(z,t ′). (B3)

Finally, the fermionic and bosonic self-energies are decom-
posed as follows:

�F
σ = −1

(
Fσ ḠF

σσ − 1
4ρσ Ḡρ

σσ

)
,

�ρ
σ = −1

(
ρσ ḠF

σσ + Fσ Ḡρ
σσ

)
,

�F
σ = |Fσ |2 − 1

4 |ρσ |2,
�ρ

σ = 2Re(F ∗
σ ρσ ). (B4)

The resulting relations are shown in Table I.
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TABLE I. Decomposition of the fermionic and bosonic propagators into statistical and spectral parts for the different resummation schemes.

s channel t channel u channel

�ρ
σ = Fσ Ḡρ

σσ + ρσ ḠF
σσ

�F
σ = Fσ ḠF

σσ − ρσ Ḡρ
σσ /4

�ρ
σσ = −2Re(ρσ F ∗

σ )
�F

σσ = −|Fσ |2 + |ρσ |2/4

�ρ
σ = ρ∗

σ̄ Ḡ∗F
σ σ̄ + F ∗

σ̄ Ḡ
∗ρ
σ σ̄

�F
σ = F ∗

σ̄ Ḡ∗F
σ σ̄ − ρ∗

σ̄ Ḡ
∗ρ
σ σ̄ /4

�
ρ
σσ̄ = −(F ∗

σ ρ∗
σ̄ + ρ∗

σ F ∗
σ̄ )

�F
σ σ̄ = ρ∗

σ ρ∗
σ̄ /4 − F ∗

σ F ∗
σ̄

�ρ
σ = ρσ̄ Ḡ∗F

σ̄ σ + Fσ̄ Ḡ
∗ρ
σ̄σ

�F
σ = Fσ̄ Ḡ∗F

σ̄ σ − ρσ̄ Ḡ
∗ρ
σ̄σ /4

�
ρ
σσ̄ = −(ρσ F ∗

σ̄ + Fσ ρ∗
σ̄ )

�F
σ σ̄ = ρσ ρ∗

σ̄ /4 − Fσ F ∗
σ̄

�11(t,t ′) = �22(t,t ′)
�12(t,t ′) = �21(t,t ′) = 0

Ḡ21(t,t ′) = Ḡ12(t,t ′)
Ḡ11(t,t ′) = Ḡ22(t,t ′)

�12(t,t ′) = �21(t,t ′)
�11(t,t ′) = �22(t,t ′) = 0

Ḡ21(t,t ′) = Ḡ12(t,t ′)
Ḡ11(t,t ′) = Ḡ22(t,t ′) = 0

�12(t,t ′) = �21(t ′,t)
�11(t,t ′) = �22(t,t ′) = 0

Ḡ21(t,t ′) = Ḡ12(t ′,t)
Ḡ11(t,t ′) = Ḡ22(t,t ′) = 0

Ḡ
ρ

22 = U (�ρ

11 ∗ Ḡ
ρ

12 − U �
ρ

11)
Ḡ

ρ

12 = U (�ρ

11 ∗ Ḡ
ρ

22)
Ḡ

ρ

11 = Ḡ
ρ

22 = 0
Ḡ

ρ

12 = U (�ρ

21 ∗ Ḡ
ρ

12 − U �
ρ

21)
Ḡ

ρ

11 = Ḡ
ρ

22 = 0
Ḡ

ρ

12 = U (�ρ

21 ∗ Ḡ
ρ

12 − U �
ρ

21)

ḠF
22 = U (�ρ

11 ∗ ḠF
12 − �F

11 ∗ Ḡ
ρ

12 − U �F
11)

ḠF
12 = U (�ρ

11 ∗ ḠF
22) − U (�F

11 ∗ Ḡ
ρ

22)
ḠF

11 = ḠF
22 = 0

ḠF
12 = U (�ρ

21 ∗ ḠF
12 − �F

21 ∗ Ḡ
ρ

12 − U �F
21)

ḠF
11 = ḠF

22 = 0
ḠF

12 = U (�ρ

21 ∗ ḠF
12 − �F

21 ∗ Ḡ
ρ

12 − U �F
21)

2. Resummed effective coupling

In the following we provide the details of the calculation
of the effective couplings stated in Sec. III D. For vanishing
magnetic field, where E0↑ = E0↓, one can use a symmetric
initial condition to save numerical resources. The respective
symmetries apply to the action truncated at second order
in U as well as to the resummed actions. We discuss the
resummations used in this work in the following. Starting from
an initial condition, where the following equations are satisfied
for t = t ′ = 0, they hold for any t,t ′ > 0:

D↑(t,t ′) = D↓(t,t ′). (B5)

In s-channel resummation we have

�11(t,t ′) = �22(t,t ′), �12(t,t ′) = �21(t,t ′) = 0,

Ḡ21(t,t ′) = Ḡ12(t,t ′), Ḡ11(t,t ′) = Ḡ22(t,t ′); (B6)

in t-channel resummation

�12(t,t ′) = �21(t,t ′), �11(t,t ′) = �22(t,t ′) = 0,

Ḡ12(t,t ′) = Ḡ21(t,t ′), Ḡ11(t,t ′) = Ḡ22(t,t ′) = 0; (B7)

and in the u channel

�12(t,t ′) = �21(t ′,t), �11(t,t ′) = �22(t,t ′) = 0,

Ḡ12(t,t ′) = Ḡ21(t ′,t), Ḡ11(t,t ′) = Ḡ22(t,t ′) = 0. (B8)

In the stationary limit, when transient effects have died out,
all two-point functions depend only on the difference of
the time coordinates. In this limit, we can push the initial
time to negative infinity, and we can use the following
decomposition identities for a convolution of two correlators
on the Schwinger-Keldysh contour starting at t0 = −∞,

i(X ∗ Y )F = XR ∗ YF − XF ∗ YA,

i(X ∗ Y )ρ = XR ∗ Yρ − Xρ ∗ YA,

i(X ∗ Y )R = XR ∗ YR,

i(X ∗ Y )A = −XA ∗ YA, (B9)

where the retarded and advanced two-point functions are
defined as

GR(t,t ′) = θ (t − t ′)Gρ(t,t ′),

GA(t,t ′) = θ (t ′− t)Gρ(t,t ′), (B10)

such that Gρ = GR + GA.

a. s-channel resummation

Given the symmetries of Eqs. (B6) one can define

A(t,t ′) = U−1Ḡ11(t,t ′), B(t,t ′) = U−1Ḡ21(t,t ′),

�(t,t ′) = U�11(t,t ′). (B11)

Hence, the constraint equations (44) in the form of (B1) can
be written as (suppressing time arguments)

A = i� ∗ B − �, B = i� ∗ A. (B12)

Inserting the decompositions (B9) into (B12), after eliminating
B and Fourier transforming with respect to t − t ′, we obtain

AF = �R �RAF − �R �F AA − �F + �F �AAA,

Aρ = �R �RAρ − �R �ρAA − �ρ + �ρ �AAA, (B13)

where we have omitted the arguments ω. With the help of the
relations (B9), Eq. (B12) defining the advanced function AA,
multiplied by �R − �A, can be rewritten as

(1 + �RAA − �AAA)(�A�A − 1) = �R�A − 1. (B14)

Defining A in terms of an effective coupling Ueff,ξ ,

UAF = −�F Ueff,ξ , UAρ = −�ρUeff,ξ (B15)

(ξ = s,t,u), we find the expression given in Eq. (65),

Ueff,s

U
= 1 − �R�A

[(�R)2 − 1)][(�A)2 − 1]
= 1 + |�R|2

|1 − (�R)2|2 , (B16)

where we used �R∗(ω) = −�A(ω).

b. t-channel resummation

Given the symmetries of Eqs. (B7) we define

A(t,t ′) = U−1Ḡ12(t,t ′), �(t,t ′) = U�12(t,t ′). (B17)
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Equation (B1) determines

A = i� ∗ A − �, (B18)

Using Eqs. (B9) and Fourier transforming, this gives

AF = �RAF − �F AA − �F ,

Aρ = �RAρ − �ρAA − �ρ. (B19)

With the help of the relations (B9), Eq. (B18) for AA reads

(1 + �A)AA = −�A. (B20)

Hence, the t-channel effective coupling results as

Ueff,t

U
= 1

(1 − �R)(1 + �A)
= 1

|1 − �R|2 , (B21)

where we used again that �R∗(ω) = −�A(ω).

c. u-channel resummation

Given the symmetries of Eqs. (B8) we define

A(t,t ′) = U−1Ḡ12(t,t ′), �(t,t ′) = U�21(t,t ′). (B22)

With this the derivation of the effective coupling is analogous
to the t-channel case, giving the same formal expression,

Ueff,u

U
= 1

|1 − �R|2 . (B23)

APPENDIX C: SPECTRAL FUNCTION IN THE
STATIONARY LIMIT

In this Appendix we derive an expression for the spectral
function ρ(ω) in the long-time limit when transient effects
from the initial state have died out. This expression is valid as
long as changes in the system parameters occur very slowly.
The spectral representation of the stationary propagator which,
after initial-state effects have damped out no longer depends
on the central time T , reads

lim
ε→0

D(ω ± iε) = lim
ε→0

∫ ∞

−∞

dω′

2π

−iρ(ω′)
ω ± iε − ω′

= −P
∫ ∞

−∞

dω′

2π

iρ(ω′)
ω − ω′ ∓ 1

2
ρ(ω), (C1)

where P denotes the Cauchy principal value. Note that due
to the antisymmetry in the time domain the spectral function
is purely imaginary in Fourier space. An equivalent relation
holds for the self-energy and, hence,

lim
ε→0

D(ω ± iε) = ReD(ω) ∓ 1

2
ρ(ω),

lim
ε→0

�(ω ± iε) = Re�(ω) ∓ 1

2
�ρ(ω). (C2)

Using the Dyson equation

D−1(ω ± iε) = D−1
0 (ω ± iε) − �(ω ± iε)

= ω ± iε − �(ω ± iε), (C3)

the real part of the full propagator results as

Re[D(ω ± iε)] = Re

[
1

ω ± iε − Re�(ω) ± �ρ(ω)/2

]

= ω − Re�

(ω − Re�)2 + |�ρ/2|2 . (C4)

Combining Eqs. (C2)–(C4) we obtain the kinetic expression
for the spectral function, Eqs. (70) and (71),

ρ(ω) = ±2[ReD(ω) − D(ω ± iε)]

= �ρ

(ω − Re�)2 + |�ρ/2|2 ,
(C5)

with

Re�(ω) = −P
∫ ∞

−∞

dω′

2π

�ρ(ω′)
ω − ω′ . (C6)

Exemplary graphical representations of �ρ and Re� are given
in Fig. 20 in Appendix E.

APPENDIX D: ELECTRICAL CURRENT
AND CONDUCTANCE

In this Appendix we describe the derivation of the expres-
sions (75) and (80) for the transient and stationary currents,
respectively. The contribution of one lead to the current
through the quantum dot is (keeping track of constants e, h)

I�(t) = −eṄ�(t), N�(t) =
∑
kσ

〈c†k�σ (t)ck�σ (t)〉, (D1)

and the total current is given by the difference

I = (IL − IR)/2. (D2)

Only the tunneling part of the Hamiltonian has a nonvanishing
commutator with the occupation number N�,

I (t) = − ie

2�
[Htunnel,NL − NR]

= − ie

2�

∑
�kσ

�(t�〈c†�kσ dσ 〉 − t∗� 〈d†
σ c�kσ 〉)(t). (D3)

To determine this expression within the functional-integral
formalism, it is convenient to write it as the derivative of the
generating functional with respect to a source,

I (t) = −i
δ

δη(t)
ln Z[η]

∣∣∣∣
η≡0

=
〈
δS[η]

δη(t)

∣∣∣∣
η≡0

〉
. (D4)

The required source term to be added to the action reads

S[η] = − ie

2�

∫
C
dt ′

∑
�kσ

�(t�c
†
�kσ dσ − t∗� d†

σ c�kσ )η. (D5)

One now proceeds in the same way as when integrating out the
quadratic leads contribution. Shifting the tunneling parameter
to

τ̃ = τ

[
1 + ieη

2�
�δ(t − t ′)

]
, (D6)
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FIG. 15. The imaginary part of the spectral function for E0 = −U/2. The different columns show results obtained in the s (left), t (middle),
and u channels (right), respectively. First row: Imρ(tmax,t) for U = 5�, maximum evolution time tmax = 20�−1, and different time-step sizes.
Second row: same function, for U = 5�, �t = (800�)−1, and different tmax. Third row: same function, for tmax = 20�−1, �t = (800�)−1, and
different interactions U . Fourth row: Im[ρ(ω)], i.e., the Fourier transform of the functions in the third row. Narrowing of the central Kondo
resonance is seen in the s and u channels. Fifth row: The Kondo temperature TK, in units of �, as derived from the long-time exponential decay
of the functions in the first row. U , ω, and TK are given in units of �, ρ, t , �t , and tmax in units of �−1.
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and completing the squares, one obtains the quadratic leads
part,

Sleads = −|τ |2
∑
�kσ

∫
C
dt

∫
C
dt ′d†

σ (t)

{
A�kσ (t,t ′)

+ ie

2�
�A�kσ (t,t ′)[η(t ′) − η(t)]

}
dσ (t ′), (D7)

with A�kσ denoting the free propagator of the lead electrons
defined by [i∂t − εk�(t)]A�kσ (t,t ′) = δC(t,t ′) and where we
have dropped the term proportional to η2, which does not
contribute to the expectation value. Inserting this into Eq. (D4)
we obtain the expression

I (t) = − ie

2�
|τ |2

∑
�kσ

�

[ ∫
C
dt ′Dσ (t ′,t)A�kσ (t,t ′)

+
∫
C
dt ′Dσ (t,t ′)A�kσ (t ′,t)

]
. (D8)

Decomposing the product of the dot-electron and lead-electron
propagators into statistical and spectral components, we find
that the former vanishes, leaving

[Dσ (t ′,t)A�kσ (t,t ′)]ρ=ρσ (t ′,t)AF
�kσ (t,t ′)−Fσ (t ′,t)Aρ

�kσ (t,t ′).

(D9)

Inserting this into Eq. (D8) and using symmetry relations to
order the time arguments, we obtain

I (t) = − e

2�
|τ |2

∑
�kσ

∫ t

0
dt ′�

[
AF

�kσ (t,t ′)ρσ (t ′,t)

−A
ρ

�kσ (t,t ′)Fσ (t ′,t) + AF∗
�kσ (t,t ′)ρ∗

σ (t ′,t)

−A
ρ∗
�kσ (t,t ′)F ∗

σ (t ′,t)
]
. (D10)

The terms containing the statistical propagator F cancel
because the spectral part of A does not contain any information
about the thermodynamic properties of the leads and thus
A

ρ

L = A
ρ

R. Using |τ |2 = �/(2π ), we obtain

I (t) = −e�

h
Re

∑
σ

∫ t

0
dt ′

[
AF

L(t,t ′) − AF
R(t,t ′)

]
ρσ (t ′,t),

(D11)

and inserting AF
�kσ (t,t ′) = −i[1/2 − f (εk� − μ�)] exp{−iεk�

(t − t ′)} for the leads’ statistical function leads to Eq. (75).
The imaginary part of the integrand of Eq. (75) is symmetric

under t ′ → −t ′. Hence, extending the time integral to negative
times and multiplying by 1/2 in the infinite-time limit gives
the stationary current

I (t → ∞) = e�

2h
Im

∑
σ

∫ D

−D

dε

∫ ∞

−∞
dsρσ (s,T )

× [f (ε − μL) − f (ε − μR)]e−iεs , (D12)

0 2 4 6 8 10 12 14 16
U [Γ]

0.0

0.5

1.0

1.5

2.0

2.5

ρ
(ω

=
0)

[Γ
−1

]

Δt = (100Γ)−1

Δt = (200Γ)−1

Δt = (400Γ)−1

Δt = (800Γ)−1

0 2 4 6 8 10 12 14 16
U [Γ]

0.0

0.5

1.0

1.5

2.0

2.5

ρ
(ω

=
0)

[Γ
−1

]

Δt = (100Γ)−1

Δt = (200Γ)−1

Δt = (400Γ)−1

Δt = (800Γ)−1

0 2 4 6 8 10 12 14 16
U [Γ]

0.0

0.5

1.0

1.5

2.0

2.5

ρ
(ω

=
0)

[Γ
−1

]

Δt = (100Γ)−1

Δt = (200Γ)−1

Δt = (400Γ)−1

Δt = (800Γ)−1

0 2 4 6 8 10 12 14 16
U [Γ]

0.0

0.5

1.0

1.5

2.0

2.5

Im
(ρ

(ω
=

0)
)
[Γ

−1
]

tmax = 2.5 Γ−1

tmax = 5.0 Γ−1

tmax = 10.0 Γ−1

tmax = 20.0 Γ−1

0 2 4 6 8 10 12 14 16
U [Γ]

0.0

0.5

1.0

1.5

2.0

2.5

Im
(ρ

(ω
=

0)
)
[Γ

−1
]

tmax = 2.5 Γ−1

tmax = 5.0 Γ−1

tmax = 10.0 Γ−1

tmax = 20.0 Γ−1

0 2 4 6 8 10 12 14 16
U [Γ]

0.0

0.5

1.0

1.5

2.0

2.5

Im
(ρ

(ω
=

0)
)
[Γ

−1
]

tmax = 2.5 Γ−1

tmax = 5.0 Γ−1

tmax = 10.0 Γ−1

tmax = 20.0 Γ−1

FIG. 16. Quality of the fulfillment of the Friedel sum rule for the spectral function ρ(ω = 0), as a function of the interaction strength
U , obtained in the s-channel (left column), the t-channel (middle), and the u-channel (right) resummation schemes, respectively. Top row:
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max,
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FIG. 17. Top row: the transient current I (t) through a quantum dot coupled to leads at a temperature T = 0.1�, as obtained in the s (left),
t (middle), and u channels (right), respectively, for different applied bias voltages V . The interaction strength is U = 4�; the time-step size is
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and ISPI results of Ref. [86]. The system was evolved to the total time tmax = 6�−1 with a time-step size �t = (300�)−1.
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which is equivalent to Eq. (80). This is known as the Meir-
Wingreen formula [121], which is a Landauer formula for
the current through an interacting electron region, combining
the transmission amplitude T of a one-level noninteracting
scatterer in a conductor with the conductance G, which, for
low bias voltages, G = 2e2/h|T |2 [122]. Given the electrical
current, we can introduce the linear and differential electrical
conductances

Glin(t) = I (t)

V
, Gdif(t) = dI (t)

dV
. (D13)

For conciseness we finally give the mean-field stationary
current-voltage characteristics at zero temperature, which
become exact in the U = 0 limit. Replacing the statisti-
cal self-energy component of the leads with �F

�,lead(ω) =
−�/2 sgn(ω − μ�), we obtain [33]

nσ = 1

2
− 1

2π

∑
�=±1

arctan

(
E0 + Unσ̄ − �V/2

�

)
. (D14)

As we assume the particle-hole symmetric case, E0 = −U/2,
the chemical potentials are adjusted symmetrically around
the energy zero, μL = −μR = μ/2. With no magnetic field
present, Eq. (D14) is solved by nσ = nσ̄ = 0.5. In this case,
the effective mass (19) is zero, and the stationary current reads

I (t → ∞) = e�

2h

∑
σ

∫ D

−D

dε
2�[f (ε − μL) − f (ε − μR)]

(ε − Mσ )2 + �2
,

(D15)

and at zero temperature and nonzero-bias voltage we get

I = e�

h

∫ μ/2

−μ/2
dε

2�

ε2 + �2
= 4e�

h

[
arctan

(
μ

2�

)]
. (D16)

The maximum current is obtained in the limit of an infinite
chemical potential gradient,

Imax = 2π�e/h, (D17)

and from Eq. (D16) we obtain the differential conductance

μ2 + (2�)2, (D18)

in terms of the conductance quantum G0 = 2e2/h [123].

APPENDIX E: NUMERICAL RESULTS FOR DIFFERENT
RESUMMATION SCHEMES

In this Appendix we complement the numerical results
presented in the main part with data obtained within the
other resummation schemes for comparison. This includes, in
particular, in Fig. 15, the dependence of the spectral function
ρ(t,t ′) on the difference of its time arguments, its Fourier
transform which shows the narrowing Kondo resonance, as
discussed in Sec. IV C, and the dependence of the Kondo
temperature on the interaction strength; cf. Sec. IV F. Figure 16
shows the s-, t-, and u-channel data for the value of the
spectral function at zero frequency, ω = 0, demonstrating to
what extent the Friedel sum rule is obeyed, as discussed in
Sec. IV E. Furthermore, we present in Figs. 17 and 18 the data
for the transient current induced by a nonzero voltage between
the leads, for the long-time stationary current induced for
different voltages and in the different resummation schemes,
and for the differential conductance, as discussed in the main
text in Sec. V. Figure 19 complements the data on the current-
voltage characteristics for a magnetically split dot as discussed
in Sec. V E. Finally, Fig. 20 shows exemplary graphical
representations of �ρ and Re� derived in Appendix C; cf.
Eqs. (C5) and (C6).
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