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Current vertex correction (CVC), the backflowlike correction to the current, comes from conservation laws,
and the CVC due to electron correlation contains information about many-body effects. However, it has been
little understood how the CVC due to electron correlation affects the charge transports of a correlated multiorbital
system. To improve this situation, I studied the in-plane resistivity ρab and the Hall coefficient in the weak-field
limit RH, in addition to the magnetic properties and the electronic structure, for a t2g-orbital Hubbard model
on a square lattice in a paramagnetic state away from or near an antiferromagnetic (AF) quantum-critical point
(QCP) in the fluctuation-exchange (FLEX) approximation with the CVCs arising from the self-energy (�), the
Maki-Thompson (MT) irreducible four-point vertex function, and the main terms of the Aslamasov-Larkin (AL)
one. Then, I found three main results about the CVCs. First, the main terms of the AL CVC do not qualitatively
change the results obtained in the FLEX approximation with the � CVC and the MT CVC. Second, ρab and
RH near the AF QCP have a high-temperature region, governed mainly by the � CVC, and a low-temperature
region, governed mainly by the � CVC and the MT CVC. Third, in case away from the AF QCP, the MT CVC
leads to a considerable effect on only RH at low temperatures, although RH at high temperatures and ρab at all
temperatures considered are sufficiently described by including only the � CVC. Those findings reveal several
aspects of many-body effects on the charge transports of a correlated multiorbital system. I also achieved the
qualitative agreement with several experiments of Sr2RuO4 or Sr2Ru0.975Ti0.025O4. Moreover, I showed several
better points of this theory than other theories.
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I. INTRODUCTION

Many-body effects, effects of Coulomb interaction between
itinerant electrons beyond the mean field approximation,
are important to discuss electronic properties [1–4]. When
the Coulomb interaction is very small compared with the
bandwidth of itinerant electrons, which is of the order of
magnitude 1 eV, we can sufficiently describe its effects in
the mean field approximation as the static and effectively
single-body potentials [5,6]. However, in correlated electron
systems such as transition metals or transition-metal oxides,
the Coulomb interaction becomes moderately strong or strong,
resulting in the derivations of their electronic properties from
the single-body picture [1–4].

For several correlated electron systems, many-body effects
can be described in Landau’s Fermi-liquid (FL) theory [7–10].
This theory is based on two basic assumptions [10]. One is the
one-to-one correspondence between the noninteracting and
the interacting systems. Because of this assumption, we can
describe low-energy excitations of the interacting system in
terms of quasiparticles (QPs) with the renormalized effective
mass and the renormalized interactions described by the
Landau parameters [10]. The other assumption is lack of the
temperature dependence of the Landau parameters. Because of
this assumption, the temperature dependence of the electronic
properties remains the same as that in the noninteracting
system [10]. Furthermore, as a result of those assumptions,
many-body effects on the electronic properties are the changes
of their coefficients due to the mass enhancement or the FL
correction or both [10].
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Actually, Landau’s FL theory well describes several elec-
tronic properties of Sr2RuO4 at low temperatures. First, this
theory can explain the almost temperature-independent spin
susceptibility [11] and the T 2 dependence of the in-plane
resistivity [12]. In addition, the importance of many-body
effects has been suggested in the measurements of the de
Haas–van Alphen (dHvA) effect [13,14] and the Wilson ratio
[11]: the effective mass of the dxz/yz or the dxy orbital measured
in the dHvA becomes, respectively, 3–3.5 or 5.5 times as
large as the mass obtained in the local-density approximation
(LDA), a mean-field-type approximation; the Wilson ratio,
the ratio of the spin susceptibility to the coefficient of the
electronic specific heat, becomes 1.7–1.9 times as large as the
noninteracting value. Note that the enhancement of the Wilson
ratio arises from the FL correction [15].

However, we observe non-FL-like behaviors, the devi-
ations from the temperature dependence expected in Lan-
dau’s FL theory, for correlated electron systems near a
magnetic quantum-critical point (QCP) [3,4]. For example,
Sr2Ru0.975Ti0.025O4, a paramagnetic (PM) ruthenate near an
antiferromagnetic (AF) QCP, shows the Curie-Weiss–type
temperature dependence of the spin susceptibility and the
T -linear in-plane resistivity [16,17]. Also, Ca2−xSrxRuO4

around x = 0.5, a PM ruthenate near a ferromagnetic QCP,
shows the similar non-FL-like behaviors [18,19]. Thus, those
experimental results indicate the importance of many-body
effects beyond Landau’s FL theory near a magnetic QCP.
Note, first, that the wave vector of the spin susceptibility
enhanced most strongly in Sr2Ru0.975Ti0.025O4 [20] is the
same for Sr2RuO4 [21], i.e., q ≈ ( 2π

3 , 2π
3 ); second, that Ti

substitution does not cause any RuO6 distortions [16], while Ca
substitution causes RuO6 distortions such as the rotation and
the tilting [22], which drastically affect the electronic structure
[23,24].
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Among correlated electron systems, the ruthenates are
suitable to deduce general or characteristic aspects of many-
body effects in correlated multiorbital systems because of
the following three advantages. The first advantage is that
the ruthenates show the FL or the non-FL-like behaviors,
depending on the chemical composition or the crystal structure
or both [11,12,16–19]. Due to this advantage, we can study
how the FL state is realized and how the system changes
from the FL state to the non-FL-like state, and we may obtain
their general or characteristic properties. Then, the second
advantage is that the ruthenates are the t2g-orbital systems
with moderately strong electron correlation [14,25]. This has
been established for Sr2RuO4 by three facts: the Ru t2g orbitals
are the main components of the density of states (DOS) near
the Fermi level in the LDA [26,27]; the LDA [26,27] can
reproduce the topology of the Fermi surface (FS) observed
experimentally [13,28]; the experimentally estimated value
of U , onsite intraorbital Coulomb interaction, is about 2 eV
[25], which is half of the bandwidth for the t2g orbitals in the
LDA [26,27]. In addition to the second advantage, the third
advantage is the simple electronic structure [26,27] compared
with the other multiorbital systems. Due to the second and the
third advantages, we can simply analyze many-body effects of
a correlated multiorbital system, and that analysis may lead to
a deep understanding of the general or characteristic aspects
of the many-body effects.

To describe many-body effects near a magnetic QCP, we
need to use the theories that can satisfactorily take account of
the effects of the critical electron-hole scattering arising from
the characteristic spin fluctuation of that QCP. If the system
approaches a magnetic QCP, we observe the enhancement
of the spin fluctuation for the wave vector characteristic
of that QCP [3,10,29]. That enhancement causes the strong
temperature-dependent critical electron-hole scattering medi-
ated by the spin fluctuation. Then, that critical electron-hole
scattering results in the emergence of both the hot spot
of the QP damping and the Curie-Weiss–type temperature
dependence of the reducible four-point vertex function for
the momenta connected by the spin fluctuation. (Note that
the reducible four-point vertex function describes the multiple
electron-hole scattering [8].) Thus, the emergence of the
former violates the first basic assumption of Landau’s FL
theory since at the hot spot the QP lifetime is not so
sufficiently long as to realize an approximate eigenstate as
Landau’s FL [10]. Furthermore, the latter violates the second
basic assumption because the temperature dependence of the
reducible four-point vertex function and mass enhancement
factor determines the temperature dependence of the Landau
parameter [10]. Thus, many-body effects near a magnetic QCP
may be described by the theories beyond Landau’s FL theory
if the theories can satisfactorily treat the strongly enhanced
temperature-dependent spin fluctuation.

Actually, several non-FL-like behaviors near a magnetic
QCP can be reproduced in fluctuation-exchange (FLEX)
approximation [30–34] with the current vertex corrections
(CVCs) arising from the self-energy (�) and the Maki-
Thompson (MT) irreducible four-point vertex function [35,36]
due to electron correlation [37,38]. For example, this theory
shows the Curie-Weiss–type temperature dependence of both
the spin susceptibility and the Hall coefficient and the T -linear

in-plane resistivity for a single-orbital Hubbard model on a
square lattice in a PM state near an AF QCP, where the spin
fluctuation for q = (π,π ) is enhanced [37]. Those results are
consistent with the experiments of cuprates [39–41]. Since
the powerfulness of the FLEX approximation near a magnetic
QCP arises from its satisfactory treatment of the momentum
and temperature dependence of spin fluctuations [10,29], the
similar applicability will hold even for a multiorbital Hubbard
model on a square lattice.

Since the effects of the CVCs due to electron-electron
interaction in a correlated multiorbital system had been
unclear, I studied several electronic properties of an effective
model of several ruthenates, a t2g-orbital Hubbard model on
a square lattice in a PM state away from or near an AF QCP,
in the FLEX approximation with the � CVC and the MT
CVC [10,38], and then I obtained satisfactory agreement with
several experiments and three important aspects of many-body
effects on the charge transports. First, the results away from the
AF QCP qualitatively agree with five experimental results of
Sr2RuO4: (i) the strongest enhancement of spin fluctuation [21]
at q ≈ ( 2π

3 , 2π
3 ), (ii) the nearly temperature-independent spin

susceptibility [11], (iii) the larger mass enhancement [13,14]
of the dxy orbital than that of the dxz/yz orbital, (iv) the T 2

dependence of the in-plane resistivity at low temperatures
[12], and (v) the nonmonotonic temperature dependence of the
Hall coefficient [42]. Note that the Hall coefficient observed
in Sr2RuO4 shows the following nonmonotonic temperature
dependence [42]: at high temperatures above 130 K, the Hall
coefficient is small and negative with a slight increase with
decreasing temperature; after crossing over zero at 130 K, the
Hall coefficient becomes positive with keeping an increase, and
shows a peak at about 70 K; below about 70 K, the Hall coef-
ficient monotonically decreases with decreasing temperature.
Then, the results near the AF QCP can qualitatively explain
three experimental results of Sr2Ru0.975Ti0.025O4: (i) the
strongest enhancement of spin fluctuation [20] at q ≈ ( 2π

3 , 2π
3 ),

(ii) the Curie-Weiss–type temperature dependence of the spin
susceptibility [16], and (iii) the T -linear in-plane resistivity
[17]. In this comparison, I assume that the main effect of
Ti substitution is approaching the AF QCP compared with
Sr2RuO4. Note that the measurement of the Hall coefficient in
Sr2Ru0.975Ti0.025O4 has been restricted at very low temperature
[43], which is out of the region I considered. Moreover, I
revealed the realization of the orbital-dependent transports,
the emergence of a peak of the temperature dependence of
the Hall coefficient, and the absence of the Curie-Weiss–type
temperature dependence of the Hall coefficient near the AF
QCP.

However, the previous studies [10,38] contain two re-
maining issues. One is to clarify many-body effects of the
Aslamasov-Larkin (AL) CVC, the CVC arising from the AL
irreducible four-point vertex function [44,45]. In the previous
studies [10,38], I neglected the AL CVC in the FLEX approx-
imation for simplicity since in a single-orbital Hubbard model
[37] on a square lattice, the AL CVC does not qualitatively
change the results of the resistivity and Hall coefficient near
an AF QCP and since the similar property would hold even in
a multiorbital Hubbard model on a square lattice not far away
from an AF QCP. However, it is necessary and important to
analyze the effects of the AL CVC in that multiorbital Hubbard
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model since both the MT and the AL CVCs are essential to
hold conservation laws exactly [15]. In particular, that analysis
is needed not only to check the validity neglecting the AL
CVC for qualitative discussions, but also to clarify many-body
effects of the AL CVC. The other remaining issue is to give
the comprehensive explanations about the formal derivations
both of the transport coefficients in the extended Éliashberg
theory [46] to a multiorbital system and of the CVCs in the
FLEX approximation for a multiorbital Hubbard model. My
previous study [38] reported a microscopic study about the
effects of the CVCs due to electron correlation in a multiorbital
system. In the previous studies [10,38], however, I just gave
brief explanations about those formal derivations. Thus, it is
desirable to explain the detail of those formal derivations since
those will be useful to adopt the same or similar method to the
transport properties of other correlated electron systems.

In this paper, after formulating the dc longitudinal and the
dc transverse conductivities in the extended Éliashberg theory
to a multiorbital Hubbard model in the FLEX approximation
with the CVCs, I study the effects of the main terms of the AL
CVC on the in-plane resistivity and the Hall coefficient for the
quasi-two-dimensional PM ruthenates near and away from the
AF QCP. As the main results, I show the qualitative validity of
the main results of the previous studies [10,38], the existence
of two almost distinct regions of the charge transports near
the AF QCP as a function of temperature, and the different
effects of the MT CVC on the low-temperature values of the
in-plane resistivity and Hall coefficient away from the AF
QCP in the presence of the � CVC, the MT CVC, and the
main terms of the AL CVC. I also present several results of
the magnetic properties and the electronic structure, and show
four main results about each of the magnetic properties and the
electronic structure. Those are useful for deeper understanding
than in the previous studies [10,38].

The remaining part of this paper is organized as follows.
In Sec. II, I explain the method to calculate the electronic
properties of some quasi-two-dimensional PM ruthenates
without the RuO6 distortions. In Sec. II A, I show the Hamil-
tonian of an effective model of some quasi-two-dimensional
ruthenates, explain the parameter choice for the noninteracting
Hamiltonian, and briefly remark on the spin-orbit interaction.
In Secs. II B 1 and II B 2, I explain the extended Éliashberg
theory to the dc longitudinal and the dc transverse conduc-
tivities for a multiorbital system and give several theoretical
remarks about their general properties. In Sec. II C, I explain
several advantages of the FLEX approximation with the
CVCs, formulate the FLEX approximation for a multiorbital
Hubbard model, and derive the Bethe-Salpeter equation for the
current with the � CVC, the MT CVC, and the AL CVC in
the FLEX approximation. Furthermore, I derive a simplified
Bethe-Salpeter equation by approximating the AL CVC to its
main terms. In Sec. III, I show the results of several electronic
properties of the quasi-two-dimensional PM ruthenates near
and away from the AF QCP in the FLEX approximation with
the � CVC, the MT CVC, and the main terms of the AL
CVC; in addition to that case, I consider three other cases
considered in Ref. [10] for discussions about the transport
properties in order to deduce the main effects of the AL
CVC. After discussing the magnetic properties in Sec. III A
and the electronic structure in Sec. III B, I discuss the main

effects of the AL CVC on the in-plane resistivity and the Hall
coefficient in Sec. III C. Then, I compare the obtained results
with several experiments of Sr2RuO4 or Sr2Ru0.975Ti0.025O4

in Sec. IV A, and other theories in Sec. IV B. In Sec. V,
I summarize the obtained results and their conclusions, and
show several remaining issues.

II. METHOD

In this section, I explain an effective model of some
quasi-two-dimensional ruthenates and a general theoretical
method to analyze the resistivity and the Hall coefficient for
a correlated multiorbital system in a PM state. In Sec. II A,
we see the Hamiltonian of the effective model, determine the
parameters of the noninteracting Hamiltonian, and remark on
the spin-orbit interaction, neglected in the effective model.
In Sec. II B 1, to analyze the resistivity, we explain the
formal derivation of the dc longitudinal conductivity of
a multiorbital Hubbard model in a PM state without an
external magnetic field in the linear-response theory with the
most-divergent-term approximation [46], and show general
properties of the derived longitudinal conductivity and their
consequences for the resistivity. In Sec. II B 2, we derive the
dc transverse conductivity of a multiorbital Hubbard model in
a PM state in the weak-field limit by using the linear-response
theory with the most-divergent-term approximation, and see
general properties of the derived transverse conductivity
and the Hall coefficient in combination with the results for
the longitudinal conductivity. The general formulations in
Secs. II B 1 and II B 2 are the extensions of the single-orbital
cases for the resistivity [46] and the Hall coefficient [47,48],
respectively. In Sec. II C, we remark on several advantages of
the FLEX approximation with the CVCs, formulate the FLEX
approximation in Matsubara-frequency representation for a
multiorbital Hubbard model in a PM state in the similar way for
Refs. [33,34], and derive the CVCs in the FLEX approximation
by extending the formulation for a single-orbital case [37].

Hereafter, we use the following unit and notations: We
set � = 1, c = 1, e = 1, μB = 1, and kB = 1. In the equa-
tions, the dxz, dyz, and dxy orbitals are labeled 1, 2, and 3,
respectively. In Matsubara-frequency representation of several
quantities, we use the fermionic and the bosonic Matsubara
frequencies εm = πT (2m + 1) and �n = 2πT n, respectively.
In real-frequency representation, we use frequency variables
such as ε and ω and abbreviations such as k ≡ (k,ε) and
q ≡ (q,ω), with momenta k and q. We use the abbre-
viations such as

∑
{a} ≡ ∑

a,b,c,d ,
∑

{s1} ≡ ∑
s1,s2,s3,s4

, and
�{a}(k,iεm,k′,iεm′ ; 0,i�n) ≡ �abcd (k,iεm,k′,iεm′ ; 0,i�n).

A. Effective model

In this section, I introduce the total Hamiltonian of an
effective model for some quasi-two-dimensional ruthenates
and explain how to choose the parameters in the noninteracting
Hamiltonian. I also give a brief remark about the spin-orbit
interaction.

To describe the electronic properties of several 214-type
ruthenates such as Sr2RuO4, I use a t2g-orbital Hubbard model
[10,38] on a square lattice because several 214-type ruthenates
are categorized as quasi-two-dimensional t2g-orbital correlated
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systems and Ru ions on a two-dimensional layer form a square
lattice [14]. The Hamiltonian of this model is

Ĥ = Ĥ0 + Ĥint, (1)

where Ĥ0 and Ĥint are the noninteracting and the interacting
Hamiltonians, respectively.

First, Ĥ0 is given by

Ĥ0 =
∑

k

3∑
a,b=1

∑
s=↑,↓

εab(k)ĉ†kas ĉkbs . (2)

Here, ĉkas and ĉ
†
kas are the annihilation and the creation

operators of an electron of momentum k, orbital a, and spin s,
and εab(k) is given by

ε11(k) = − 	t2g

3
− 2t1 cos kx − 2t2 cos ky − μ, (3)

ε12(k) = ε21(k) = 4t ′ sin kx sin ky, (4)

ε22(k) = − 	t2g

3
− 2t2 cos kx − 2t1 cos ky − μ, (5)

ε33(k) = 2	t2g

3
− 2t3(cos kx + cos ky)

− 4t4 cos kx cos ky − μ, (6)

and otherwise εab(k) = 0, where 	t2g
is the difference between

the crystalline-electric-field energies of the dxy and the dxz/yz

orbitals, μ is the chemical potential determined so that the
electron number per site ne satisfies ne = 4, and t1, t2, t3, t4,
and t ′ are the hopping integrals of the t2g orbitals, whose
schematic pictures are shown in Fig. 1. Since I neglect the
effects [23,24] of the RuO6 distortions on Ĥ0, the targets of this
paper are the 214-type ruthenates without the RuO6 distortions.

Assuming that the LDA [26,27] for Sr2RuO4 gives a
good starting point to include many-body effects in the
214-type ruthenates without the RuO6 distortions, I choose
the parameters in εab(k) so as to reproduce the electronic
structure obtained in the LDA [26,27] for Sr2RuO4. Namely,
I set t1 = 0.675 eV, t2 = 0.09 eV, t3 = 0.45 eV, t4 = 0.18 eV,
t ′ = 0.03 eV, and 	t2g

= 0.13 eV. As explained in Ref. [10],
the obtained electronic structure is consistent with the LDA
[26,27]: the bandwidth for the t2g orbitals is about 4 eV; the
quasi-one-dimensional dxz and dyz orbitals form the holelike α

and electronlike β sheets, and the quasi-two-dimensional dxy

orbital forms the electronlike γ sheet; the van Hove singularity

FIG. 1. Schematic pictures of the hopping processes of the t2g

orbitals on a two-dimensional layer. The difference in the color of
each orbital shows the difference in the sign of its wave function.

of the dxy orbital exists above the Fermi level; the occupation
numbers of the dxz/yz and the dxy orbitals are nxz/yz = 1.38
and nxy = 1.25.

Then, Ĥint is given by

Ĥint =1

4

∑
j

∑
{a}

∑
{s1}

U
s1s2s3s4
abcd ĉ

†
jas1

ĉ
†
jds4

ĉ jcs3 ĉ jbs2

= U
∑

j

3∑
a=1

n̂ ja↑n̂ ja↓ + U ′ ∑
j

3∑
a=1

∑
b<a

n̂ jan̂ jb

− JH

∑
j

3∑
a=1

∑
b<a

(
2ŝ ja · ŝ jb + 1

2
n̂ jan̂ jb

)

+ J ′ ∑
j

3∑
a=1

∑
b �=a

ĉ
†
ja↑ĉ

†
ja↓ĉ jb↓ĉ jb↑. (7)

Here, U
s1s2s3s4
abcd is a bare four-point vertex function, U is

intraobital Coulomb interaction, U ′ is interorbital Coulomb
interaction, JH is Hund’s rule coupling, J ′ is pair hop-
ping term, n̂ ja is n̂ ja = ∑

s n̂ jas = ∑
s ĉ

†
jas ĉ jas , and ŝ ja

is ŝ ja = 1
2

∑
s,s ′ ĉ

†
jasσ ss ′ ĉ jas ′ with the Pauli matrices σ ss ′ .

Among the terms of U
s1s2s3s4
abcd , it is sufficient for a PM

state to use U
↑↓
abcd , U

↑↑
abcd , and U±

abcd , which are, respec-
tively, U

↑↓
abcd ≡ U

↑↑↓↓
abcd = U

↓↓↑↑
abcd , U

↑↑
abcd ≡ U

↑↑↑↑
abcd = U

↓↓↓↓
abcd ,

and U±
abcd ≡ U

↑↓↑↓
abcd = U

↓↑↓↑
abcd . In addition, in the absence of

the spin-orbit interaction, it is more useful to introduce bare
four-point vertex functions in spin and charge sectors UC

abcd

and US
abcd , defined as

U
s1s2s3s4
abcd = 1

2UC
abcdσ

0
s1s2

σ 0
s4s3

− 1
2US

abcdσ s1s2 · σ s4s3 . (8)

Namely, UC
abcd is UC

abcd = U
↑↓
abcd + U

↑↑
abcd , and US

abcd is US
abcd =

U
↑↓
abcd − U

↑↑
abcd = −U±

abcd .
I will explain how to treat the effects of Ĥint in Sec. II C,

and how to choose the values of U, U ′,JH, and J ′ in Sec. III.
In the effective model, I neglect the spin-orbit interaction

of the Ru t2g orbitals for simplicity. This treatment may be
sufficient to discuss the electronic properties analyzed in this
paper since the coupling constant estimated in local-spin-
density approximation [49] for Sr2RuO4 is 0.167 eV, which is
smaller than the main terms of Ĥ0 and Ĥint, and since its effects
will not qualitatively change the results shown in Sec. III.
(The main terms of Ĥint are of the order of magnitude 1 eV,
as described in Sec. III.) For several expected roles of the
spin-orbit interaction, see the remaining issues in Sec. V.

B. Extended Éliashberg theory to charge transports
of a multiorbital system

In this section, we derive the dc longitudinal conductivity
without an external magnetic field and the dc transverse
conductivity in a weak-field limit in the linear-response theory
with the most-divergent-term approximation. In Sec. II B 1, we
derive the dc longitudinal conductivity to analyze the resistiv-
ity of a correlated multiorbital system. After deriving the exact
expression in terms of the four-point vertex function or the
three-point vector vertex function, we derive its approximate
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expression in the most-divergent-term approximation [46],
which is appropriate for the metallic systems with long-lived
QPs at (at least) several momenta. We also explain four
general properties seen from the derived expression of the
conductivity and show the properties of the resistivity about
the dominant excitations, the dependence on the QP lifetime,
and the main effects of the CVCs. In Sec. II B 2, to analyze
the Hall coefficient of a correlated multiorbital system for a
weak magnetic field, we derive the dc transverse conductivity
in the weak-field limit. Due to difficulty deriving the exact
expression, I derive only the approximate expression in the
most-divergent-term approximation [47,48]. In addition, after
explaining four general properties of the derived conductivity,
we deduce the properties of the Hall coefficient in the weak-
field limit about the similar things for the resistivity.

Before the formal derivations, I remark on the meanings of
taking the ω limit and holding ωτtrans � 1 in these derivations
[10] with τtrans, the transport relaxation time [46,47] (of the
order of magnitude the QP damping). First, the ω limit, i.e.,
limω→0 limq→0, is vital to obtain the observable currents since
the dynamic and uniform field causes the observable currents;
on the other hand, the q limit, i.e., limq→0 limω→0, does not

cause any observable currents as a result of the screening
induced by the modulations of the charge distribution [50].
Then, in taking limω→0, the QP lifetime should hold ωτtrans �
1 since the inequality characterizes the relaxation process of
transports; in ωτtrans � 1, local equilibrium is realized due to
the rapid relaxation compared with ω−1, a typical time scale of
the field, and then the QPs near the Fermi level mainly govern
the electronic transports.

1. Resistivity

For discussions about the resistivity of a correlated multior-
bital system, I use the Kubo formula [51] for the longitudinal
conductivity σνν in the ω limit and ωτtrans � 1,

σνν = 2 lim
ω→0

lim
q→0

K̃ (R)
νν (q,ω) − K̃ (R)

νν (q,0)

iω

= 2 lim
ω→0

K̃ (R)
νν (0,ω) − K̃ (R)

νν (0,0)

iω
, (9)

where K̃ (R)
νν (0,ω) is determined by K̃ (R)

νν (0,ω) = K̃νν(i�n →
ω + i0+) with K̃νν(i�n), being

K̃νν(i�n) = lim
q→0

1

N

∫ T −1

0
dτ ei�nτ 〈Tτ Ĵqν(τ )Ĵ−qν(0)〉

= 1

N

∑
k,k′

∑
{a}

∫ T −1

0
dτ ei�nτ (vkν)ba(vk′ν)cd〈Tτ ĉ

†
kb(τ )ĉka(τ )ĉ†k′cĉk′d〉

= − T

N

∑
k

∑
m

∑
{a}

(vkν)ba(vkν)cdGac(k,iεm+n)Gdb(k,iεm) − T 2

N2

∑
k,k′

∑
m,m′

∑
{a}

∑
{A}

(vkν)ba(vk′ν)cdGaA(k,iεm+n)

× GdD(k′,iεm′ )GBb(k,iεm)GCc(k′,iεm′+n)�{A}(k,iεm,k′,iεm′ ; 0,i�n). (10)

In Eq. (10), (vkν)ab is the group velocity,

(vkν)ab = ∂εab(k)

∂kν

, (11)

and �{A}(k,iεm,k′,iεm′ ; 0,i�n) is the reducible four-point vertex function, which is connected with the irreducible one through
the Bethe-Salpeter equation [8],

�{A}(k,iεm,k′,iεm′ ; 0,i�n) = �
(1)
{A}(k,iεm,k′,iεm′ ; 0,i�n) + T

N

∑
k′′

∑
m′′

∑
{A′}

�ABC ′D′(k,iεm,k′′,iεm′′ ; 0,i�n)

× GC ′A′(k′′,iεm′′+n)GB ′D′(k′′,iεm′′ )�(1)
A′B ′CD(k′′,iεm′′ ,k′,iεm′ ; 0,i�n). (12)

The irreducible four-point vertex function can be determined in the way explained in Sec. II C.
To obtain an exact expression of σνν , we carry out the analytic continuations [9,46] of the first and second terms of Eq. (10)

by using the analytic properties of the single-particle Green’s function and the four-point vertex function. As we will carry out
those analytic continuations in Appendix A, we obtain

K̃ (R)
νν (0,ω) = − 1

N

∑
k,k′

∑
{a}

(vkν)ba(vk′ν)cd

∫ ∞

−∞

dε

4πi

[
tanh

ε

2T
K

(R)
1;{a}(k,k′; ε; ω)

+
(

tanh
ε + ω

2T
− tanh

ε

2T

)
K

(R)
2;{a}(k,k′; ε; ω) − tanh

ε + ω

2T
K

(R)
3;{a}(k,k′; ε; ω)

]
, (13)
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with K
(R)
l;{a}(k,k′; ε; ω), being

K
(R)
l;{a}(k,k′; ε; ω) = gl;acdb(k; ω)δk,k′ + 1

N

∫ ∞

−∞

dε′

4πi

∑
{A}

3∑
l′=1

gl;aABb(k; ω)Jll′;{A}(k,k′; ω)gl′;CcdD(k′; ω). (14)

Here,Jll′;{A}(k,k′; ω) is connected with the reducible four-point vertex function in real-frequency representation and is determined
by the Bethe-Salpeter equation,

Jll′;{A}(k,k′; ω) = J (1)
ll′;{A}(k,k′; ω) +

3∑
l′′=1

1

N

∑
k′′

∑
{A′}

∫ ∞

−∞

dε′′

4πi
Jll′′;ABC ′D′(k,k′′; ω)gl′′;C ′A′B ′D′(k′′; ω)J (1)

l′′l′;A′B ′CD(k′′,k′; ω), (15)

with the similar connection betweenJ (1)
ll′;{A}(k,k′; ω) and the irreducible four-point vertex function in real-frequency representation.

We also rewrite K̃ (R)
νν (0,ω) in a more compact form by using the three-point vertex function in real-frequency representation

�ν;l;ab(k; ω) ≡ �ν;l;ab(k,ε + ω,k,ε) (for the detail see Appendix B):

K̃ (R)
νν (0,ω) = − 1

N

∑
k

∑
{a}

(vkν)ba

∫ ∞

−∞

dε

4πi

[
tanh

ε

2T
g1;acdb(k; ω)�ν;1;cd (k; ω)

+
(

tanh
ε + ω

2T
− tanh

ε

2T

)
g2;acdb(k; ω)�ν;2;cd (k; ω) − tanh

ε + ω

2T
g3;acdb(k; ω)�ν;3;cd (k; ω)

]
. (16)

Because of the difficulty solving the exact expression of σνν , we use the most-divergent-term approximation, introduced by
Éliashberg [46], in order to derive an approximate expression. In this approximation [46], we consider only the most divergent
terms with respect to the QP lifetime in γ ∗

α (kF)/T → 0 with γ ∗
α (kF), the QP damping for band α at Fermi momentum kF.

This approximation is based on the limiting properties [8,9] of the pairs of two single-particle Green’s functions with external
momentum and frequency, q and ω, in q → 0 and γ ∗

α (kF)/T → 0. More precisely, utilizing the limiting properties, we can use
the approximation that among the pairs of two single-particle Green’s functions, only a retarded-advanced pair gives the leading
dependence on the QP damping and the external momentum and frequency. Namely, we can approximate the leading dependence
of g1;acdb(k; ω), g2;acdb(k; ω), and g3;acdb(k; ω) to [10]

g1;acdb(k; ω) ∼
∑
α,β

(Uk)aα(U †
k)αc(Uk)dβ(U †

k)βb

zα(k)zβ(k)

[ε − ξ ∗
α (k) + i0+][ε − ξ ∗

β (k) + i0+]
, (17)

g2;acdb(k; ω) ∼ 2πi
∑
α,β

(Uk)aα(U †
k)αc(Uk)dβ(U †

k)βb

zα(k)zβ(k)δ[ε − ξ ∗
α (k)]

ω − ξ ∗
α (k) + ξ ∗

β (k) + i[γ ∗
α (k) + γ ∗

β (k)]
, (18)

and

g3;acdb(k; ω) ∼
∑
α,β

(Uk)aα(U †
k)αc(Uk)dβ(U †

k)βb

zα(k)zβ(k)

[ε − ξ ∗
α (k) − i0+][ε − ξ ∗

β (k) − i0+]
, (19)

respectively. Here, ξ ∗
α (k) is the QP energy, zα(k) is the mass enhancement factor, and (Uk)aα is the unitary matrix to obtain the

QP dispersions. Since this treatment remains reasonable for γ ∗
α (kF)/T < 1, the most-divergent-term approximation is not only

exact in the FL, but also appropriate in the correlated metallic systems having the long-lived QPs at least for several momenta.
To derive an approximate expression of σνν in the most-divergent-term approximation [46], we introduce two quantities

J (0)
ll′;{a}(k,k′; ω) and �

(0)
ν;l;ab(k; ω), which are irreducible only about a retarded-advanced pair, and rewrite K̃ (R)

νν (0,ω) by using the

two quantities. First, we define J (0)
ll′;{a}(k,k′; ω) and �

(0)
ν;l;ab(k; ω) as

J (0)
ll′;{a}(k,k′; ω) =J (1)

ll′;{a}(k,k′; ω) + 1

N

∑
k′′

∑
{A}

∫ ∞

−∞

dε′′

4πi

∑
l′′=1,3

J (0)
ll′′;abCD(k,k′′; ω)gl′′;CABD(k′′; ω)J (1)

l′′l′;ABcd (k′′,k′; ω) (20)

and

�
(0)
ν;l;ab(k; ω) = (vkν)ab +

∑
{A}

∑
l′=1,3

1

N

∑
k′

∫ ∞

−∞

dε′

4πi
J (0)

ll′;abCD(k,k′; ω)gl′;CABD(k′; ω)(vk′ν)AB, (21)

respectively. We can also connect �
(0)
ν;l;ab(k; ω) with �ν;l;ab(k; ω) as follows:

�ν;l;ab(k; ω) = �
(0)
ν;l;ab(k; ω) +

∑
{A}

1

N

∑
k′

∫ ∞

−∞

dε′

4πi
J (0)

l2;abCD(k,k′; ω)g2;CABD(k′; ω)�ν;2;AB(k′; ω). (22)
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Then, substituting Eq. (22) into (16) and using two equalities,

− 1

N

∑
k

∑
{a}

∫ ∞

−∞

dε

4πi
(vkν)ba tanh

ε

2T
g1;acdb(k; ω)

1

N

∑
k′

∑
{A}

∫ ∞

−∞

dε′

4πi
J (0)

12;cdCD(k,k′; ω)g2;CABD(k′; ω)�ν;2;AB (k′; ω)

= − 1

N

∑
k

∑
{a}

∫ ∞

−∞

dε

4πi

[
1

N

∑
k′

∑
{A}

∫ ∞

−∞

dε′

4πi
J (0)

21;baBA(k,ε,k,ε + ω,k′,ε′,k′,ε′ + ω)g1;BDCA(k′,ε′,k′,ε′ + ω)(vk′ν)DC

]

×
(

tanh
ε + ω

2T
− tanh

ε

2T

)
g2;acdb(k; ω)�ν;2;cd (k; ω) (23)

and

1

N

∑
k

∑
{a}

∫ ∞

−∞

dε

4πi
(vkν)ba tanh

ε + ω

2T
g3;acdb(k; ω)

1

N

∑
k′

∑
{A}

∫ ∞

−∞

dε′

4πi
J (0)

32;cdCD(k,k′; ω)g2;CABD(k′; ω)�ν;2;AB (k′; ω)

= − 1

N

∑
k

∑
{a}

∫ ∞

−∞

dε

4πi

[
1

N

∑
k′

∑
{A}

∫ ∞

−∞

dε′

4πi
J (0)

23;baBA(k,ε,k,ε + ω,k′,ε′,k′,ε′ + ω)g3;BDCA(k′,ε′,k′,ε′ + ω)(vk′ν)DC

]

×
(

tanh
ε + ω

2T
− tanh

ε

2T

)
g2;acdb(k; ω)�ν;2;cd (k; ω), (24)

we can express K̃ (R)
νν (0,ω) as two parts, the part excluding a retarded-advanced pair and the other part:

K̃ (R)
νν (0,ω) = − 1

N

∑
k

∑
{a}

(vkν)ba

∫ ∞

−∞

dε

4πi

[
tanh

ε

2T
g1;acdb(k; ω)�(0)

ν;1;cd (k; ω) − tanh
ε + ω

2T
g3;acdb(k; ω)�(0)

ν;3;cd (k; ω)

]

− 1

N

∑
k

∑
{a}

∫ ∞

−∞

dε

4πi
�

(0)
ν;2;ba(k,ε,k,ε + ω)

(
tanh

ε + ω

2T
− tanh

ε

2T

)
g2;acdb(k; ω)�ν;2;cd (k; ω). (25)

This expression remains exact at this stage. In Eqs. (23) and
(24), we have used Eqs. (A7), (A9), (A11), and (A13) and
the exchange symmetry [48] of the four-point vertex function
about its variables.

Adopting the most-divergent-term approximation to
Eq. (25), extracting the ω-linear term, and using (9), we obtain
an approximate expression of σνν :

σνν = 2

N

∑
k

3∑
{a}=1

∫ ∞

−∞

dε

2π

(
−∂f (ε)

∂ε

)

× �
(0)
ν;2;ba(k; 0)g2;acdb(k; 0)�ν;2;cd (k; 0). (26)

Here, we can regard �
(0)
ν;2;ba(k; 0) and �ν;2;cd (k; 0) as, re-

spectively, the current including the CVC arising from the
self-energy and the current including the CVCs arising from
the self-energy and the irreducible four-point vertex function.
This is because Eq. (21) for l = 2 at ω = 0 becomes

�
(0)
ν;2;ab(k; 0) = (vkν)ab + ∂ Re�(A)

ab (k)

∂kν

, (27)

as a result of a Ward identity [8], and because Eq. (22) for
l = 2 at ω = 0 becomes

�ν;2;cd (k; 0)

= �
(0)
ν;2;cd (k; 0) + 1

N

∑
k′

∑
{A}

∫ ∞

−∞

dε′

4πi
J (1)

22;cdCD

× (k,k′; 0)g2;CABD(k′; 0)�ν;2;AB (k′; 0), (28)

as a result of the disappearance of the second term of Eq. (20),
the higher-order term [46] about ωτtrans than the first term of
Eq. (20). Note that the second term of Eq. (28) plays a similar
role for the backflow correction [8] in the FL theory since that
term connects the currents at k and k′.

From Eq. (26), we see four general properties for the dc
longitudinal conductivity of a correlated electron system. (The
following arguments for σxx are qualitatively the same even
for σyy .) First, due to the factor (− ∂f (ε)

∂ε
) in Eq. (26), the

main excitations arise from the QPs near the Fermi level.
This property indicates the importance of the coherent part
of the single-particle Green’s function in discussing ρab.
Such importance holds even if its incoherent part evolves,
as shown in dynamical-mean-field theory (DMFT) [57] for
a single-orbital Hubbard model on a square lattice in a PM
metallic state near a Mott transition. Second, Eq. (26) with
the approximate form of g2;acdb(k; 0) shows that the intraband
excitations become dominant compared with the interband
excitations. This is because the intraband components of
Eq. (18) (i.e., α = β) give larger finite contributions to σxx

than the interband components (i.e., α �= β) due to the factor
−ξ ∗

α (k) + ξ ∗
β (k) in the denominator of Eq. (18) for ω = 0.

Third, combining Eqs. (26) and (18) with the above second
general property, we find that σxx is inversely proportional to
the QP damping. Note that the dependence of σxx on the QP
damping can be determined by the dependence of g2;acdb(k; 0)
since �

(0)
x;2;ba(k; 0) and �x;2;cd (k; 0) are independent of the QP

damping [46]. Fourth, due to the CVCs in �
(0)
x;2;ba(k; 0) and

�x;2;cd (k; 0), σxx is affected both by the CVC arising from
the self-energy and by the CVCs arising from the self-energy
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and irreducible four-point vertex function, and the dominant
effect arises from the magnitude changes of the currents.
This property can be deduced from the following arguments:
Since �

(0)
x;2;ba(k; 0) includes the � CVC [see Eq. (27)], its

effect is the renormalization of the group velocity, resulting
in a magnitude change of the current [46]. On the other
hand, the effects of the CVCs in �x;2;cd (k; 0) are not only
a magnitude change of the current, but also an angle change
since the CVC arising from the irreducible four-point vertex
function connects the currents at k and k′, which are not
always parallel or antiparallel [37]. Those effects on σxx can
be described by

�
(0)
x;2;ba(k; 0)�x;2;cd (k; 0)

= ∣∣�(0)
2;ba(k)

∣∣ cos ϕ
(0)
ba (k)

∣∣�2;cd (k)
∣∣ cos ϕcd (k)

∼ ∣∣�(0)
2;ba(k)

∣∣ cos ϕ
(0)
ba (k)

∣∣�2;cd (k)
∣∣

× cos ϕ
(0)
cd (k)

[
1 − 	ϕcd (k)2

2

]
, (29)

where |�(0)
2;ab(k)| and |�2;ab(k)| represent the magnitudes

of �
(0)
x;2;ba(k; 0) and �x;2;cd (k; 0), respectively, and ϕ

(0)
ab (k)

and ϕab(k) = ϕ
(0)
ab (k) + 	ϕab(k) represent the angles. Thus,

even for the CVCs in �x;2;cd (k; 0), the magnitude change is
dominant for σxx .

From those properties, we can deduce the properties of the
resistivity about the dominant excitations, the dependence on
the QP lifetime, and the main effects of the CVCs. Since the
resistivity is the inverse of the longitudinal conductivity, the
dominant excitations and the main effects of the CVCs are
the same for σxx , and the resistivity is inversely proportional
to the QP lifetime (in the same way for the relaxation-time
approximation [6]).

2. Hall coefficient

For discussions of the usual Hall effect of a correlated
multiorbital system for a weak external magnetic field, we
consider a uniform static external magnetic field along the z

direction, which is so weak that the cyclotron frequency ωc

satisfies ωcτtrans � 1, and derive an approximate expression
of the Hall coefficient in the weak-field limit on the basis
of the linear-response theory in the most-divergent-term
approximation [47,48]. In this derivation, we assume that the

system has the mirror symmetries about the xz and the yz

planes and the equivalence between the x and the y directions
[48]; these are valid for some 214-type ruthenates without
the RuO6 distortions. Because of the mirror symmetries and
the Onsager reciprocal theorem [52,53], we can treat the Hall
coefficient, which is generally a third-rank axial tensor [54], as
a scalar. In addition, because of the equivalence between the x

and the y directions, the Hall coefficient in the linear-response
theory [51] in the weak-field limit becomes

RH = 1

σxxσyy

lim
H→0

σxy

H

= 1

σ 2
xx

lim
H→0

σxy

H
. (30)

Since we had derived σxx in Sec. II B 1, we need to calculate
limH→0

σxy

H
in the linear-response theory with the most-

divergent-term approximation [47,48] in this section.
To calculate limH→0

σxy

H
, we need to derive the H -linear

terms of σxy . For that purpose, we use the vector potential A
instead of H itself, and derive the q-linear and A-linear terms.
Thus, the Kubo formula for limH→0

σxy

H
becomes [47,48]

lim
H→0

σxy

H
=2 lim

ω→0
lim
q→0

1

i[qxAy(q) − qyAx(q)]eiq·r

× �(R)
xy (q,ω) − �(R)

xy (q,0)

iω
, (31)

where �(R)
xy (q,ω) is obtained by �(R)

xy (q,ω) = �xy(q,i�n →
ω + i0+) with

�xy(q,i�n) = T

N

∫ T −1

0
dτ

∫ T −1

0
dτ ′ei�n(τ−τ ′)

× 〈
Tτ Ĵ

H
x (q,τ )Ĵ H

y (0,τ ′)
〉
H

=
∑

ν

Kxyν(q,i�n)Aν(q). (32)

Here, Ĵ
H

(0) within the linear response becomes

Ĵ
H

(0) − Ĵ(0) = −
∑

k

∑
a,b

A(q) · ∇k(vk)baĉ
†
kbĉka, (33)

and K (R)
xyν(q,ω) is obtained by K (R)

xyν(q,ω) = Kxyν(q,i�n →
ω + i0+), where Kxyν(q,i�n) is given by

Kxyν(q,i�n) = −δν,y

T

N

∫ T −1

0
dτ

∫ T −1

0
dτ ′ei�n(τ−τ ′)

〈
Tτ Ĵx(q,τ )

∑
k

∑
a,b

∂(vky)ba

∂kν

ĉ
†
kb(τ ′)ĉka(τ ′)

〉

+ T

N

∫ T −1

0
dτ

∫ T −1

0
dτ ′

∫ T −1

0
dτ ′′ei�n(τ−τ ′)〈Tτ Ĵx(q,τ )Ĵy(0,τ ′)Ĵν(−q,τ ′′)〉. (34)

Furthermore, using the three-point vector vertex function and introducing the irreducible six-point vertex function [47,48], we
can rewrite Eq. (34) as

Kxyν(q,i�n) = δν,y

T

N

∑
k

∑
m

∑
a,b,A,B

∂(vky)ba

∂kν

GaA(k−,iεm)�x;AB(k−,iεm,k+,iεm+n)GBb(k+,iεm+n)

+ T

N

∑
k

∑
m

∑
{a}

∑
f,g

Gf b(k−,iεm)�x;ba(k−,iεm,k+,iεm+n)Gad (k+,iεm+n)
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FIG. 2. Diagrammatic representations of (a) the first, (b) the second, (c) the third, and (d) the fourth terms of Eq. (35). × in panel
(a) represents the momentum derivative.

× �ν;gf (k+,iεm,k−,iεm)Gcg(k+,iεm)�y;dc(k+,iεm+n,k+,iεm)

+ T

N

∑
k

∑
m

∑
{a}

∑
f,g

Gag(k+,iεm+n)�x;ba(k−,iεm,k+,iεm+n)Gcb(k−,iεm)

× �ν;gf (k+,iεm+n,k−,iεm+n)Gf d (k−,iεm+n)�y;dc(k−,iεm+n,k−,iεm)

+
( T

N

)3 ∑
k,k′,k′′

∑
m,m′,m′′

∑
{a}

∑
{A}

∑
f,g,F,G

GBb(k−,iεm)�x;ba(k−,iεm,k+,iεm+n)GaA(k+,iεm+n)

× GGg(k′′
+,iεm′′ )�ν;gf (k′′

+,iεm′′ ,k′′
−,iεm′′ )Gf F (k′′

−,iεm′′ )GDd (k′,iεm′+n)�y;dc(k′,iεm′+n,k
′,iεm′ )

× GcC(k′,iεm′ )�(1)
3;ABCDFG(k+,iεm+n,k−,iεm; k′,iεm′ ,k′,iεm′+n; k′′

−,iεm′′ ,k′′
+,iεm′′ ), (35)

with k± ≡ k ± q/2. The terms of Eq. (35) can be represented
by the diagrams shown in Fig. 2. Thus, the remaining tasks are
to derive the q-linear terms of Kxyν(q,i�n), to carry out its
analytic continuation, and to combine the result with Eqs. (31)
and (32).

We first derive the q-linear terms of Eq. (35) in the most-
divergent-term approximation [47,48]. As I will explain in
Appendix C in detail, the q-linear terms are given by

Kxyν(q,i�n)

= 1

2
(qxδν,y − qyδν,x)

T

N

∑
k

∑
m

∑
{a}

×
[
�x;ba(k,iεm,k,iεm+n)

←→
∂

∂ky

�y;dc(k,iεm+n,k,iεm)

]

×
[
Gcb(k,iεm)

←→
∂

∂kx

Gad (k,iεm+n)

]
. (36)

We can show the four terms of Eq. (36) as the diagrams in
Fig. 3.

Then, we carry out the analytic continuation of Eq. (36).
This procedure can be done in the same way for σνν in
Sec. II B 1 since the relevant parameter for analytic continua-
tions about frequency is the frequency dependence and since
the frequency dependence of Eq. (36) is the same as K̃νν(i�n)
expressed in terms of the three-point vector vertex function,

K̃νν(i�n) = − T

N

∑
k

∑
m

∑
{a}

(vkν)ba�ν;cd (k,iεm; 0,i�n)

× Gac(k,iεm+n)Gdb(k,iεm). (37)

Thus, we obtain 	K (R)
xyν(q,ω) ≡ K (R)

xyν(q,ω) − K (R)
xyν(q,0) in the

most-divergent-term approximation [47,48] within the linear
order of ω/T :

	K (R)
xyν(q,ω) = − 1

2
(qxδν,y − qyδν,x)

∫ ∞

−∞

dε

4πi
2ω

(
−∂f (ε)

∂ε

)

× 1

N

∑
k

∑
{a}

[
�x;2;ba(k; 0)

←→
∂

∂ky

�y;2;dc(k; 0)

]

×
[
G

(R)
ad (k)

←→
∂

∂kx

G
(A)
cb (k)

]
. (38)

As described in Sec. II B 1, in the most-divergent-term ap-
proximation [46], the contribution from a retarded-retarded
or an advanced-advanced pair of two single-particle Green’s
functions is negligible compared with the contribution from a
retarded-advanced pair.

Combining Eq. (38) with Eqs. (31) and (32), we finally
obtain an approximate expression of the dc transverse conduc-
tivity in the weak-field limit within the most-divergent-term
approximation:

lim
H→0

σxy

H
= 1

N

∑
k

∫ ∞

−∞

dε

2π

(
−∂f (ε)

∂ε

)

×
∑
{a}

[
�x;2;ba(k; 0)

←→
∂

∂ky

�y;2;dc(k; 0)

]

× Im

[
G

(R)
ad (k)

←→
∂

∂kx

G
(A)
cb (k)

]
. (39)
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FIG. 3. Diagrammatic representation of each term of Eq. (36). The minus signs of the diagrams in panels (b) and (c) are not explicitly
written. × represents the momentum derivative.

Adopting the similar arguments for σxx in Sec. II B 1 to
Eq. (39), we see four general properties for limH→0

σxy

H
. First,

the QPs near the Fermi level give the main contributions due
to the factor (− ∂f (ε)

∂ε
). This is the same for σxx . Second, the

dominance of the intraband excitations also holds because of
the similar reason for σxx . Note that we can obtain the finite
intraband components in limH→0

σxy

H
since the quantities in

the former square brackets in Eq. (39) are odd about kx and
even about ky due to the combination of the kx derivative

in �x;2;ba(k; 0),
←→
∂

∂ky
, and the ky derivative in �y;2;dc(k; 0), and

since the quantities in the latter are odd about kx and even about

ky due to the combination of
←→
∂

∂kx
and a product of the retarded

and the advanced single-particle Green’s functions. Third, in
contrast to σxx , limH→0

σxy

H
is inversely proportional to the

square of the QP damping. This is because the momentum
derivative in a retarded-advanced pair leads to an additional
factor of the inverse of the QP damping [47,48]. Fourth, the
CVCs in �x;2;ba(k; 0) and �y;2;dc(k; 0) affect limH→0

σxy

H
, and

the dominant effects are an angle change, which is different
from the fourth property for σxx . This property arises from the
dependence of the following quantity on the magnitude and
angle changes of the currents:

[
�x;2;ba(k; 0)

←→
∂

∂ky

�y;2;dc(k; 0)

]

= |�2;ba(k)| cos ϕba(k)|�2;dc(k)| cos ϕdc(k)
∂ϕdc(k)

∂ky

+ |�2;ba(k)| sin ϕba(k)
∂ϕba(k)

∂ky

|�2;dc(k)| sin ϕdc(k)

∼ |�2;ba(k)| cos ϕ
(0)
ba (k)|�2;dc(k)| cos ϕ

(0)
dc (k)

∂ϕdc(k)

∂ky

+ |�2;ba(k)| sin ϕ
(0)
ba (k)

∂ϕba(k)

∂ky

|�2;dc(k)| sin ϕ
(0)
dc (k).

(40)

Thus, due to the appearance of ∂ϕdc(k)
∂ky

or ∂ϕba (k)
∂ky

, the angle
change of the current causes a more drastic effect on
limH→0

σxy

H
than σxx . Actually, the importance of such drastic

effect has been obtained in a single-orbital Hubbard model on
a square lattice [37].

Combining those properties with the four properties for
σxx , we can deduce the properties of RH about the dominant
excitations, the dependence on the QP lifetime, and the main
effects of the CVCs. First, the dominant excitations are the
intraband excitations near the Fermi level. Second, the depen-
dence of the numerator and denominator of RH on the QP
lifetime cancels each other out in the absence of the band
dependence of the QP lifetime, while the cancellation is not
perfect in the presence of the band dependence. This is because
limH→0

σxy

H
or σxx consists of the sum of the corresponding

intraband components, each of which has the dependence
of the QP lifetime for the band. Note that the nonperfect
cancellation is the origin of the temperature dependence of
RH of a multiorbital system in the Fermi liquid. Third, the
main effects of the CVCs on RH are the magnitude change
of the current due to �

(0)
x;2;ba(k; 0) in the denominator of

RH and the angle change of the current due to �x;2;ba(k; 0)
or �y;2;dc(k; 0) in the numerator since there is the nearly
perfect cancellation between the magnitude changes due to
�x;2;ba(k; 0) and �y;2;dc(k; 0) in the numerator and due to the
square of �x;2;cd (k; 0) in the denominator.

C. FLEX approximation with the � CVC,
the MT CVC, and the AL CVC

In this section, after explaining several advantages of
the FLEX approximation with the CVCs arising from the
self-energy and irreducible four-point vertex function, I
formulate the FLEX approximation in Matsubara-frequency
representation for a multiorbital Hubbard model in a PM state
and derive the CVCs arising from the irreducible four-point
vertex function in the FLEX approximation. In the latter
derivation, we first derive the irreducible four-point vertex
function in Matsubara-frequency representation; second, we
convert it into a real-frequency representation by using the
analytic continuation; third, we calculate part of the kernel
of the CVCs arising from the irreducible four-point vertex
function; fourth, we derive the Bethe-Salpeter equation for
the current including the CVCs. Furthermore, I introduce a
simplified Bethe-Salpeter equation by approximating the AL
CVC to its main terms.

To describe the electronic properties near or away from
a magnetic QCP, I use the FLEX approximation with the
CVCs arising from the self-energy and irreducible four-point
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vertex function since its following three properties are the
advantages in describing the electronic transports. One is that
this approximation is one of the conserving approximations
[30–32] that automatically satisfies conservation laws [55,56].
This is powerful to describe transports since the treatment
in keeping conservation laws is essential in transports [32].
Another advantage is that this approximation can take account
of the many-body effects due to the self-energy itself and the
CVCs arising from the self-energy and the irreducible four-
point vertex function [3,10]. In particular, this approximation
can sufficiently treat the effects of spatial (i.e., momentum-
dependent) correlation even near a magnetic QCP [3,10,29].
Due to this advantage, the FLEX approximation with the
CVCs can analyze how those many-body effects influence
the electronic properties beyond random-phase approximation
(RPA), a mean-field-type approximation, and the relaxation-
time approximation [6], where all the CVCs are neglected [3],
and improve several unrealistic results in the RPA; examples
of the improvements are a reasonable value of U for a
magnetic transition and the Curie-Weiss–type temperature
dependence of the spin susceptibility near an AF QCP [10,29].
(As described in Sec. II B, the CVCs are vital to satisfy
conservation laws [3,10,15].) The other advantage is that the
FLEX approximation can sufficiently describe the coherent
parts of the single-particle Green’s function for a moderately
strong electron correlation [3,10,29,32]. Actually, the FLEX
approximation for a single-orbital Hubbard model on a square
lattice at U being a half of the bandwidth is in satisfactory
agreement with the quantum Monte Carlo calculation about
the imaginary-time dependence of the single-particle Green’s
function for several momenta [32]. Although it has been
proposed in a diagrammatic Monte Carlo calculation [58] for
the same model that diagrammatic expansions based on the
Luttinger-Ward functional [55] break down at a large U , I be-
lieve the above satisfactory agreement [32] remains valid since
it has been shown [59] that this proposal results from an artifact
of the technical pathological treatment of the noninteracting
single-particle Green’s function in the diagrammatic Monte
Carlo calculation. This sufficient description of the coherent
part is very useful to analyze the electronic dc transports since,
as described in Sec. II B, the coherent parts almost dominate
the electronic dc transports.

We start to formulate the FLEX approximation for a
multiorbital Hubbard model in a PM state in a similar way
for Refs. [33,34]. A set of the equations in this approximation
can be obtained by choosing the form of the Luttinger-Ward
functional as the bubble and the ladder diagrams of the multiple
electron-hole scattering and deriving the effective interaction
and the Dyson equation. First, we can derive the effective
interaction in the FLEX approximation by considering the
bubble-type and the ladder-type multiple electron-hole scat-
tering. Since we focus on a PM state, it is sufficient to consider
the following three components:

V
↑↓
abcd (q,i�n) = 1

2

(
US

abcd + UC
abcd

)
+ 1

2

∑
{A}

US
abABχS

ABCD(q,i�n)US
CDcd

− 1

2

∑
{A}

UC
abABχC

ABCD(q,i�n)UC
CDcd, (41)

V
↑↑
abcd (q,i�n) = 1

2

(−US
abcd + UC

abcd

)
−1

2

∑
{A}

US
abABχS

ABCD(q,i�n)US
CDcd

−1

2

∑
{A}

UC
abABχC

ABCD(q,i�n)UC
CDcd, (42)

and

V ±
abcd (q,i�n)

= −US
abcd −

∑
{A}

∑
s ′′

US
abABχS

ABCD(q,i�n)US
CDcd, (43)

with

χabcd (q,i�n) = − T

N

∑
k,m

Gac(k + q,iεm+n)Gdb(k,iεm),

(44)

χS
abcd (q,i�n) = χabcd (q,i�n) +

∑
{A}

χabAB(q,i�n)

× US
ABCDχS

CDcd (q,i�n), (45)

and

χC
abcd (q,i�n) = χabcd (q,i�n) −

∑
{A}

χabAB(q,i�n)

× UC
ABCDχC

CDcd (q,i�n). (46)

In deriving the effective interaction, we do not need to
explicitly consider the ladder-type contributions in equal-spin-
scattering case since those are included in part of Eq. (42)
as a result of the relation between the nonantisymmetrized
and the antisymmetrized bare four-point vertex functions [60].
Combining the three components and using σ 0

s1s2
, σ 0

s4s3
, σ s1s2 ,

and σ s4s3 , we can express the effective interaction in the FLEX
approximation as the following single equation:

V
s1s2s3s4
abcd (q,i�n)

= 1

2

[
UC

abcd −
∑
{A}

UC
abABχC

ABCD(q,i�n)UC
CDcd

]
σ 0

s1s2
σ 0

s4s3

−1

2

[
US

abcd +
∑
{A}

US
abABχS

ABCD(q,i�n)US
CDcd

]
σ s1s2 · σ s4s3 .

(47)

Then, using Eq. (47) and excluding the double counting of the
topologically equivalent term in the self-energy, we can derive
the Dyson equation,

Gab(k,iεm) = G0
ab(k,iεm)

+
∑
A,B

G0
aA(k,iεm)�AB(k,iεm)GBb(k,iεm), (48)
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where G0
ab(k,iεm) is the noninteracting single-particle Green’s

function,

G0
ab(k,iεm) =

∑
α

(
U 0

k

)
aα

1

iεm − εα(k)

(
U

0†
k

)
αb

, (49)

and �ab(k,iεm) is the self-energy in the FLEX approximation,

�ac(k,iεm) = T

N

∑
q,n

∑
b,d

Vabcd (q,i�n)Gbd (k − q,iεm−n),

(50)

with (U 0
k )aα , being the unitary matrix to diagonalize εab(k),

and Vabcd (q,i�n), being

Vabcd (q,i�n)

= −V
↑↑↑↑
abcd (q,i�n) − V

↑↓↑↓
abcd (q,i�n)

−
∑
{A}

US
abABχABCD(q,i�n)US

CDcd

= 3

2

[
US

abcd +
∑
{A}

US
abABχS

ABCD(q,i�n)US
CDcd

]

+ 1

2

[
−UC

abcd +
∑
{A}

UC
abABχC

ABCD(q,i�n)UC
CDcd

]

−
∑
{A}

U
↑↓
aAbBχABCD(q,i�n)U↑↓

CcDd. (51)

The reasons why the double-counting term is the last term
of Eq. (51) are that the second-order terms in V

↑↑↑↑
abcd (q,i�n)

and V
↑↓↑↓
abcd (q,i�n) lead to the topologically equivalent con-

tributions to the self-energy, and that V
↑↓↑↓
abcd (q,i�n) contains

a relative 1
2 factor arising from the coefficient σ+

s1s2
σ−

s4s3
in

σ s1s2 · σ s4s3 . Solving a self-consistent set of Eqs. (44), (45),
(46), (48), (50), and (51) with Eq. (49) and the equation to

determine μ,

ne = 2

N

∑
k

∑
α

f [εα(k)] + 2T

N

∑
k

∑
m

3∑
a=1

× [
Gaa(k,iεm) − G0

aa(k,iεm)
]
, (52)

we can determine the single-particle or the two-particle
quantities in the FLEX approximation. Its technical details for
the numerical calculations will be described in Appendix D.

We turn to the Bethe-Salpeter equation for the current with
the CVCs in the FLEX approximation. The derivation consists
of four steps. The four steps are to derive the irreducible
four-point vertex function in the FLEX approximation in
Matsubara-frequency representation, to convert it into in
real-frequency representation by the analytic continuations,
to calculate part of the kernel of the CVCs, and to combine the
part and Eq. (28).

First, we derive the irreducible four-point vertex function
in the FLEX approximation in Matsubara-frequency repre-
sentation. Since the irreducible four-point vertex function is
generally determined by [56]

�
(1)
abcd (k,iεm,k′,iεm′ ; q,i�n) = δ�ab(k,iεm)

δGcd (k′,iεm′ )
, (53)

we adopt this equation to the self-energy in the FLEX approxi-
mation. For the actual calculation, we calculate the right-hand
side of Eq. (53) at q = 0 and �n = 0, and then we label q
and �n so as to represent the electron-hole scattering process
among an electron of orbital b with (k,iεm), a hole of orbital d

with (k′,iεm′ ), an electron of orbital a with (k + q,iεm + i�n),
and a hole of orbital c with (k′ + q,iεm′ + i�n). After the
actual calculation explained in Appendix E, we obtain the
irreducible four-point vertex function in Matsubara-frequency
representation in the FLEX approximation:

�
(1)
abcd (k,iεm,k′,iεm′ ; q,i�n) = �

(1)MT
abcd (k,iεm,k′,iεm′ ; q,i�n) + �

(1)AL1
abcd (k,iεm,k′,iεm′ ; q,i�n) + �

(1)AL2
abcd (k,iεm,k′,iεm′ ; q,i�n),

(54)

with

�
(1)MT
abcd (k,iεm,k′,iεm′ ; q,i�n) = δq,0δn,0Vacbd (k − k′,iεm − iεm′ ), (55)

�
(1)AL1
abcd (k,iεm,k′,iεm′ ; q,i�n)

= − T

N

∑
q ′

∑
n′

∑
{A}

WAL
aBcA;dCbD(q − q ′,i�n−n′ ; −q ′, − i�n′ )GCA(k′ + q ′,iεm′+n′ )GBD(k + q ′,iεm+n′ ), (56)

and

�
(1)AL2
abcd (k,iεm,k′,iεm′ ; q,i�n)

= − T

N

∑
q ′

∑
n′

∑
{A}

WAL
aBAd;CcbD(−q ′, − i�n′ ; −q − q ′, − i�n+n′ )GAC(k′ − q ′,iεm′−n′ )GBD(k + q + q ′,iεm+n+n′ ), (57)

where WAL
abcd;ABCD(q1,i�n1 ; q2,i�n2 ) is

WAL
abcd;ABCD(q1,i�n1 ; q2,i�n2 ) = 3

2
ÑS

abcd (q1,i�n1 )ÑS
ABCD(q2,i�n2 ) + 1

2
ÑC

abcd (q1,i�n1 )ÑC
ABCD(q2,i�n2 ) − U

↑↓
acbdU

↑↓
ACBD,

(58)
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with

ÑS
abcd (q ′,i�n′ ) = US

abcd +
∑
{A}

US
abCDχS

CDAB(q ′,i�n′ )US
ABcd

(59)

and

ÑC
abcd (q ′,i�n′ ) = UC

abcd −
∑
{A}

UC
abCDχC

CDAB(q ′,i�n′ )UC
ABcd .

(60)

We can represent the terms of Eqs. (55), (56), and (57) as the
diagrams of Figs. 4(a), 4(b), and 4(c), respectively.

Second, we carry out the analytic continuations of
Eqs. (55)–(57) to convert these into real-frequency representa-
tion. This is because the irreducible four-point vertex functions
in real-frequency representation are necessary to calculate part
of the kernel of the CVCs, J (1)

22;cdCD(k,k′; 0) [see Eq. (28)].
Carrying out the analytic continuations, we obtain the MT, the
AL1, and the AL2 terms for regions 22-II, 22-III, and 22-IV
(see Appendix F).

FIG. 4. Diagrammatic representations of the irreducible four-
point vertex functions in the FLEX approximation. Neglecting orbital
indices and relabeling momentum and frequency variables, we can
show that each diagram is equivalent to the corresponding diagram
in Ref. [37].

Third, using the MT, the AL1, and the AL2 terms in regions
22-II, 22-III, and 22-IV, we can calculate J (1)

22;cdCD(k,k′; 0)
in the FLEX approximation. Since the irreducible four-point
vertex function is the sum of the MT, the AL1, and the AL2
terms, J (1)

22;cdCD(k,k′; 0) in the FLEX approximation is given
by

J (1)
22;abcd (k,k′; 0) =J (1)MT

22;abcd (k,k′; 0) + J (1)AL1
22;abcd (k,k′; 0) + J (1)AL2

22;abcd (k,k′; 0), (61)

with

J (1)MT
22;abcd (k,k′; 0) = F MT

ct (ε,ε′; T )2i ImV
(R)
acbd (k − k′), (62)

J (1)AL1
22;abcd (k,k′; 0)

= F AL1
ct (ε,ε′; T )

(−i

π

) 1

N

∑
q ′

∑
{A}

∫ ∞

−∞
dω′F AL1

tt (ε,ε′,ω′; T )WAL(RA)
aBcA;dCbD(−q ′; −q ′)ImG

(R)
CA(k′ + q ′)ImG

(R)
BD(k + q ′), (63)

and

J (1)AL2
22;abcd (k,k′; 0)

= F AL2
ct (ε,ε′; T )

(−i

π

) 1

N

∑
q ′

∑
{A}

∫ ∞

−∞
dω′F AL2

tt (ε,ε′,ω′; T )WAL(RA)
aBAd;CcbD(−q ′; −q ′)ImG

(R)
AC(k′ − q ′)ImG

(R)
BD(k + q ′), (64)

where F MT
ct (ε,ε′; T ), F AL1

ct (ε,ε′; T ), F AL1
tt (ε,ε′,ω′; T ),

F AL2
ct (ε,ε′; T ), and F AL2

tt (ε,ε′,ω′; T ) are, respectively,

F MT
ct (ε,ε′; T ) =

(
coth

ε − ε′

2T
+ tanh

ε′

2T

)
, (65)

F AL1
ct (ε,ε′; T ) =

(
coth

ε′ − ε

2T
− tanh

ε′

2T

)
, (66)

F AL1
tt (ε,ε′,ω′; T ) =

(
tanh

ω′ + ε

2T
− tanh

ω′ + ε′

2T

)
, (67)

F AL2
ct (ε,ε′; T ) =

(
coth

ε′ + ε

2T
− tanh

ε′

2T

)
, (68)

and

F AL2
tt (ε,ε′,ω′; T ) =

(
tanh

ω′ + ε

2T
− tanh

ω′ − ε′

2T

)
. (69)

In Eqs. (62)–(64), we have used the relations of the effective
interaction and the single-particle Green’s functions due to
the time-reversal and the even-parity symmetry; in a more
general case, we should not use the relations such as V

(R)
acbd (k −

k′) − V
(A)
acbd (k − k′) = 2i ImV

(R)
acbd (k − k′) and G

(R)
BD(k + q ′) −

G
(A)
BD(k + q ′) = 2i ImG

(R)
BD(k + q ′), and should retain the dif-

ferences between the retarded and the advanced quantities.
Fourth, substituting Eqs. (61) with Eqs. (62), (63), and (64)

into Eq. (28), we obtain the following Bethe-Salpeter equation
with the CVCs in the FLEX approximation:

�ν;2;cd (k; 0) =�
(0)
ν;2;cd (k; 0) + 	�MT

ν;2;cd (k; 0)

+ 	�AL1
ν;2;cd (k; 0) + 	�AL2

ν;2;cd (k; 0), (70)

where 	�MT
ν;2;cd (k; 0) is the MT CVC,

	�MT
ν;2;cd (k; 0) = 1

N

∑
k′

∑
{A}

∫ ∞

−∞

dε′

2π
F MT

ct (ε,ε′; T )

× ImV
(R)
cCdD(k − k′)�̃ν;2;CD(k′; 0), (71)
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	�AL1
ν;2;cd (k; 0) is part of the AL CVC,

	�AL1
ν;2;cd (k; 0) = − 1

4π2N2

∑
k′,q ′

∑
{A}

∑
{A′}

∫ ∞

−∞
dε′

∫ ∞

−∞
dω′F AL1

ct (ε,ε′; T )F AL1
tt (ε,ε′,ω′; T )WAL(RA)

cB ′CA′;DC ′dD′ (−q ′; −q ′)

× ImG
(R)
C ′A′(k′ + q ′)ImG

(R)
B ′D′(k + q ′)�̃ν;2;CD(k′; 0), (72)

and 	�AL2
ν;2;cd (k; 0) is the other part of the AL CVC,

	�AL2
ν;2;cd (k; 0) = − 1

4π2N2

∑
k′,q ′

∑
{A}

∑
{A′}

∫ ∞

−∞
dε′

∫ ∞

−∞
dω′F AL2

ct (ε,ε′; T )F AL2
tt (ε,ε′,ω′; T )WAL(RA)

cB ′A′D;C ′CdD′ (−q ′; −q ′)

× ImG
(R)
A′C ′(k′ − q ′)ImG

(R)
B ′D′(k + q ′)�̃ν;2;CD(k′; 0), (73)

with

�̃ν;2;CD(k′; 0) =
∑
A,B

g2;CABD(k′; 0)�ν;2;AB (k′; 0). (74)

Equations (71)–(73) show that the MT and the AL CVCs
connect the currents at different momenta; for example,
the MT CVC connects the current at k with the current
at k′.

In the actual numerical calculations, instead of the above
Bethe-Salpeter equation, I use the simplified Bethe-Salpeter
equation where the AL CVC is simplified by only its main

terms. The main terms of the AL CVC can be determined
by using the following two properties satisfied in the present
model: The terms arising from U are dominant compared
with the terms arising from the other interactions in a
realistic parameter set (i.e., U > U ′, U > JH, and U > J ′);
the intraorbital components of the current are larger than the
interorbital ones due to the large intraorbital hopping integrals
compared with the interorbital hopping integrals (i.e., the
larger intraorbital components of the group velocity). Namely,
the main terms of the AL CVC are given by the sum of the
following two quantities:

	�AL1
ν;2;cd (k; 0) = −δc,d

1

4π2N2

∑
k′,q ′

∫ ∞

−∞
dε′

∫ ∞

−∞
dω′F AL1

ct (ε,ε′; T )F AL1
tt (ε,ε′,ω′; T )WAL(RA)

c (−q ′; −q ′)

× ImG(R)
cc (k′ + q ′)ImG(R)

cc (k + q ′)�̃ν;2;cc(k′; 0) (75)

and

	�AL2
ν;2;cd (k; 0) = −δc,d

1

4π2N2

∑
k′,q ′

∫ ∞

−∞
dε′

∫ ∞

−∞
dω′F AL2

ct (ε,ε′; T )F AL2
tt (ε,ε′,ω′; T )WAL(RA)

c (−q ′; −q ′)

× ImG(R)
cc (k′ − q ′)ImG(R)

cc (k + q ′)�̃ν;2;cc(k′; 0), (76)

where WAL(RA)
c (−q ′; −q ′) is given by

WAL(RA)
c (−q ′; −q ′) = 3

2 ÑS(R)
cccc (−q ′)ÑS(A)

cccc (−q ′)

+ 1
2 ÑC(R)

cccc (−q ′)ÑC(A)
cccc (−q ′) − U 2,

(77)

with

ÑS(R)
cccc (−q ′) = U + U 2χS(R)

cccc (−q ′) (78)

and

ÑC(R)
cccc (−q ′) = U − U 2χC(R)

cccc (−q ′). (79)

More precisely, by using the former of the above two properties
(corresponding to considering only the terms arising from
U ), we can replace W

AL(RA)
cB ′CA′;DC ′dD′ (−q ′; −q ′) of the AL1

term and W
AL(RA)
cB ′A′D;C ′CdD′ (−q ′; −q ′) of the AL2 term by,

respectively, δB ′,cδC,cδA′,cδD,dδC ′,dδD′,dW
AL(RA)
cccc;dddd (−q ′; −q ′)

and δB ′,cδA′,cδD,cδC ′,dδC,dδD′,dW
AL(RA)
cccc;dddd (−q ′; −q ′); further-

more, using the latter property, we obtain Eqs. (75) and

(76). Solving Eqs. (70), (71), (75), and (76) with Eq. (27)
self-consistently, we can determine the current including the
CVCs arising from the self-energy and irreducible four-point
vertex function in the FLEX approximation. I will describe
the technical remarks to numerically solve those equations in
Appendix G.

III. RESULTS

In this section, I show the results of the magnetic properties,
the electronic structure, and the transport properties for a PM
state of the multiorbital Hubbard model away from or near the
AF QCP. In Sec. III A, I present the results of the magnetic
properties in the FLEX approximation. From those results, we
discuss the dominant fluctuations, the static and the dynamic
properties of the spin susceptibility, the role of each t2g orbital,
and the effects of the spin fluctuations on the imaginary part
of the retarded effective interaction. In Sec. III B, to discuss
the effects of the self-energy on the electronic structure, I
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FIG. 5. Momentum dependence of λS
max(q)−1 and λC

max(q)−1 at T = 0.006 eV and U = 1.8 and 2.1 eV for several values of JH.

show the results of the FS, the mass enhancement factor, the
unrenormalized QP damping, and the QP damping in the FLEX
approximation. In Sec. III C, we discuss the main effects of the
AL CVC on the in-plane resistivity ρab and the Hall coefficient
in the weak-field limit RH in the FLEX approximation with
the � CVC, the MT CVC, and the main terms of the AL CVC
and more simplified three cases. In addition to the temperature
dependence of those transport coefficients, I show the orbital
dependence of σxx and limH→0

σxy

H
in order to determine the

role of each t2g orbital.
I obtained the results of this section by the numerical

calculations using the techniques explained in Appendixes
D and G and converting the quantities obtained in the
FLEX approximation in Matsubara-frequency representation
to the corresponding quantities in real-frequency represen-
tation by the Padé approximation [61,62]. In the numerical
calculations, I used N = 64 × 64 meshes and M = 1024
Matsubara frequencies, set 	εj = 	ε′

j ′ = 	ω′
j ′′ = 0.0025 eV,

εc = 0.2 eV, J ′ = JH, U ′ = U − 2JH, and chose JH, U , and
T as parameters. (	εj , 	ε′

j ′ , and 	ω′
j ′′ are the intervals of

the discretized real-frequency integrals, and εc is the cutoff
frequency in the discretized real-frequency integrals.) The
parameters of JH, U , and T were chosen as follows: I put
JH = U

6 except the analysis of the dominant fluctuation, in
which the value of JH was chosen in the range of 0 � JH � U

5 ;
I considered the case of U = 1.8 or 2.1 eV as, respectively,
case [10,38] away from or near the AF QCP except the results
in noninteracting case; I considered several values of T in
the range of 0.006 eV � T � 0.03 eV. In addition, in the
conversion by the Padé approximation, I numerically solved
its recursive procedure [61,62] using the quantities at the
lowest four Matsubara frequencies; for example, we obtained
�

(R)
ab (k,ε) by adopting that recursive procedure to a set of

�ab(k,iεm) at m = 0,1,2,3 in the FLEX approximation. Note
that the advanced quantities are obtained by using the relations
such as �

(A)
ab (k,ε) = �

(R)
ab (k,ε)∗ due to the time-reversal and

the even-parity symmetries.

A. Magnetic properties

In this section, I show four main results about the
magnetic properties. First, the dominant fluctuations are the
spin fluctuations. Second, an increase of electron correlation
leads to the enhancement of low-energy spin fluctuation
at q = QIC-AF ≡ ( 21

32π, 21
32π ). Third, the diagonal and the

nondiagonal components of χ
S(R)
aabb(q) at q = QIC-AF contribute

to the enhancement of the spin fluctuation at q = QIC-AF,
and the diagonal component of the dxy orbital is largest.

Fourth, the orbital dependence of the effective interaction is
determined by the orbital dependence of the spin fluctuation.

We first determine the dominant fluctuations in the present
model. For that purpose, we analyze the effects of electron
correlation on λS

max(q)−1 and λC
max(q)−1, the inverses of the

maximum eigenvalues [63,64] of χS
abcd (q,0) and χC

abcd (q,0),
respectively. This is because by analyzing the dependence of
λS

max(q)−1 and λC
max(q)−1 on U and JH, we can determine

the dominant fluctuations among four kinds of fluctuations,
i.e., charge fluctuations, spin fluctuations, orbital fluctuations,
and spin-orbital-combined fluctuations [65,66] (for more
details see Appendix H). I show λS

max(q)−1 and λC
max(q)−1

at T = 0.006 eV and U = 1.8 eV for several values of
JH in Figs. 5(a) and 5(b), respectively. We see that as JH

increases, λS
max(q)−1 monotonically decreases and λC

max(q)−1

monotonically increases. This behavior is characteristic of the
enhancement of spin fluctuations and the suppression of the
charge fluctuations [65,66] (see Appendix H). The similar
results are obtained at U = 2.1 eV, as shown in Figs. 5(c)
and 5(d). Since approaching the inverse of the maximum
eigenvalue towards zero characterizes the enhancement of the
susceptibility, the results in Figs. 5(a)–5(d) show that spin
fluctuations are dominant at U = 1.8 and 2.1 eV in the present
model. This can be understood by considering the following
three facts: the noninteracting susceptibility for a = c and
b = d,χ

(0)
abab(q,i�n), becomes very large in the present model

since G(0)
aa (k,iωm) is larger than G

(0)
ab (k,iωm) for b �= a due

to the large intraorbital hopping integrals compared with
the interorbital ones; the interactions between the different
kinds of fluctuations may be generally very weak in the
FLEX approximation due to lack of the vertex corrections
of the susceptibilities; the terms arising from U cause the
strongest enhancement of the susceptibilities. Namely, due to
those facts, the intraorbital components of χS

abcd (q,i�n), i.e.,
χS

aaaa(q,i�n), are strongly enhanced, resulting in the larger
enhancement of spin fluctuations than the other fluctuations.
Hereafter, we fix the value of JH at JH = U

6 .
Then, for a deeper understanding of spin fluctuations in the

present model, I analyze the static and the dynamic properties
of the spin susceptibility as a function of ω, χS(R)(q,ω) =∑

a,b χ
S(R)
aabb(q,ω). For the analysis of the static property, I

show the momentum dependence of χS(q,0) = χS(R)(q,0) at
T = 0.006 eV for U = 1.8 and 2.1 eV in Fig. 6(a). The result
shows that as U increases, the spin fluctuation at q = QIC-AF
is most strongly enhanced and the enhancement at q = (0,0) is
much weaker. That strongest enhancement can be understood
as the combination of the merging of the nesting vectors of
the dxz/yz and dxy orbitals around q = QIC-AF due to the
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FIG. 6. (a) Momentum dependence of χS(q,0) = χS(R)(q,0) at T = 0.006 eV, U = 0, 1.8, and 2.1 eV, and JH = U

6 , and frequency
dependence of ImχS(R)(q,ω) for q = QIC-AF, Q′

IC-AF ≡ (π, 21
32 π ), and QFM ≡ (0,0) at T = 0.006 eV and JH = U

6 for (b) U = 1.8 eV and
(c) U = 2.1 eV.

mode-mode coupling for the spin fluctuations around q =
QIC-AF and the nesting instability at q = QIC-AF due to
the RPA-type scattering process, as explained in Ref. [38].
Next, for the analysis of the dynamic property, I show the
frequency dependence of ImχS(R)(q,ω) for several values of
q at T = 0.006 eV for U = 1.8 and 2.1 eV in Figs. 6(b) and
6(c). These figures show that low-energy spin fluctuation at
q = QIC-AF is dominant in the dynamic properties at U = 1.8
and 2.1 eV, and that the intensity at q = (0,0) is very small.

Moreover, I analyze the role of each t2g orbital in discussing
the spin fluctuations. Figures 7(a)–7(d) show the frequency
dependence of Imχ

S(R)
aabb( QIC-AF,ω) at JH = U

6 for (T ,U ) =
(0.006,1.8), (0.006,2.1), (0.02,1.8), and (0.02,2.1) eV. We
see that not only the diagonal, but also the nondiagonal
components are enhanced, and that the largest component is
the diagonal one of the dxy orbital. First, the enhancement of
the diagonal components arises from the combination of the
large diagonal components of the noninteracting susceptibility
of the t2g orbitals around q = QIC-AF, the merging of the
nesting vectors of the dxz/yz and the dxy orbitals around
q = QIC-AF, and the larger enhancement due to the terms
arising from U than the other terms. Next, the nondiagonal
components are enhanced due to the terms including JH

and the diagonal components since χS
aabb(q,i�n) for a �= b

FIG. 7. Frequency dependence of Imχ
S(R)
aabb( QIC-AF,ω) at JH = U

6
for (T ,U ) = (a) (0.006,1.8), (b) (0.006,2.1), (c) (0.02,1.8), and (d)
(0.02,2.1) eV.

are enhanced mainly through χaaaa(q,i�n)UχS
aabb(q,i�n) +

χaaaa(q,i�n)JHχS
bbbb(q,i�n) [see the second term of Eq. (45)].

Then, the diagonal component of the dxy orbital becomes
largest due to the following three properties: the diagonal
components of the noninteracting susceptibility are larger
than the nondiagonal components due to the large intraorbital
hopping integrals; the noninteracting susceptibility of the dxy

orbital is larger than that of the dxz/yz orbital due to the larger
DOS [10] of the dxy orbital; the enhancement due to the terms
arising from U is largest in the terms arising from the Hubbard
interaction terms.

Finally, we see the effect of the spin fluctuations on the
imaginary part of the retarded effective interaction of the
FLEX approximation. The reason why that effect is analyzed
is that its understanding is useful to understand the effect of
the spin fluctuations on the MT CVC since the imaginary
part of the retarded effective interaction is part of the kernel
of the MT CVC [see Eq. (71)]. For that analysis, it is
sufficient to present ImV

(R)
aabb(q,ω) since the other orbital

components are much less important. This is due to the fact
that the dominant fluctuations are the spin fluctuations and that
their contributions to the effective interaction, Vacbd (q,i�n),
are given by

∑
A,C US

acAAχS
AACC(q,i�n)US

CCbd = δa,cδb,d

FIG. 8. Frequency dependence of ImV
(R)
aabb( QIC-AF,ω) at JH = U

6
for (T ,U ) = (a) (0.006,1.8), (b) (0.006,2.1), (c) (0.02,1.8), and (d)
(0.02,2.1) eV.
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FIG. 9. FSs at T = 0.006 eV and JH = U

6 for (a) U = 1.8 eV and
(b) U = 2.1 eV. In panels (a) and (b), the FS sheets at U = 0 eV are
shown by the dotted lines for comparison.

∑
A,C US

aaAAχS
AACC(q,i�n)US

CCbb [see Eq. (51)]. Figures 8(a)–

8(d) show the frequency dependence of ImV
(R)
aabb( QIC-AF,ω) for

(T ,U ) = (0.006,1.8), (0.006,2.1), (0.02,1.8), and (0.02,2.1)
eV. The obtained orbital dependence is similar to that for
Imχ

S(R)
aabb(q,ω). Thus, the spin fluctuations lead to the main

contributions to the MT CVC in the present model, and the
orbital dependence of the MT CVC is determined by the orbital
dependence of the spin fluctuations.

B. Electronic structure

In this section, I show four main results about the electronic
structure. First, the topology of the FS remains the same as the
noninteracting one even including the FS deformation due to
the real part of the self-energy in the FLEX approximation.
Second, the mass enhancement of the dxy orbital is larger than
that of the dxz/yz orbital in a wide region of the parameter space
in the present model. Third, the unrenormalized QP damping
of the dxy orbital becomes larger than that of the dxz/yz orbital.
Fourth, the orbital dependence of the QP damping is mainly
determined by the orbital dependence of the unrenormalized
QP damping.

I begin with the effects of the real part of the self-
energy in the FLEX approximation on the FS and the mass
enhancement factor. I determine the FS by diagonalizing
[εab(k) + Re�(R)

ab (k,0)], where μ in εab(k) has been deter-
mined by Eq. (52).

First, we see from Figs. 9(a) and 9(b) how the FS is modified
with increasing U . Those figures show that the modification
is slight. Thus, the real part of the self-energy in the FLEX
approximation does not change the topology of the FS sheets
(i.e., whether each sheet is electronlike or holelike). This result
can be understood by considering two facts that the occupation

numbers of the dxz/yz and the dxy orbitals do not become very
close to integers, and that the van Hove singularity of the dxy

orbital does not cross over the Fermi level. Note, first, that the
occupation numbers of the dxz/yz and the dxy orbitals are 1.36
and 1.28, respectively, at U = 1.8 and 2.1 eV; second, that if
the van Hove singularity crosses over the Fermi level, the γ

sheet touches the boundary of the Brillouin zone at k = (π,0)
or (0,π ).

Next, we show the mass enhancement factor za(k)−1 =
1 − ∂ Re�(R)

aa (k,ω)
∂ω

|ω→0, at U = 1.8 and 2.1 eV in Figs. 10(a)–
10(d). From those figures, we find three properties about the
orbital, temperature, and momentum dependence of za(k)−1.
The first property is that the mass enhancement of the dxy

orbital is always larger than that of the dxz/yz orbital for all
the temperatures considered. This arises from the stronger
spin fluctuations of the dxy orbital than those of the dxz/yz

orbital, as explained in Ref. [38]. Combining this result with
the similar orbital dependence [38] of za(k)−1 as a function
of JH (in 0 � JH � U

5 at T = 0.006 eV and U = 1.8 eV), we
deduce that the larger mass enhancement of the dxy orbital
is realized in a wide region of the parameter space of the
present model for a PM state in the FLEX approximation.
It should be noted that although the spin fluctuations of
the dxy orbital enhance za(k)−1 of not only the dxy orbital
but also the dxz/yz orbital, the enhancement for the dxy is
larger in a realistic set of the Hubbard interaction terms.
This is because the spin fluctuations of an orbital cause the
enhancement of za(k)−1 of the orbital proportional to the U 2

terms of 3
2

∑
A,B US

aaAAχS
AABB(q,i�n)US

BBaa in Vaaaa(q,i�n)
in �aa(k,iεm), and the enhancement of za(k)−1 of another
orbital proportional to the J 2

H terms. Then, the second property
found in Figs. 10(a)–10(d) is that the temperature dependence
is weak other than the case for the dxy orbital at U =
2.1 eV. This results from the more significant enhancement
of the spin fluctuations of the dxy orbital with decreasing
temperature [see Figs. 7(a)–7(d)], and suggests that the mass
enhancement of the dxy orbital may remain larger even at
lower temperatures than the temperatures considered. The
third property of Figs. 10(a)–10(d) is that the momentum
dependence is negligible for the dxz/yz orbital, while the dxy

orbital has the weak momentum dependence. This is due to
the difference between the quasi-one-dimensionality of the
dxz/yz orbital and the quasi-two-dimensionality of the dxy

orbital: only the dxy orbital has the van Hove singularity due
to the saddle points at k ≈ ( 23

32π,0) and (0, 23
32π ), resulting in

a larger mass enhancement [67]. Since this result shows that
the momentum dependence of the mass enhancement factor
is not important to discuss the magnitude difference of the

FIG. 10. Temperature dependence of za(k)−1 = 1 − ∂ Re�(R)
aa (k,ω)
∂ω

|ω→0 for several k at JH = U

6 for (a) a = dxz and U = 1.8 eV, (b) a = dxy

and U = 1.8 eV, (c) a = dxz and U = 2.1 eV, and (d) a = dxy and U = 2.1 eV. zdyz
(k)−1 is given by zdyz

(kx,ky)−1 = zdxz
(ky,kx)−1.
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FIG. 11. Temperature dependence of γa(k) = −Im�(R)
aa (k,0) for several k at JH = U

6 for (a) a = dxz and U = 1.8 eV, (b) a = dxy and
U = 1.8 eV, (c) a = dxz and U = 2.1 eV, and (d) a = dxy and U = 2.1 eV. The inset in panel (a) or (b) shows γa(k) against T 2 below
T = 0.01 eV, and the inset in panel (c) or (d) shows γa(k) against T 0.5 below T = 0.01 eV. γdyz

(k) is given by γdyz
(kx,ky) = γdxz

(ky,kx).

mass enhancement, the present analysis is sufficient for that
discussion.

Then, we turn to the effects of the imaginary of the
self-energy on the unrenormalized QP damping γa(k) =
−Im�(R)

aa (k,0). From the results shown in Figs. 11(a)–11(d),
we see three main features. The first one is about the orbital
dependence: the magnitude for the dxy orbital is about three
times as large as that for the dxz/yz orbital. This arises mainly
from the larger DOS and stronger spin fluctuations of the
dxy orbital. Note, first, that a ratio of the noninteracting
DOSs of the dxy and the dxz/yz orbitals on the Fermi level
is about 2.3 [10]; second, that due to the similar reasons for
za(k)−1, the spin fluctuations of the dxy orbital cause a larger
enhancement of γa(k) of the dxy orbital in a realistic set of the
Hubbard interaction terms. The second main feature is about
the temperature dependence: the unrenormalized QP dampings
of the dxz/yz orbital at U = 1.8 eV show the T 2 dependence
at low temperatures; the T 0.5 dependence of γa(k) for the
dxz/yz orbital is realized for k = ( 21

32π, 21
32π ) at U = 2.1 eV; the

unrenormalized QP damping of the dxy orbital at k = ( 7
8π,0)

is proportional to T linear at U = 1.8 and 2.1 eV. The T 2

dependence is due to the formation of long-lived QPs [9]; the
T 0.5 dependence results from the hot-spot structure [68] due to
the enhanced AF spin fluctuation, as explained in Ref. [10]; the
T -linear behavior emerges as a result of the existence of the
van Hove singularity [68]. The third main feature is about the
momentum dependence: the unrenormalized QP damping of
the dxy orbital depends weakly on momentum; the momentum
dependence for the dxz/yz orbital is negligible. This arises from
the considerable difference in the momentum dependence of
the single-particle spectrum function due to the existence of
the van Hove singularity only for the dxy orbital.

Finally, we analyze the effects of the combination of
the real and the imaginary parts of the self-energy on the

QP damping, γ ∗
a (k) = za(k)γa(k). From the results shown in

Figs. 12(a)–12(d), we see that even for the QP damping, the
larger magnitude for the dxy orbital is realized. This is due
to the larger difference in the unrenormalized QP damping
compared with the difference in the mass enhancement factor,
and suggests that the QPs of the dxz/yz orbital are more coherent
than the QPs of the dxy orbital in the present model. In
addition, we find the T 2 dependence for the dxz/yz orbital
at low temperatures at U = 1.8 eV, the deviation from the
T 2 dependence for the dxz/yz orbital at U = 2.1 eV, and the
similar momentum dependence of the QP damping to that of
the unrenormalized QP damping.

C. Transport properties

In this section, I show three main results about the
transport properties. First, the main results in the previous
studies [10,38] remain qualitatively unchanged even including
the main terms of the AL CVC. Second, the temperature
dependence of ρab and RH near the AF QCP consist of two
regions, high-temperature region, where only the � CVC is
sufficient, and low-temperature region, where only both the �

CVC and the MT CVC are sufficient. Third, in contrast to the
case near the AF QCP, the effects of the MT CVC on ρab and
RH at low temperatures are different in case away from the AF
QCP: only for RH, the effects are considerable.

To analyze the main effects of the AL CVC on ρab and RH,
we consider four cases, named MT + AL CVC case, MT CVC
case, � CVC case, and No CVC case. In the MT + AL CVC
case, we take account of the � CVC, the MT CVC, and the
main terms of the AL CVC: �ν;2;cd (k; 0) in Eq. (70) includes
those CVCs, and �

(0)
ν;2;ab(k; 0) in Eq. (27) includes the � CVC.

In the MT CVC, we neglect only the AL CVC and take account
of the other CVCs: the change from the MT + AL CVC case

FIG. 12. Temperature dependence of γ ∗
a (k) = za(k)γa(k) for several k at JH = U

6 for (a) a = dxz and U = 1.8 eV, (b) a = dxy and
U = 1.8 eV, (c) a = dxz and U = 2.1 eV, and (d) a = dxy and U = 2.1 eV. γ ∗

a (k) = T are shown by the dotted lines to discuss whether the QP
damping is cold-spot type or hot-spot type, and the insets show γ ∗

a (k) against T 2 below T = 0.01 eV. γ ∗
dyz

(k) is given by γ ∗
dyz

(kx,ky) = γ ∗
dxz

(ky,kx).
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FIG. 13. Temperature dependence of ρab at U = 1.8 eV and
JH = U

6 in the four cases. The inset shows ρab against T 2 below
T = 0.01 eV.

is neglecting the AL CVC in �ν;2;cd (k; 0). In the � CVC
case, we take account of only the � CVC among the CVCs:
�ν;2;cd (k; 0) becomes the same as �

(0)
ν;2;ab(k; 0). In the No CVC

case, we neglect all the CVCs: �ν;2;cd (k; 0) and �
(0)
ν;2;ab(k; 0)

are determined only by the noninteracting group velocity.

1. In-plane resistivity

We begin with ρab(= σ−1
xx = σ−1

yy ) away from the AF QCP.
We show the temperature dependence of ρab at U = 1.8 eV
in the four cases in Fig. 13, and find two main features. One
is that the T 2 dependence below T = 0.008 eV holds even
in the MT + AL CVC case. This can be understood that the
CVCs little affect the power of the temperature dependence of
the resistivity. This is because the main effects of the CVCs
on the resistivity arise from the magnitude changes of the
current (see Sec. II B 1) and because the magnitude changes
appear in the equation of the resistivity as 1

|�(0)
2;cd (k)|+	|�2;cd (k)| ∼

1
|�(0)

2;cd (k)| (1 − 	|�2;cd (k)|
|�(0)

2;cd (k)| ), where 	|�2;cd (k)|
|�(0)

2;cd (k)| is not large. The other

main feature is that the value of ρab in the MT + AL CVC case
becomes smaller than that in the MT CVC case and nearly the
same as that in the � CVC case. This is due to the small
effects of the MT and the AL CVCs; for high-temperature
region, the small effects arise from the dominance of the QP
damping compared with the spin susceptibility in determining
the kernels of those CVCs; for low-temperature region, the
small effects arise from the combination of the not large spin
susceptibility and the partial cancellation between the effects

of the MT and the AL CVCs. The more detailed explanations
about those are as follows: In discussing the effects of the MT
and the AL CVCs, the relative values of the spin susceptibility
and the QP damping are important since the kernels of the
MT and the AL CVCs contain the spin susceptibility and
the inverse of the QP damping [see Eqs. (70)–(73)]. Due to
this property, at high temperatures, the kernels become small
since the QP damping is large; thus, the effects of the MT
and the AL CVCs are small for high-temperature region.
Furthermore, although the effects of the MT and the AL CVCs
are separately non-negligible at low temperatures since with
decreasing temperature the QP damping decreases and the
spin susceptibility remains almost unchanged, the effects of
the AL CVC reduce the effects of the MT CVC as a result
of the difference in the momentum dependence; due to this
reduction, the total effects of the MT and the AL CVCs are
small. Such property due to the difference in the momentum
dependence can be easily seen from a simple and sufficient case
of the second-order perturbation theory for a single-orbital
system since the momentum structure of each diagram of
the MT, AL1, and AL2 terms remains the same as in the
FLEX approximation: in this case, the MT CVC is given by∑

k′,q 	0(k,k′; k′ + q,k − q)�k−q(ε), and the AL1 and AL2
CVCs are

∑
k′,q 	0(k,k′; k′ + q,k − q)[�k′+q(ε) − �k′(ε)]

(for more details, see Ref. [15]); since �k(ε) is odd about
momentum, the difference in the sign of q leads to the partial
cancellation of the effects of the MT and the AL CVCs.

We next discuss the role of each t2g orbital in determining
ρab away from the AF QCP. For that purpose, I show
the orbital-decomposed components of σxx , the dxz + dyz

component, and the dxy component; the former is obtained
by replacing

∑3
{a}=1 in Eq. (26) by

∑2
{a}=1, and the latter

is obtained by replacing
∑3

{a}=1 in Eq. (26) by
∑

{a}=3. As
explained in Ref. [10], only those components are sufficient
in the present model since those (diagonal) components are
larger than the nondiagonal ones due to the large intraorbital
hopping integrals compared with the interorbital hopping
integrals. First, we see from Fig. 14(a) that σxx/yy is determined
almost by the component of the dxz/yz orbital, and that the
contributions from the component of the dxy orbital are very
small. Namely, the dxz + dyz component remains dominant
even with the main terms of the AL CVC. We also see from
Figs. 14(b) and 14(c) that the values in the MT + AL CVC
case are nearly the same in the � CVC case. Thus, the � CVC
is sufficient for discussions about the orbital dependence away
from the AF QCP.

FIG. 14. Temperature dependence of (a) σxx and orbital-decomposed components in the MT + AL CVC case at U = 1.8 eV and the
orbital-decomposed components of (b) the dxz and dyz orbitals and (c) dxy orbital in the four cases at U = 1.8 eV.
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FIG. 15. Temperature dependence of ρab at U = 2.1 eV and JH =
U

6 in the four cases.

From the results at U = 1.8 eV, we deduce, first, that the
main results obtained in the previous studies [10,38] away from
the AF QCP, the T 2 dependence of ρab at low temperatures
and the dominance of the dxz/yz orbital, remain qualitatively
the same even with the main terms of the AL CVC; second,
that the resistivity away from the AF QCP can be almost well
described by taking account of only the � CVC.

Then, I turn to ρab near the AF QCP. From its temperature
dependence shown in Fig. 15, we see three main features about
ρab in the MT + AL CVC case. First, ρab in the MT + AL
CVC case shows the T -linear dependence, which is similar
for the other three cases. This origin is the same for the
other three cases [10,38], i.e., the T 0.5 dependence of the
unrenormalized QP damping of the dxz/yz orbital around
k = ( 21

32π, 21
32π ), since the CVCs little affect the power of

the temperature dependence of ρab and since the dxz + dyz

component remains dominant even with the main terms of
the AL CVC [see Fig. 16(a)]. Second, the values of ρab

in the MT + AL CVC case at high temperatures are nearly
the same as those in the � CVC case at the corresponding
temperatures. This is due to the same reason as that away
from the AF QCP. Third, as temperature decreases, the value
of ρab in the MT + AL CVC case approaches the value in
the MT CVC case. This can be understood by combining
two facts that the MT and the AL CVCs separately become
non-negligible at low temperatures, and that the AL CVC
near the AF QCP is negligible compared with the MT CVC
in the presence of the even-parity symmetry and rotational

FIG. 17. Temperature dependence of RH at U = 1.8 eV and JH =
U

6 in the four cases.

symmetry. The mechanism of the former fact explained above,
and the mechanism of the latter explained by the authors of
Ref. [37]. The explanations about the latter are as follows:
When the system approaches an AF QCP characterized by
spin fluctuation at q = QQCP, that spin fluctuation gives
the leading contributions to the MT, AL1, and AL2 CVCs
through ImV

(R)
cCdD(k − k′) in Eq. (71) and WAL(RA)

c (−q ′; −q ′)
in Eqs. (75) and (76), respectively. Then, although the MT
CVC becomes more important near the AF QCP, the AL1 and
AL2 CVCs become little important compared with the MT
CVC near the AF QCP due to the cancellation between the
contributions from k′ and −k′ arising from the spin fluctuation
at q = QQCP. This cancellation is because in the terms of the
AL1 or AL2 CVC only �̃ν;2;cc(k′; 0) is odd about momentum
(i.e., the others are even) due to the even-parity symmetry
and because the states at −k′ + QQCP and −k′ − QQCP are
equivalent due to the rotational symmetry.

Moreover, we determine the role of each t2g orbital in
determining ρab near the AF QCP from the results of the
orbital-decomposed components of σxx . Figure 16(a) shows
that the main terms of the AL CVC keep the dominance
of the dxz + dyz component unchanged. Furthermore, from
Figs. 16(b) and 16(c), we see a similar behavior for ρab at low
temperatures, i.e., an approach of the value of the dxz + dyz

component or the dxy component in the MT + AL CVC case
towards that in the MT CVC case with decreasing temperature.

Combining the results at U = 2.1 eV, we find that the T -
linear ρab and the dominance of the dxz/yz orbital which are

FIG. 16. Temperature dependence of (a) σxx and orbital-decomposed components in the MT + AL CVC case at U = 2.1 eV and the
orbital-decomposed components of (b) the dxz and dyz orbitals and (c) dxy orbital in the four cases at U = 2.1 eV.
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FIG. 18. Temperature dependence of limH→0
σxy

H
and orbital-decomposed components in the MT + AL CVC case at U = 1.8 eV and the

orbital-decomposed components of (b) the dxz and dyz orbitals and (c) dxy orbital in the four cases at U = 1.8 eV.

obtained in the MT CVC case are qualitatively unchanged
even in the MT + AL CVC case, and that there are two almost
distinct regions of the temperature dependence of ρab. Those
regions consist of high-temperature region, governed mainly
by the � CVC, and low-temperature region, governed mainly
by the � CVC and the MT CVC.

2. Hall coefficient

We start discussing RH(= σ−2
xx limH→0

σxy

H
) away from the

AF QCP. We show its temperature dependence in the four cases
in Fig. 17, and see from that figure three main features in the
MT + AL CVC case. First, at high temperatures, the values of
RH in the MT + AL CVC case are close to the values in the �

CVC case. This origin is the same for ρab at high temperatures,
i.e., the small effects of the MT and the AL CVCs due to the
large QP damping. Second, when temperature is low, the value
of RH in the MT + AL CVC case becomes almost the same as
that in the MT CVC case. This result can be understood that
the main effects of the MT CVC on RH at low temperatures
remain leading even including the main terms of the AL
CVC. Its mechanism is as follows: As shown in Ref. [38],
the main effects of the MT CVC on RH at low temperatures
are the decreases of the negative-sign contributions of the
dxz + dyz component of the transverse conductivity around
k = ( 21

32π, 21
32π ) as a result of the magnitude changes of the

currents of the dxz/yz orbital around k = ( 21
32π, 21

32π ) due to the
MT CVC arising from the spin fluctuations of the dxz/yz orbital
around q = QIC-AF. Although the currents of the dxz/yz orbital
around k = ( 21

32π, 21
32π ) are affected by the AL1 and AL2 CVCs

arising from the above spin fluctuations, the main effects of
the MT CVC persist in the MT + AL CVC case due to the
cancellation of those AL1 and AL2 CVCs in the presence of
the even-parity and the rotational symmetry. (The mechanism
of this cancellation [37] was explained in Sec. III C 1.) It should
be noted that we can understand why only for RH the main
effects of the MT CVC survive at low temperatures even with
the main terms of the AL CVC by considering the difference
between the important factors for σxx and limH→0

σxy

H
: since

the important factor for σxx is the unrenormalized QP damping,
the effects of the MT CVC on the currents of the dxz/yz orbital
around k = ( 21

32π, 21
32π ) are little important for ρab away from

the AF QCP due to the large unrenormalized QP damping;
on the other hand, since not only the unrenormalized QP
damping, but also the momentum derivative of the angle of
the current becomes important for limH→0

σxy

H
, the effects

of the MT CVC on the currents of the dxz/yz orbital around

k = ( 21
32π, 21

32π ) become considerable for RH due to the large
momentum derivative. Third, three specific features of RH

obtained in the MT CVC case survive even including the main
terms of the AL CVC; the three specific features are emerging
a peak, crossing over zero, and increasing monotonically in the
high-temperature region. This can be understood that at high
temperatures the effects of the AL CVC are small due to the
large QP damping, and that the main effects of the MT CVC
at low temperatures remain qualitatively unchanged.

Next, we analyze the orbital-decomposed components of
limH→0

σxy

H
away from the AF QCP to determine the role

of each t2g orbital. Due to the same reason for σxx , we
consider only the dxz + dyz component and dxy component
of limH→0

σxy

H
; the former and the latter are defined as the

equations that
∑3

{a}=1 in Eq. (39) are replaced by, respectively,∑2
{a}=1 and

∑
{a}=3. From Figs. 18(a)–18(c), we find three

main properties: at high temperatures, the effects of all
the CVCs on those components are very small; in the
low-temperature region, the temperature dependence in the
MT + AL CVC case is qualitatively the same for the MT
CVC case; a peak of the dxz + dyz component survives even
with the main terms of the AL CVC. Those results can be
understood in the similar way for RH. It should be noted that
the difference in the important factor is the origin why the dxy

orbital gives considerable contributions to only limH→0
σxy

H
,

although its contributions to σxx are negligible.
Thus, we deduce from the results at U = 1.8 eV that the

qualitative behavior of RH away from the AF QCP can be
captured by taking account of the � CVC and the MT CVC.

FIG. 19. Temperature dependence of RH at U = 2.1 eV and JH =
U

6 in the four cases.
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FIG. 20. Temperature dependence of limH→0
σxy

H
and the orbital-decomposed components in the MT + AL CVC case at U = 2.1 eV and

the orbital-decomposed components of (b) the dxz and dyz orbitals and (c) dxy orbital in the four cases at U = 2.1 eV.

Then, we go on to analyze the temperature dependence
of RH near the AF QCP. The results at U = 2.1 eV in the
four cases are shown in Fig. 19. We see that even including
the main terms of the AL CVC, RH shows three specific
features (emerging a peak, crossing over zero, and increasing
monotonically in high-temperature region), and that RH has
two almost distinct regions as a function of temperature.
The former result can be understood in the same way as the
explanations about the third result of RH away from the AF
QCP, and the latter can be understood in the same way for the
similar property of ρab near the AF QCP (see Sec. III C 1).

Moreover, we determine the orbital dependence of
limH→0

σxy

H
near the AF QCP by the analyses of the tem-

perature dependence of the dxz + dyz component and dxy

component. From Figs. 20(a)–20(c), we see three features the
same as those obtained away from the AF QCP. Furthermore,
comparing the results away from and near the AF QCP, we
find that the difference in the dxz + dyz component or dxy

component between the MT CVC case and the MT + AL CVC
case becomes smaller near the AF QCP than away from the
AF QCP. This results from the more importance of the MT
CVC near the AF QCP.

Thus, the results at U = 2.1 eV show the validity of the
qualitative behaviors of RH near the AF QCP in the MT CVC
case and the existence of the two almost distinct regions of the
temperature dependence of RH near the AF QCP, which are
the same for ρab near the AF QCP.

IV. DISCUSSIONS

In this section, I compare the results obtained away from
or near the AF QCP with several experimental or theoretical
results. The discussions in Sec. IV A are for the comparisons
with several experiments, and the discussions in Sec. IV B are
for the comparisons with other theories.

A. Comparisons with experiments

In this section, we compare the results obtained away from
or near the AF QCP with several experiments of Sr2RuO4

or Sr2Ru0.975Ti0.025O4, respectively, and see that the obtained
results are qualitatively consistent with these experiments. In
the comparisons with Sr2Ru0.975Ti0.025O4, I believe that the
physical origins of several behaviors observed experimentally
can be deduced by comparison with the results obtained
near the AF QCP. This is because the main effect of the
Ti substitution may be the system approaching towards the

AF QCP compared with Sr2RuO4; this main effect can be
treated by increasing the value of U in the model of Sr2RuO4.
Although the microscopic mechanism why the Ti substitution
causes approaching towards the AF QCP is unclear, we can
qualitatively understand several differences between Sr2RuO4

and Sr2Ru0.975Ti0.025O4 as a result of the difference in the
distance from the AF QCP, as I will show below.

We begin with the comparisons about the magnetic proper-
ties. The enhancement of the spin susceptibility at q = QIC-AF
away from the AF QCP agrees with the neutron [21] or
the nuclear-magnetic-resonance (NMR) [69] measurement of
Sr2RuO4, and the similar enhancement near the AF QCP is
consistent with the neutron [20] or the NMR [70] measurement
of Sr2Ru0.975Ti0.025O4. Also, no sizable commensurate ferro-
magnetic spin fluctuation obtained away from the AF QCP is
in agreement with the neutron measurement [21] of Sr2RuO4.
Thus, several magnetic properties can be well described in the
FLEX approximation, as explained in Ref. [38]. It should be
noted that to discuss the anisotropy between the in-plane and
the out-of-plane spin susceptibilities, the spin-orbit interaction
is necessary [71].

Then, we turn to the comparisons about the electronic
structure. As discussed in Ref. [38], the larger mass en-
hancement for the dxy orbital than for the dxz/yz orbital away
from the AF QCP is consistent with an experiment [13,14]
in Sr2RuO4. In addition, the topology of the FS away from
the AF QCP agrees with the measurement of the dHvA effect
[13] or the angle-resolved photoemission spectroscopy [28].
However, there is a quantitative difference in the location
of the FS sheet of the dxy orbital near k = ( 2

3π, 2
3π ): in my

result, that FS sheet is very close to the inner FS sheet of
the dxz/yz orbital [see Fig. 9(a)]; in the experiments [13,28],
that FS sheet is not very close to the inner FS sheet. That
difference exists even in the LDA [26,27], as described in
Ref. [38]. To improve that difference, the spin-orbit interaction
of the Ru ions will be necessary since the small spin-orbit
interaction leads to the weak hybridization of the bands near
k = ( 2

3π, 2
3π ) [49]. Actually, that difference is improved in the

local-spin-density approximation [49] including the spin-orbit
interaction. Although that result indicates the importance
of the spin-orbit interaction for quantitative discussions, the
qualitative agreement of the FS is meaningful since that
qualitative agreement suggests that the present theory can
capture the aspects of many-body effects on the FS of Sr2RuO4

at least on a qualitative level. In addition, that qualitative
agreement supports the suitability of the expectation that the
electronic structure of Sr2RuO4 in the LDA [26,27] may
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be regarded as a good starting point to include many-body
effects. This is another meaningful aspect of that qualitative
agreement since electron correlation sometimes modifies the
FS drastically, resulting in the deviation of the FS from
the experiment even on a qualitative level [72]. From those
comparisons, we deduce that the FLEX approximation can
qualitatively well describe the electronic structure of Sr2RuO4.

Finally, I compare the obtained results with the experi-
mental results about the transport properties. As described in
Ref. [38], the T 2 dependence of ρab at low temperatures and
the nonmonotonic temperature dependence of RH away from
the AF QCP are qualitatively consistent with the experiments
[12,42] of ρab and RH of Sr2RuO4, and the T -linear ρab near
the AF QCP can qualitatively explain the experimental result
[17] in Sr2Ru0.975Ti0.025O4. (The detail of the temperature
dependence of RH in Sr2RuO4 was described in Sec. I.)
Although the spin-orbit interaction generally leads to an
additional contribution to RH through the anomalous Hall
effect [73], it has been experimentally confirmed that such
contribution is small [19]. Thus, neglecting the spin-orbit
interaction will be sufficient for at least qualitative discussions
about RH. Combining those discussions, we find that the
successful descriptions of the transport properties qualitatively
hold in the FLEX approximation with the � CVC, the MT
CVC, and the main terms of the AL CVC.

B. Comparisons with other theories

In this section, we compare the results of this paper with
other theoretical studies and show several better points of
this theory. First, we focus on the comparisons with the
DMFT [74,75] for a model of Sr2RuO4, and show that several
electronic properties can be better described in the method I
used due to a sufficient treatment of the spatially modulated
spin fluctuations. Then, we compare my results with the trans-
port properties of Sr2RuO4 obtained in the phenomenological
Boltzmann theory within the relaxation-time approximation
[76], and point out the importance of the MT CVC arising
from the spin fluctuations of the dxz/yz orbital in order to
naturally obtain the nonmonotonic temperature dependence of
RH without any ad hoc parameters of the unrenormalized QP
damping. Finally, we discuss the similarities and differences
between the main effects of the AL CVC on the charge
transports in my case and the case [37] of the single-orbital
Hubbard model near an AF QCP on a square lattice, and
conclude that the existence of the two almost distinct regions
of the charge transports near an AF QCP as a function of
temperature is one of the important findings of this paper.

We begin with the comparisons about the magnetic prop-
erties, the orbital dependence of the mass enhancement, and
the modification of the FS sheets due to electron correlation
in the DMFT [74,75] for a model of Sr2RuO4 in more detail
than Ref. [38]. First, in the DMFT, spatial correlations, the
momentum-dependent fluctuations, are completely neglected
[77], and the effects of only local correlations are taken into
account [78,79]. On the other hand, I have shown that not local
but spatially modulated spin fluctuation with q = QIC-AF is
important to discuss the magnetic properties of Sr2RuO4. As
explained in Sec. IV A, the neutron [21] and the NMR [69]
measurement for Sr2RuO4 have observed the enhancement of

that spatially modulated spin fluctuation. Thus, the magnetic
properties can be better described in my case. Second, in the
DMFT, the locations of the FS sheets are more drastically
modified due to electron correlation than in my case: on
kx = ky line, the γ sheet of the dxy orbital becomes the most
inner sheet in the DMFT [75], while the most inner sheet in
the LDA [26,27] or my case is the β sheet of the dxz/yz orbital.
Since the experimental results [13,28] are consistent with the
result in the LDA [26,27] and my case, the agreement about
the FS is better in my case than in the DMFT [75]. Third, in
the DMFT, the mass enhancement of the dxy orbital is larger
than that of the dxz/yz orbital for finite values of JH [74]; e.g.,
the former and the latter become 3.2 and 2.4 at U = 2.3 eV
and JH = 0.3 eV (∼ 0.13U ) or 4.5 and 3.3 at U = 2.3 eV and
JH = 0.4 eV (∼ 0.174U ). Thus, the larger mass enhancement
for the dxy orbital than for the dxz/yz orbital is obtained in
both the DMFT [74] and the FLEX approximation, although
the large mass enhancement of the dxy orbital is realized in
a wider region of the parameter space in my case than in the
DMFT [74]; in particular, that larger mass enhancement of the
dxy orbital is obtained even at JH = 0 eV in my case [38].
It should be noted that it is important and necessary to check
whether spatial correlations, neglected in the DMFT [77], keep
the orbital dependence of the mass enhancement qualitatively
the same since the spatial correlations sometimes drastically
change the results obtained in the DMFT (e.g., see case [80] of
a single-orbital Hubbard model on a square lattice). Actually,
even in a two-orbital Hubbard model [81] on a square lattice,
spatial correlations included by considering a cluster cause the
almost perfect disappearance of the unusual JH dependence of
a critical value of U for a Mott transition, which is obtained
in the DMFT. Combining the discussions of this paragraph,
I conclude that several electronic properties of Sr2RuO4 can
be better described in my case than in the DMFT [74,75].
In particular, it is significant to find the importance of the MT
CVC for obtaining the nonmonotonic temperature dependence
of RH of Sr2RuO4 in this paper since in the DMFT the CVCs
are neglected due to lack of the momentum dependence of the
self-energy [82,83].

I turn to the comparisons about the transport properties
of Sr2RuO4 with the phenomenological Boltzmann theory
in the relaxation-time approximation [76], in which all the
CVCs are neglected [3]. In the relaxation-time approximation
for Sr2RuO4, the unrenormalized QP damping τ−1

a is given
by τ−1

a = ηa + αaT
2 with the ad hoc parameters ηa and αa ,

which are chosen as ηdxz
= ηdyz

= 2.75,ηdxy
= 3.25, αdxz

=
0.035,αdyz

= 0.04, and αdxy
= 0.06; this form of τ−1

a as a
function of temperature is typical of the FL [9,10,84]. In
addition, only for the calculation of the in-plane resistivity, the
authors of Ref. [76] added 0.6T to τ−1

dxy
since they assumed

that Sr2RuO4 were close to a ferromagnetic instability.
Although that assumption is experimentally incorrect [21,69],
their results at low temperatures will remain qualitatively
unchanged since the contribution from the dxz/yz orbital is
more important than that from the dxy orbital due to the smaller
τ−1
a of the dxz/yz orbital. Adopting the phenomenological

Boltzmann theory in the relaxation-time approximation with
those expressions of the unrenormalized QP damping to ρab

and RH, the authors of Ref. [76] obtained the T 2 dependence
of ρab at low temperatures and the nonmonotonic temperature
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dependence of RH, which are consistent with the experiments
[12,42]. However, as they pointed out in Ref. [76], the result of
RH is very sensitive to the small relative variation of αdxz

and
αdyz

, and the sign change of RH disappears in some cases. In
addition, αdxz

and αdyz
should be the same due to the tetragonal

symmetry of the crystal. Thus, although the results obtained in
the relaxation-time approximation [76] seem to be reasonable,
the validity of the choice of the ad hoc parameters is unclear.
On the other hand, I have shown in Ref. [38] without any ad
hoc parameters of the unrenormalized QP damping that the MT
CVC arising from the spin fluctuations of the dxz/yz orbital is
essential to obtain the nonmonotonic temperature dependence
of RH. Furthermore, in this paper, I show that the importance of
that MT CVC remains unchanged even if we consider the main
terms of the AL CVC. From those arguments, I propose the
importance of the MT CVC arising from the spin fluctuations
of the dxz/yz orbital to understand the temperature dependence
of RH of Sr2RuO4.

I close this section with the comparisons about the main
effects of the AL CVC with the case [37] of the single-orbital
Hubbard model near an AF QCP on a square lattice. In that
single-orbital case, the authors of Ref. [37] analytically or
numerically studied the effects of the AL CVC on ρab and
RH near the AF QCP where the spin susceptibility at q =
(π,π ) was most strongly enhanced. Then, their analytic study
revealed the cancellation of the leading contributions in the
AL1 or the AL2 CVC near the AF QCP, whose details were
explained in Sec. III C 1, and their numerical study considering
only the contributions of the MT CVC and the AL CVC from
the states on the Fermi level revealed the qualitative validity
of the results obtained without the AL CVC. However, due to
neglecting the other contributions near the Fermi level, they
did not obtain the existence of the two almost distinct regions
of the transport properties near the AF QCP as a function
of temperature, which is revealed in this paper. It should be
noted that I obtained the similar results [37] to those they had
obtained, a decrease of the value of the in-plane resistivity
due to the AL CVC and a larger decrease of that at high
temperatures than at low temperatures (see Fig. 15). Thus, the
aspects of the AL CVC in my case are qualitatively consistent
with those in the single-orbital case [37]. In addition, it is one
of the important findings of this paper to reveal the existence
of the two almost distinct regions of the charge transports near
an AF QCP.

V. SUMMARY

In summary, after explaining the formal derivations of
ρab, RH, and the FLEX approximation with the � CVC, the
MT CVC, and the AL CVC, I studied ρab and RH for a
t2g-orbital Hubbard model in a PM state near or away from
the AF QCP on a square lattice in the FLEX approximation
with the � CVC, the MT CVC, and the main terms of the AL
CVC, and then found the three main results about many-body
effects. The first main result is showing that the results of
the previous studies [10,38] remain qualitatively unchanged
even with the main terms of the AL CVC. This indicates the
qualitative validity of the arguments in the previous studies
[10,38]. The second main result is finding the two almost
distinct regions of the charge transports near the AF QCP:

ρab and RH in the high-temperature region are described by
including only the � CVC, while the � CVC and the MT CVC
are necessary for their descriptions in the low-temperature
region. The third main result is clarifying the difference of
the effects of the MT CVC between ρab and RH away from
the AF QCP at low temperatures: the MT CVC leads to
the considerable effect only on the latter, although at high
temperatures only the � CVC affects ρab and RH. Thus, the
second and third main results highlight the important aspects
of many-body effects on the charge transports. I also showed
several results of the magnetic properties and the electronic
structure for that model in the FLEX approximation. Those
support a deeper understanding than in the previous studies
[10,38]. Then, comparing the obtained results with several
experiments, I achieved the qualitative agreement about the
momentum dependence of the spin fluctuation in Sr2RuO4

[21,69] or Sr2Ru0.975Ti0.025O4 [20,70], the orbital dependence
of the mass enhancement in Sr2RuO4 [13,14], the topology of
the FS of Sr2RuO4 [13,28], the T 2 dependence [12] of ρab at
low temperatures in Sr2RuO4, the nonmonotonic temperature
dependence [42] of RH in Sr2RuO4, and the T -linear ρab

in Sr2Ru0.975Ti0.025O4 [17]. Furthermore, by the comparisons
with other theories, I showed several stronger points to discuss
the electronic properties of Sr2RuO4 than other theories
[74–76], and clarified the similarities and differences of the
main effects of the AL CVC between the present multiorbital
case and a single-orbital case [37].

Several important issues remain for further study. One is the
extension of the present method to the case with the spin-orbit
interaction. In particular, it is desirable to study the anisotropy
between the in-plane and the out-of-plane susceptibilities, the
quantitative effects on the FS deformation including many-
body effects, and the charge Hall effect including both the
usual Hall effect and the anomalous Hall effect. It is also
important to extend the present method to case [18,19] with
the RuO6 distortions near the ferromagnetic QCP since its
results and the present results lead to deep understanding of
the similarities and differences between many-body effects
on the charge transports near the ferromagnetic and the AF
QCPs. Furthermore, the study about the charge transports of
the 3D ruthenates [85] using the extended method is useful to
clarify the role of the dimensionality in the charge transports
of a correlated multiorbital system. Then, another important
issue is the extended study about the charge or heat transports
of Sr2RuO4 in a superconducting phase [86,87] since it may

FIG. 21. Contours used for the analytic continuations of Eq. (10).
Contour shown in panel (b) is one of the possibilities.
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TABLE I. Relation between the additional subscripts of the four-point vertex function and the inequalities of its frequency variables.
Because of Imω > 0 and the analytic properties of the four-point vertex function, there are 16 possibilities.

Region Imε Imε + Imω Imε ′ Imε ′ + Imω Imε + Imε ′ + Imω Imε − Imε ′

11-I >0 >0 >0 >0 >0 >0
11-II >0 >0 >0 >0 >0 <0
21 <0 >0 >0 >0 >0 <0
31-II <0 <0 >0 >0 >0 <0
31-I <0 <0 >0 >0 <0 <0
32 <0 <0 <0 >0 <0 <0
33-I <0 <0 <0 <0 <0 <0
33-II <0 <0 <0 <0 <0 >0
23 <0 >0 <0 <0 <0 >0
13-II >0 >0 <0 <0 <0 >0
13-I >0 >0 <0 <0 >0 >0
12 >0 >0 <0 >0 >0 >0
22-III <0 >0 <0 >0 >0 >0
22-II <0 >0 <0 >0 >0 <0
22-I <0 >0 <0 >0 <0 <0
22-IV <0 >0 <0 >0 <0 >0

clarify the role of each t2g orbital in the superconducting phase.
Finally, it is challenging and important to study the charge
transports of other transition-metal oxides [4] or the heavy-
fermion materials such as CeCoIn5 [88] and UPt3 [89] or
the organic conductors [90] by extending the present method
and adopting that to other multiorbital Hubbard models or
the multiorbital Anderson models. Their achievements may
provide deeper knowledge about ubiquitous or characteristic
properties of many-body effects on the charge transports of a
correlated multiorbital system.
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APPENDIX A: DERIVATION OF EQ. (13)

In this appendix, we derive Eq. (13) from Eq. (10). In
this derivation, we use the analytic properties of the single-
particle Green’s function and reducible four-point vertex
function in terms of frequency variables. The former becomes
singular for Imε = 0 with ε being its frequency variable. The
analytic property of the latter is the same for the two-particle
Green’s function [46]: it becomes singular when the frequency
variables ε, ε′, and ω satisfy Imε = 0 or (Imε + Imω) = 0 or
Imε′ = 0 or (Imε′ + Imω) = 0 or (Imε + Imε′ + Imω) = 0
or (Imε − Imε′) = 0, where we consider case for Imω > 0 to
take i�n → ω + i0+. As a result, there are 16 possibilities of
the four-point vertex function in real-frequency representation,
as shown in Table I.

Using those analytic properties, we can carry out the
analytic continuations of the first and the second terms of
Eq. (10). This is because we can rewrite the summation about
the Matsubara frequency as the corresponding contour integral
[9]. Using the contour C shown in Fig. 21(a), we can carry out
the analytic continuation for the first term:

− T

N

∑
k

∑
m

∑
{a}

(vkν)ba(vkν)cdGac(k,iεm+n)Gdb(k,iεm)

= − 1

N

∑
k

∫
C

dε

4πi
tanh

ε

2T

∑
{a}

(vkν)ba(vkν)cdGac(k,ε + i�n)Gdb(k,ε)

→ − 1

N

∑
k

∫ ∞

−∞

dε

4πi

∑
{a}

(vkν)ba(vkν)cd

[
tanh

ε

2T
g1;acdb(k; ω) +

(
tanh

ε + ω

2T
− tanh

ε

2T

)

× g2;acdb(k; ω) − tanh
ε + ω

2T
g3;acdb(k; ω)

]
, (A1)

where → represents the replacement of i�n by ω + i0+, and gl;acdb(k; ω) are

g1;acdb(k; ω) = G(R)
ac (k,ε + ω)G(R)

db (k,ε), (A2)

g2;acdb(k; ω) = G(R)
ac (k,ε + ω)G(A)

db (k,ε), (A3)
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and

g3;acdb(k; ω) = G(A)
ac (k,ε + ω)G(A)

db (k,ε). (A4)

Next, by replacing T
∑

m and T
∑

m′ in the second term of Eq. (10) by the contour integrals with the contour C in Fig. 21(a) and
the contour C ′ such as Fig. 21(b), respectively, we can similarly carry out the analytic continuation of the second term:

− T 2

N2

∑
k,k′

∑
m,m′

∑
{a}

∑
{A}

(vkν)ba(vk′ν)cdGaA(k,iεm+n)GdD(k′,iεm′ )�{A}(k,iεm,k′,iεm′ ; 0,i�n)GBb(k,iεm)GCc(k′,iεm′+n)

= − 1

N2

∑
k,k′

∫
C

dε

4πi
tanh

ε

2T

∑
{a}

∑
{A}

(vkν)ba(vk′ν)cdGaA(k,ε + i�n)GBb(k,ε)

[∫
C′

dε′

4πi
tanh

ε′

2T

× GdD(k′,ε′)�{A}(k,ε,k′,ε′; 0,i�n)GCc(k′,ε′ + i�n) + T GdD(k′,ε)�{A}(k,ε,k′,ε; 0,i�n)GCc(k′,ε + i�n)

+ T GdD(k′, − ε − i�n)�{A}(k,ε,k′, − ε − i�n; 0,i�n)GCc(k′, − ε)

]

→ − 1

N2

∑
k,k′

∑
{a}

(vkν)ba(vk′ν)cd
∑
{A}

∫ ∞

−∞

dε

4πi

∫ ∞

−∞

dε′

4πi
coth

ε′ − ε

2T

{(
tanh

ε + ω

2T
− tanh

ε

2T

)

× g2;aABb(k; ω)g2;CcdD(k′; ω)[�22-II;{A}(k,k′; ω) − �22-III;{A}(k,k′; ω)]

− tanh
ε + ω

2T
g3;aABb(k; ω)g3;CcdD(k′; ω)[�33-I;{A}(k,k′; ω) − �33-II;{A}(k,k′; ω)]

+ tanh
ε

2T
g1;aABb(k; ω)g1;CcdD(k′; ω)[�11-II;{A}(k,k′; ω) − �11-I;{A}(k,k′; ω)]

}

− 1

N2

∑
k,k′

∑
{a}

(vkν)ba(vk′ν)cd
∑
{A}

∫ ∞

−∞

dε

4πi

∫ ∞

−∞

dε′

4πi
tanh

ε′

2T

{(
tanh

ε + ω

2T
− tanh

ε

2T

)

× g2;aABb(k; ω)[�21;{A}(k,k′; ω)g1;CcdD(k′; ω) − �22-II;{A}(k,k′; ω)g2;CcdD(k′; ω)]

− tanh
ε + ω

2T
g3;aABb(k; ω)[�31-I;{A}(k,k′; ω)g1;CcdD(k′; ω) − �32;{A}(k,k′; ω)g2;CcdD(k′; ω)]

+ tanh
ε

2T
g1;aABb(k; ω)[�11-I;{A}(k,k′; ω)g1;CcdD(k′; ω) − �12;{A}(k,k′; ω)g2;CcdD(k′; ω)]

}

− 1

N2

∑
k,k′

∑
{a}

(vkν)ba(vk′ν)cd
∑
{A}

∫ ∞

−∞

dε

4πi

∫ ∞

−∞

dε′

4πi
tanh

ε′ + ω

2T

{(
tanh

ε + ω

2T
− tanh

ε

2T

)

× g2;aABb(k; ω)[�22-IV;{A}(k,k′; ω)g2;CcdD(k′; ω) − �23;{A}(k,k′; ω)g3;CcdD(k′; ω)]

− tanh
ε + ω

2T
g3;aABb(k; ω)[�32;{A}(k,k′; ω)g2;CcdD(k′; ω) − �33-I;{A}(k,k′; ω)g3;CcdD(k′; ω)]

+ tanh
ε

2T
g1;aABb(k; ω)[�12;{A}(k,k′; ω)g2;CcdD(k′; ω) − �13-I;{A}(k,k′; ω)g3;CcdD(k′; ω)]

}

− 1

N2

∑
k,k′

∑
{a}

(vkν)ba(vk′ν)cd
∑
{A}

∫ ∞

−∞

dε

4πi

∫ ∞

−∞

dε′

4πi
coth

ε′ + ε + ω

2T

{(
tanh

ε + ω

2T
− tanh

ε

2T

)
g2;aABb(k; ω)

× g2;CcdD(k′; ω)[�22-III;{A}(k,k′; ω) − �22-IV;{A}(k,k′; ω)] − tanh
ε + ω

2T
g3;aABb(k; ω)[�31-II;{A}(k,k′; ω)

− �31-I;{A}(k,k′; ω)]g1;CcdD(k′; ω) + tanh
ε

2T
g1;aABb(k; ω)g3;CcdD(k′; ω)[�13-I;{A}(k,k′; ω) − �13-II;{A}(k,k′; ω)]

}

= − 1

N2

∑
k,k′

∫ ∞

−∞

dε

4πi

∑
{a}

∑
{A}

(vkν)ba(vk′ν)cd

[
tanh

ε

2T
g1;aABb(k; ω)

∫ ∞

−∞

dε′

4πi

3∑
l=1

J1l;{A}(k,k′; ω)gl;CcdD(k′; ω)

+
(

tanh
ε + ω

2T
− tanh

ε

2T

)
g2;aABb(k; ω)

∫ ∞

−∞

dε′

4πi

3∑
l=1

J2l;{A}(k,k′; ω)gl;CcdD(k′; ω)

− tanh
ε + ω

2T
g3;aABb(k; ω)

∫ ∞

−∞

dε′

4πi

3∑
l=1

J3l;{A}(k,k′; ω)gl;CcdD(k′; ω)

]
, (A5)
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where Jll′;{A}(k,k′; ω) are

J11;{A}(k,k′; ω) = tanh
ε′

2T
�11-I;{A}(k,k′; ω) + coth

ε′ − ε

2T
[�11-II;{A}(k,k′; ω) − �11-I;{A}(k,k′; ω)], (A6)

J12;{A}(k,k′; ω) =
(

tanh
ε′ + ω

2T
− tanh

ε′

2T

)
�12;{A}(k,k′; ω), (A7)

J13;{A}(k,k′; ω) = − tanh
ε′ + ω

2T
�13-I;{A}(k,k′; ω) − coth

ε + ε′ + ω

2T
[�13-II;{A}(k,k′; ω) − �13-I;{A}(k,k′; ω)], (A8)

J21;{A}(k,k′; ω) = tanh
ε′

2T
�21;{A}(k,k′; ω), (A9)

J22;{A}(k,k′; ω) =
(

coth
ε′ − ε

2T
− tanh

ε′

2T

)
�22-II;{A}(k,k′; ω) +

(
coth

ε′ + ε + ω

2T
− coth

ε′ − ε

2T

)
�22-III;{A}(k,k′; ω)

+
(

tanh
ε′ + ω

2T
− coth

ε′ + ε + ω

2T

)
�22-IV;{A}(k,k′; ω), (A10)

J23;{A}(k,k′; ω) = − tanh
ε′ + ω

2T
�23;{A}(k,k′; ω), (A11)

J31;{A}(k,k′; ω) = tanh
ε′

2T
�31-I;{A}(k,k′; ω) + coth

ε + ε′ + ω

2T
[�31-II;{A}(k,k′; ω) − �31-I;{A}(k,k′; ω)], (A12)

J32;{A}(k,k′; ω) =
(

tanh
ε′ + ω

2T
− tanh

ε′

2T

)
�32;{A}(k,k′; ω), (A13)

and

J33;{A}(k,k′; ω) = − tanh
ε′ + ω

2T
�33-I;{A}(k,k′; ω) − coth

ε′ − ε

2T
[�33-II;{A}(k,k′; ω) − �33-I;{A}(k,k′; ω)]. (A14)

In Eq. (A5), I have not explicitly written whether the integral is the principal integral (containing a hyperbolic cotangent of
frequency). Combining Eqs. (A1) and (A5), we finally obtain Eq. (14).

APPENDIX B: DERIVATION OF EQ. (16)

In this appendix, we derive Eq. (16) after defining the three-point vector vertex function in Matsubara-frequency representation
and carrying out its analytic continuation.

We can express Eq. (13) in a more compact form sinceJll′;{A}(k,k′; ω) are connected with the three-point vector vertex function
in real-frequency representation. We begin with the definition [91] in Matsubara-frequency representation �ν;AB(k,iεm; q,i�n) ≡
�ν;AB(k + q,iεm+n,k,iεm):

∑
A,B

GaA(k + q,iεm+n)�ν;AB(k,iεm; q,i�n)GBb(k,iεm) =
∫ T −1

0
dτ eiεm+nτ

∫ T −1

0
dτ ′e−i�nτ

′ 〈Tτ ĉk+qa(τ )Ĵ−qν(τ ′)ĉ†kb〉. (B1)

After some algebra for Eq. (B1), we obtain the Bethe-Salpeter equation to determine �ν;AB(k,iεm; q,i�n):

�ν;ab(k,iεm; q,i�n) = (vkν)ab + T

N

∑
k′

∑
m′

∑
{A}

�abCD(k,iεm,k′iεm′ ; q,i�n)GCA(k′ + q,iεm′+n)GBD(k′,iεm′ )(vk′ν)AB. (B2)

Since the second term of Eq. (B2) has the similar analytic property for the second term of Eq. (10), we can similarly carry out
the analytic continuation of the former as follows:

T

N

∑
k′

∑
m′

∑
{A}

�abCD(k,iεm,k′iεm′ ; q,i�n)GCA(k′ + q,iεm′+n)GBD(k′,iεm′)(vk′ν)AB

= 1

N

∑
k′

∑
{A}

[∫
C ′

dε′

4πi
tanh

ε′

2T
�abCD(k,iεm,k′,ε′; q,i�n)GCA(k′ + q,ε′ + i�n)GBD(k′,ε′)

+ T �abCD(k,iεm,k′,iεm; q,i�n)GCA(k′ + q,iεm + i�n)GBD(k′,iεm)

+ T �abCD(k,iεm,k′, − iεm − i�n; q,i�n)GCA(k′ + q, − iεm)GBD(k′, − iεm − i�n)

]
(vk′ν)AB, (B3)
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FIG. 22. Contours used for the analytic continuations of the three-point vector vertex function. Imε > 0 and Imε + Imω > 0 are satisfied
in panel (a), Imε < 0 and Imε + Imω > 0 are satisfied in panel (b), and Imε < 0 and Imε + Imω < 0 are satisfied in panel (c).

where the contour C ′ is the contour shown in Fig. 22(a) or 22(b) or 22(c), depending on the values of Imε and Imε + Imω for
the second term of Eq. (B2). Thus, the three-point vector vertex function in real-frequency representation is given by

�ν;l;ab(k; q) = (vkν)ab + 1

N

∑
k′

∑
{A}

3∑
l′=1

∫ ∞

−∞

dε′

4πi
Jll′;abCD(k,k′; q)gl′;CABD(k′; q)(vk′ν)AB, (B4)

where the case for l = 1 or 2 or 3 corresponds to case of Fig. 22(a) or 22(b) or 22(c), respectively. Using Eqs. (13), (14), and
(B4), we can rewrite Eq. (13) as (16).

APPENDIX C: DERIVATION OF EQ. (36)

In this appendix, I explain the detail of the derivation of the q-linear terms of Kxyν(q,i�n) in the most-divergent-term
approximation [47,48].

We start to show the leading-order q dependence of each quantity appearing in Eq. (35). First, GaA(k−,iεm)GBb(k+,iεm+n)
is approximated within the linear order of q as

GaA(k−,iεm)GBb(k+,iεm+n) ∼ GaA(k,iεm)GBb(k,iεm+n) +
∑

η

qη

2

[
GaA(k,iεm)

←→
∂

∂kη

GBb(k,iεm+n)

]
, (C1)

where we introduce a quantity, [
g(x)

←→
∂

∂x
h(x)

]
≡ g(x)

∂h(x)

∂x
− ∂h(x)

∂x
h(x). (C2)

Second, �y;dc(k±,iεm+n,k±,iεm) is approximated as

�y;dc(k±,iεm+n,k±,iεm) ∼ �y;dc(k,iεm+n,k,iεm) ±
∑

η

qη

2

∂

∂kη

�y;dc(k,iεm+n,k,iεm). (C3)

Third, the leading-order q dependence of �x;AB (k−,iεm,k+,iεm+n) is given by

�x;AB (k−,iεm,k+,iεm+n) ∼ �x;AB(k,iεm,k,iεm+n) + 	�x;AB (k,iεm,k,iεm+n), (C4)

with the equation derived from Eq. (B2):

	�x;AB (k,iεm,k,iεm+n)

= T

N

∑
k′

∑
m′

∑
{a}

�
(1)
ABcd (k,iεm,k,iεm+n; k′,iεm′ ,k′,iεm′+n)

∑
η

qη

2

[
Gca(k′,iεm′ )

←→
∂

∂kη

Gbd (k′,iεm′+n)

]
�x;ab(k′,iεm′ ,k′,iεm′+n)

+ T

N

∑
k′

∑
m′

∑
{a}

�
(1)
ABcd (k,iεm,k,iεm+n; k′,iεm′ ,k′,iεm′+n)Gbd (k′,iεm′+n)Gca(k′,iεm′ )	�x;ab(k′,iεm′ ,k′,iεm′+n). (C5)

In Eq. (C5), we have neglected the q-linear term arising from the irreducible four-point vertex function because that is
negligible compared with the main terms in the most-divergent-term approximation [47,48]. Fourth, due to the same reason,
we can neglect the q-linear term arising from the irreducible six-point vertex function [47,48]. Fifth, the q dependence of∑

f,g Gf b(k−,iεm)�ν;gf (k+,iεm,k−,iεm)Gcg(k+,iεm) is negligible in the most-divergent-term approximation [47,48] since we
can neglect the q-linear term arising from a pair of two single-particle Green’s functions whose frequencies are the same
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in the most-divergent-term approximation [47,48]. More precisely,
∑

f,g Gf b(k−,iεm)�ν;gf (k+,iεm,k−,iεm)Gcg(k+,iεm) is
approximated as

∑
f,g

Gf b(k−,iεm)�α;gf (k+,iεm,k−,iεm)Gcg(k+,iεm) ∼
∑
f,g

Gf b(k,iεm)�α;gf (k,iεm,k,iεm)Gcg(k,iεm) = ∂Gcb(k,iεm)

∂kα

. (C6)

In the final line, we use one of the Ward identities [47,48].
Using the q dependence of the quantities appearing in Eq. (35), we obtain the q-linear terms of Kxyν(q,i�n) in the most-

divergent-term approximation [47,48]:

Kxyν(q,i�n) = δν,y

T

N

∑
k

∑
m

∑
a,b,A,B

∂(vky)ba

∂kν

GaA(k,iεm)	�x;AB(k,iεm,k,iεm+n)GBb(k,iεm+n)

+ δν,y

T

N

∑
k

∑
m

∑
a,b,A,B

∂(vky)ba

∂kν

�x;AB (k,iεm,k,iεm+n)
∑

η

qη

2

[
GaA(k,iεm)

←→
∂

∂kη

GBb(k,iεm+n)

]

+ T

N

∑
k

∑
m

∑
{a}

	�x;ba(k,iεm,k,iεm+n)Gad (k,iεm+n)
∂Gcb(k,iεm)

∂kν

�y;dc(k,iεm+n,k,iεm)

+ T

N

∑
k

∑
m

∑
{a}

�x;ba(k,iεm,k,iεm+n)
∑

η

qη

2

∂Gad (k,iεm+n)

∂kη

∂Gcb(k,iεm)

∂kν

�y;dc(k,iεm+n,k,iεm)

+ T

N

∑
k

∑
m

∑
{a}

�x;ba(k,iεm,k,iεm+n)Gad (k,iεm+n)
∂Gcb(k,iεm)

∂kν

∑
η

qη

2

∂�y;dc(k,iεm+n,k,iεm)

∂kη

+ T

N

∑
k

∑
m

∑
{a}

	�x;ba(k,iεm,k,iεm+n)Gcb(k,iεm)
∂Gad (k,iεm+n)

∂kν

�y;dc(k,iεm+n,k,iεm)

− T

N

∑
k

∑
m

∑
{a}

�x;ba(k,iεm,k,iεm+n)
∑

η

qη

2

∂Gcb(k,iεm)

∂kη

∂Gad (k,iεm+n)

∂kν

�y;dc(k,iεm+n,k,iεm)

− T

N

∑
k

∑
m

∑
{a}

�x;ba(k,iεm,k,iεm+n)Gcb(k,iεm)
∂Gad (k,iεm+n)

∂kν

∑
η

qη

2

∂�y;dc(k,iεm+n,k,iεm)

∂kη

+
(

T

N

)3 ∑
k,k′,k′′

∑
m,m′,m′′

∑
{a}

∑
{A}

∑
F,G

GBb(k,iεm)	�x;ba(k,iεm,k,iεm+n)GaA(k,iεm+n)

× ∂GGF (k′′,iεm′′ )

∂k′′
ν

GDd (k′,iεm′+n)�y;dc(k′,iεm′+n,k
′,iεm′)GcC(k′,iεm′ )

× �
(1)
3;ABCDFG(k,iεm+n,k,iεm; k′,iεm′ ,k′,iεm′+n; k′′,iεm′′ ,k′′,iεm′′ )

+
(

T

N

)3 ∑
k,k′,k′′

∑
m,m′,m′′

∑
{a}

∑
{A}

∑
F,G

�x;ba(k,iεm,k,iεm+n)
∑

η

qη

2

[
GBb(k,iεm)

←→
∂

∂kη

GaA(k,iεm+n)

]

× ∂GGF (k′′,iεm′′ )

∂k′′
ν

GDd (k′,iεm′+n)�y;dc(k′,iεm′+n,k
′,iεm′)GcC(k′,iεm′ )

× �
(1)
3;ABCDFG(k,iεm+n,k,iεm; k′,iεm′ ,k′,iεm′+n; k′′,iεm′′ ,k′′,iεm′′ ). (C7)

The above ninth and tenth terms can be rewritten in a simpler form by using Eqs. (B2) and (C5), the exchange symmetry [48]
of the four-point vertex function, and the relation [48] between the irreducible four-point and the irreducible six-point vertex
functions: (

∂

∂kν

+ ∂

∂k′
ν

)
�

(1)
ABDC(k,iεm+n,k,iεm; k′,iεm′+n,k

′,iεm′)

= T

N

∑
k′′

∑
m′′

∑
F,G

�
(1)
3;ABCDFG(k,iεm+n,k,iεm; k′,iεm′ ,k′,iεm′+n; k′′,iεm′′ ,k′′,iεm′′ )

∂GGF (k′′,iεm′′ )

∂k′′
ν

. (C8)
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Namely, the ninth and tenth terms become

(
T

N

)2 ∑
k,k′

∑
m,m′

∑
{a}

∑
{A}

GBb(k,iεm)	�x;ba(k,iεm,k,iεm+n)GaA(k,iεm+n)GDd (k′,iεm′+n)

× �y;dc(k′,iεm′+n,k
′,iεm′ )GcC(k′,iεm′ )

(
∂

∂kν

+ ∂

∂k′
ν

)
�

(1)
ABDC(k,iεm+n,k,iεm; k′,iεm′+n,k

′,iεm′ )

+
(

T

N

)2 ∑
k,k′

∑
m,m′

∑
{a}

∑
{A}

�x;ba(k,iεm,k,iεm+n)
∑

η

qη

2

[
GBb(k,iεm)

←→
∂

∂kη

GaA(k,iεm+n)

]
GDd (k′,iεm′+n)

× �y;dc(k′,iεm′+n,k
′,iεm′ )GcC(k′,iεm′ )

(
∂

∂kν

+ ∂

∂k′
ν

)
�

(1)
ABDC(k,iεm+n,k,iεm; k′,iεm′+n,k

′,iεm′ )

= T

N

∑
k

∑
m

∑
a,b,A,B

GBb(k,iεm)	�x;ba(k,iεm,k,iεm+n)GaA(k,iεm+n)
∂

∂kν

[�y;AB(k,iεm+n,k,iεm) − (vky)AB]

−
(

T

N

)2 ∑
k,k′

∑
m,m′

∑
{a}

∑
{A}

GBb(k,iεm)	�x;ba(k,iεm,k,iεm+n)GaA(k,iεm+n)

× ∂

∂k′
ν

[GDd (k′,iεm′+n)�y;dc(k′,iεm′+n,k
′,iεm′)GcC(k′,iεm′)]�(1)

ABDC(k,iεm+n,k,iεm; k′,iεm′+n,k
′,iεm′ )

+ T

N

∑
k

∑
m

∑
a,b,A,B

�x;ba(k,iεm,k,iεm+n)
∑

η

qη

2

[
GBb(k,iεm)

←→
∂

∂kη

GaA(k,iεm+n)

]

× ∂

∂kν

[�y;AB (k,iεm+n,k,iεm) − (vky)AB]

−
(

T

N

)2 ∑
k,k′

∑
m,m′

∑
{a}

∑
{A}

�x;ba(k,iεm,k,iεm+n)
∑

η

qη

2

[
GBb(k,iεm)

←→
∂

∂kη

GaA(k,iεm+n)

]

× ∂

∂k′
ν

[GDd (k′,iεm′+n)�y;dc(k′,iεm′+n,k
′,iεm′)GcC(k′,iεm′)]�(1)

ABDC(k,iεm+n,k,iεm; k′,iεm′+n,k
′,iεm′ )

= T

N

∑
k

∑
m

∑
a,b,A,B

{
	�x;ba(k,iεm,k,iεm+n)GBb(k,iεm)GaA(k,iεm+n) + �x;ba(k,iεm,k,iεm+n)

×
∑

η

qη

2

[
GBb(k,iεm)

←→
∂

∂kη

GaA(k,iεm+n)

]}
∂

∂kν

[�y;AB (k,iεm+n,k,iεm) − (vky)AB] − T

N

∑
k

∑
m

∑
c,d,C,D

	�x;DC

× (k′,iεm′+n,k
′,iεm′ )

∂

∂k′
ν

[GDd (k′,iεm′+n)�y;dc(k′,iεm′+n,k
′,iεm′ )GcC(k′,iεm′ )]. (C9)

Thus, replacing the ninth and tenth terms of Eq. (C7) by the terms of Eq. (C9), we can rewrite Eq. (C7) in a simpler form,

Kxyν(q,i�n)

= T

N

∑
k

∑
m

∑
{a}

�x;ba(k,iεm,k,iεm+n)
∑

η

qη

2

∂Gad (k,iεm+n)

∂kη

∂Gcb(k,iεm)

∂kν

�y;dc(k,iεm+n; k,iεm)

+ T

N

∑
k

∑
m

∑
{a}

�x;ba(k,iεm,k,iεm+n)Gad (k,iεm+n)
∂Gcb(k,iεm)

∂kν

∑
η

qη

2

∂�y;dc(k,iεm+n,k,iεm)

∂kη

− T

N

∑
k

∑
m

∑
{a}

�x;ba(k,iεm,k,iεm+n)
∑

η

qη

2

∂Gcb(k,iεm)

∂kη

∂Gad (k,iεm+n)

∂kν

�y;dc(k,iεm+n,k,iεm)

− T

N

∑
k

∑
m

∑
{a}

�x;ba(k,iεm,k,iεm+n)Gcb(k,iεm)
∂Gad (k,iεm+n)

∂kν

∑
η

qη

2

∂�y;dc(k,iεm+n,k,iεm)

∂kη
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+ T

N

∑
k

∑
m

∑
{a}

�x;ba(k,iεm,k,iεm+n)
∑

η

qη

2

[
Gcb(k,iεm)

←→
∂

∂kη

Gad (k,iεm+n)

]
∂�y;dc(k,iεm+n,k,iεm)

∂kν

= T

N

∑
k

∑
m

∑
{a}

�x;ba(k,iεm,k,iεm+n)�y;dc(k,iεm+n,k,iεm)

×
∑

η

qη

2

{
∂Gad (k,iεm+n)

∂kη

∂Gcb(k,iεm)

∂kν

− ∂Gad (k,iεm+n)

∂kν

∂Gcb(k,iεm)

∂kη

}

+ T

N

∑
k

∑
m

∑
{a}

�x;ba(k,iεm,k,iεm+n)
∑

η

qη

2

{[
Gcb(k,iεm)

←→
∂

∂kη

Gad (k,iεm+n)

]
∂�y;dc(k,iεm+n,k,iεm)

∂kν

−
[
Gcb(k,iεm)

←→
∂

∂kν

Gad (k,iεm+n)

]
∂�y;dc(k,iεm+n,k,iεm)

∂kη

}

= 1

2
(qxδν,y − qyδν,x)

T

N

∑
k

∑
m

∑
{a}

�x;ba(k,iεm,k,iεm+n)

{[
Gcb(k,iεm)

←→
∂

∂kx

Gad (k,iεm+n)

]
∂�y;dc(k,iεm+n,k,iεm)

∂ky

−
[
Gcb(k,iεm)

←→
∂

∂ky

Gad (k,iεm+n)

]
∂�y;dc(k,iεm+n,k,iεm)

∂kx

}
+ 1

2
(qxδα,y − qyδα,x)

T

N

∑
k

∑
m

∑
{a}

�x;ba

× (k,iεm,k,iεm+n)

(
∂Gcb(k,iεm)

∂ky

∂Gad (k,iεm+n)

∂kx

− ∂Gcb(k,iεm)

∂kx

∂Gad (k,iεm+n)

∂ky

)
�y;dc(k,iεm+n; k,iεm). (C10)

In the above derivation, we have used the fact that the surface terms arising from the partial integrations about kx or ky become
zero due to the periodicity of the Brillouin zone, while I have not used the replacement used in Refs. [47,48].

Finally, we can rewrite Eq. (C10) as Eq. (36) by using the equivalence between the x and the y directions.

APPENDIX D: TECHNICAL DETAILS ABOUT THE NUMERICAL CALCULATIONS OF THE FLEX APPROXIMATION

In this appendix, I remark on several techniques about the numerical calculations to solve a set of the equations of the FLEX
approximation self-consistently by iteration using the fast Fourier transformation (FFT) [92].

To use the FFT for the quantities as a function of fermionic Matsubara frequency, we need to use the zero padding [92]. This
is because of the antiperiodicity in terms of fermionic Matsubara frequency [60]. For example, when the number of Matsubara
frequencies is 2M , the noninteracting single-particle Green’s function should satisfy

G0
ab(k,iεm) =

⎧⎨
⎩

G0
ab(k,iεm) for 0 � m < M,

0 for M � m < 3M,

G0
ab(k,iεm−4M ) for 3M � m < 4M.

(D1)

The similar property is satisfied for Gab(k,iεm) and �ab(k,iεm). Furthermore, due to this property, the quantities as a function of
bosonic Matsubara frequency such as χabcd (q,i�n) satisfy the following property:

χabcd (q,i�n) =
⎧⎨
⎩

χabcd (q,i�n) for 0 � n < 2M,

0 for n = 2M,

χabcd (q,i�n−4M ) for 2M < m < 4M.

(D2)

Using the above properties, we can utilize the FFT to solve the set of the self-consistent equations of the FLEX approximation
by iteration. First, using the input of the self-energy, which is zero for the first iteration, we determine Gab(k,iεm) from the Dyson
equation [i.e., Eq. (48)]. Second, we calculate the chemical potential from Eq. (52) by the bisection method; in this calculation,
to reduce the numerical error arising from the cutoff frequency, we use Eq. (52) instead of the equation where only Gab(k,iεm)
appears, and we set the chemical potentials in f [εα(k)], Gab(k,iεm), and G0

ab(k,iεm) the same. Third, we carry out the Fourier
transformations of Gab(k,iεm) about momentum and frequency:

Gab(r,τl) = 1

N

∑
k

eik·re
−iπl
4M T

4M−1∑
m=0

e−2πi ml
4M Gab(k,iεm). (D3)

Fourth, using Eqs. (D3) and (44), we determine χabcd (q,i�n) from the equation,

χabcd (q,i�n) = −
∑

r

e−iq·r 1

4MT

4M−1∑
l=0

e2πi nl
4M Gac(r,τl)Gdb(−r, − τl). (D4)
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Fifth, from Eqs. (D4), (45), and (46), we calculate χS
abcd (q,i�n) and χC

abcd (q,i�n). Sixth, by solving Eq. (51), we obtain
Vabcd (q,i�n). Seventh, we carry out the Fourier transformations of Vabcd (q,i�n) about momentum and frequency to determine
�ac(k,iεm) from the following equation obtained from Eq. (50):

�ac(k,iεm) =
∑

r

e−ik·r 1

4MT

4M−1∑
l=0

e2πi ml
4M e

iπl
4M

∑
b,d

Vabcd (r,τl)Gbd (r,τl). (D5)

At this stage, we obtain the output of the self-energy. If the sum of the difference between the absolute values of the output and
the input becomes less than 10−4, I assume that the solution is obtained; otherwise, we replace the input of the self-energy by the
average of the input and the output, and solve the above procedures again. Note that if we use the relations about the symmetry
of the system such as time-reversal symmetry and even-parity symmetry and utilize the arrays efficiently, we can reduce the
memory of the arrays and the time of the numerical calculations.

In the above iterative procedures, we should increase the Hubbard interaction terms so slowly as to keep the susceptibilities
finite [31] since the calculations are restricted to a PM phase. For example, if we analyze case at U = 1.8 eV, JH = J ′ = U

6 , and
U ′ = U − 2JH = 2U

3 , we begin with U = 0.2 eV and then increase the value of U slowly after several iterations.

APPENDIX E: DERIVATION OF EQS. (54)–(57)

In this appendix, we derive the set of Eqs. (54)–(57) by adopting Eq. (53) to Eq. (50). Using Eq. (53) in the FLEX
approximation, we obtain �

(1)
abcd (k,iεm,k′,iεm′ ; q,i�n) in the FLEX approximation. Setting q = 0 and �n = 0 in Eq. (53) and

substituting Eq. (50) into (53), we have

�
(1)
abcd (k,iεm,k′,iεm′ ; 0,0)= T

N

∑
q ′,n′

∑
B,D

VaBbD(q ′,i�n′ )
δGBD(k − q ′,iεm−n′ )

δGcd (k′,iεm′ )
+ T

N

∑
q ′,n′

∑
B,D

δVaBbD(q ′,i�n′ )

δGcd (k′,iεm′ )
GBD(k − q ′,iεm−n′ ).

(E1)

The first term of Eq. (E1) gives the MT term,

�
(1)MT
abcd (k,iεm,k′,iεm′ ; 0,0)= Vacbd (k − k′,iεm − iεm′), (E2)

and the second term gives the AL1 and the AL2 terms,

�
(1)AL
abcd (k,iεm,k′,iεm′ ; 0,0)

= T

N

∑
q ′

∑
n′

∑
B,D

[
3

2

∑
{a′}

US
aBa′b′

δχS
a′b′c′d ′(q ′,i�n′ )

δGcd (k′,iεm′ )
US

c′d ′bD + 1

2

∑
{a′}

UC
aBa′b′

δχC
a′b′c′d ′ (q ′,i�n′ )

δGcd (k′,iεm′ )
UC

c′d ′bD

−
∑
{a′}

U
↑↓
aa′Bb′

δχa′b′c′d ′(q ′,i�n′ )

δGcd (k′,iεm′ )
U

↑↓
c′bd ′D

]
GBD(k − q ′,iεm−n′ )

= T

N

∑
q ′

∑
n′

∑
B,D

[
3

2

∑
{A′}

ÑS
aBA′B ′(q ′,i�n′ )

δχA′B ′C ′D′(q ′,i�n′ )

δGcd (k′,iεm′)
ÑS

C ′D′bD(q ′,i�n′ )

+ 1

2

∑
{A′}

ÑC
aBA′B ′(q ′,i�n′ )

δχA′B ′C ′D′(q ′,i�n′ )

δGcd (k′,iεm′ )
ÑC

C ′D′bD(q ′,i�n′ )

−
∑
{A′}

U
↑↓
aA′BB ′

δχA′B ′C ′D′ (q ′,i�n′ )

δGcd (k′,iεm′ )
U

↑↓
C ′bD′D

]
GBD(k − q ′,iεm−n′ )

= − T

N

∑
q ′

∑
n′

∑
{A}

[
3

2
ÑS

aBcA(q ′,i�n′ )ÑS
dCbD(q ′,i�n′ ) + 1

2
ÑC

aBcA(q ′,i�n′ )ÑC
dCbD(q ′,i�n′ ) − U

↑↓
acBAU

↑↓
dbCD

]

× GCA(k′ − q ′,iεm′−n′ )GBD(k − q ′,iεm−n′ )

− T

N

∑
q ′

∑
n′

∑
{A}

[
3

2
ÑS

aBAd (q ′,i�n′ )ÑS
CcbD(q ′,i�n′ ) + 1

2
ÑC

aBAd (q ′,i�n′ )ÑC
CcbD(q ′,i�n′ ) − U

↑↓
aABdU

↑↓
CbcD

]

× GAC(k′ + q ′,iεm′+n′ )GBD(k − q ′,iεm−n′ )

= − T

N

∑
q ′

∑
n′

∑
{A}

WAL
aBcA;dCbD(q ′,i�n′ ; q ′,i�n′ )GCA(k′ − q ′,iεm′−n′ )GBD(k − q ′,iεm−n′ )
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− T

N

∑
q ′

∑
n′

∑
{A}

WAL
aBAd;CcbD(q ′,i�n′ ; q ′,i�n′ )GAC(k′ + q ′,iεm′+n′ )GBD(k − q ′,iεm−n′ )

= �
(1)AL1
abcd (k,iεm,k′,iεm′ ; 0,0) + �

(1)AL2
abcd (k,iεm,k′,iεm′ ; 0,0). (E3)

In the derivation of Eq. (E3), we have used several equations: the second line of Eq. (E3) is obtained by using

US
aBa′b′

δχS
a′b′c′d ′ (q ′,i�n′ )

δGcd (k′,iεm′)
US

c′d ′bD =
∑
{A′}

US
aBa′b′ (MS)−1

a′b′A′B ′(q ′,i�n′ )
δχA′B ′C ′D′(q ′,i�n′ )

δGcd (k′,iεm′ )
NS

C ′D′c′d ′ (q ′,i�n′ )US
c′d ′bD

= ÑS
aBA′B ′(q ′,i�n′ )

δχA′B ′C ′D′(q ′,i�n′ )

δGcd (k′,iεm′ )
ÑS

C ′D′bD(q ′,i�n′ ) (E4)

and

UC
aBa′b′

δχC
a′b′c′d ′ (q ′,i�n′ )

δGcd (k′,iεm′)
UC

c′d ′bD =
∑
{A′}

UC
aBa′b′ (MC)−1

a′b′A′B ′(q ′,i�n′ )
δχA′B ′C ′D′(q ′,i�n′ )

δGcd (k′,iεm′ )
NC

C ′D′c′d ′ (q ′,i�n′ )UC
c′d ′bD

= ÑC
aBA′B ′(q ′,i�n′ )

δχA′B ′C ′D′(q ′,i�n′ )

δGcd (k′,iεm′ )
ÑC

C ′D′bD(q ′,i�n′ ), (E5)

where NS
abcd (q ′,i�n′ ) and NC

abcd (q ′,i�n′ ) are

NS
abcd (q ′,i�n′ ) = δa,Aδb,B +

∑
C,D

US
abCDχS

CDAB(q ′,i�n′ ) (E6)

and

NC
abcd (q ′,i�n′ ) = δa,Aδb,B −

∑
C,D

UC
abCDχC

CDAB(q ′,i�n′ ), (E7)

respectively, and (MS)−1
abcd (q ′,i�n′ ) and (MC)−1

abcd (q ′,i�n′ ) are the inverse matrices of MS
abcd (q ′,i�n′ ) and MC

abcd (q ′,i�n′ ),
respectively, with

MS
abcd (q ′,i�n′ ) = δa,cδb,d −

∑
A,B

χabAB(q ′,i�n′ )US
ABcd (E8)

and

MC
abcd (q ′,i�n′ ) = δa,cδb,d +

∑
A,B

χabAB (q ′,i�n′ )UC
ABcd ; (E9)

to obtain the third line of Eq. (E3), we have used

δχA′B ′C ′D′(q ′,i�n′ )

δGcd (k′,iεm′ )
= −δA′,cδC ′,dGD′B ′(k′ − q ′,iεm′−n′ ) − δD′,cδB ′,dGA′C ′(k′ + q ′,iεm′+n′ ), (E10)

where we have used Eq. (44); we have introduced Eq. (58) at the final line of Eq. (E3).
Finally, we can obtain Eqs. (54)–(57) by labeling q and i�n correctly as the electron-hole scattering with the momentum

transfer q and the frequency transfer i�n. For the correct labeling, see Figs. 4(a)–4(c).

APPENDIX F: ANALYTIC CONTINUATIONS OF EQS. (55)–(57)

In this appendix, we explain the details of the analytic continuations of Eqs. (55)–(57) in case that their frequency variables
satisfy the inequalities for region 22-II or 22-III or 22-IV of Table I.

First, we can easily carry out the analytic continuation of Eq. (55). Namely, since Imε − Imε′ is negative for region 22-II and
positive for regions 22-III and 22IV (see Table I), the MT terms in regions 22-II, 22-III, and 22-IV are

�
(1)MT
22-II;abcd (k,k′; q) = δq,0δω,0V

(A)
acbd (k − k′), (F1)

�
(1)MT
22-III;abcd (k,k′; q) = δq,0δω,0V

(R)
acbd (k − k′), (F2)

and

�
(1)MT
22-IV;abcd (k,k′; q) = �

(1)MT
22-III;abcd (k,k′; q), (F3)

respectively.
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FIG. 23. Contours used for the analytic continuations of the AL1 term in (a) region 22-II and (b) region 22-III or 22-IV and of the AL2
term in (c) region 22-II or 22-III and (d) region 22-IV.

Second, we can obtain the AL1 terms for regions 22-II, 22-III, and 22-IV after several calculations for the analytic continuations
by using a similar way for the analytic continuations in Sec. II B 1. Replacing the sum about bosonic Matsubara frequency
by the corresponding contour integral [93] and using the analytic properties of the single-particle Green’s functions and
WAL

abcd;ABCD(q1,i�n1 ; q2,i�n2 ), we obtain the AL1 term in region 22-II:

�
(1)AL1
22-II;{a}(k,k′; q) = − 1

N

∑
q ′

∑
{A}

∫
C

dω′

4πi
coth

ω′

2T
GCA(k′ + q ′,iεm′ + ω′)GBD(k + q ′,iεm + ω′)

× WAL
aBcA;dCbD(q − q ′,i�n − ω′; −q ′, − ω′)

− T

N

∑
q ′

∑
{A}

GCA(k′ + q ′,iεm′ )GBD(k + q ′,iεm)WAL
aBcA;dCbD(q − q ′,i�n; −q ′,0)

− T

N

∑
q ′

∑
{A}

GCA(k′ + q ′,iεm′ + i�n)GBD(k + q ′,iεm + i�n)WAL
aBcA;dCbD(q − q ′,0; −q ′, − i�n)

→ − 1

N

∑
q ′

∑
{A}

∫ ∞

−∞

dω′

2π
tanh

ω′ + ε′

2T
ImG

(R)
CA(k′ + q ′)G(A)

BD(k + q ′)WAL(RA)
aBcA;dCbD(q − q ′; −q ′)

− 1

N

∑
q ′

∑
{A}

∫ ∞

−∞

dω′

2π
tanh

ω′ + ε

2T
G

(R)
CA(k′ + q ′)ImG

(R)
BD(k + q ′)WAL(RA)

aBcA;dCbD(q − q ′; −q ′)

+ (principal integral terms), (F4)

where we have used the contour C shown in Fig. 23(a) and introduced W
AL(RA)
abcd;ABCD(q1; q2):

W
AL(RA)
abcd;ABCD(q1; q2) =3

2
Ñ

S(R)
abcd (q1,ω1)ÑS(A)

ABCD(q2,ω2) + 1

2
Ñ

C(R)
abcd (q1,ω1)ÑC(A)

ABCD(q2,ω2) − U
↑↓
acbdU

↑↓
ACBD. (F5)

Furthermore, we have not explicitly written the terms of the principal integral since those terms exactly cancel out the terms of
the principal integral for region 22-III or 22-IV; due to this cancellation, such terms are unnecessary to calculate the kernel of
the CVCs since part of the kernel, J (1)

22;cdCD(k,k′; 0), is proportional to the difference between the AL1 terms for the different
regions [see Eq. (A10)]. In deriving Eq. (F4), we have used a relation of the single-particle Green’s function as a result of the
time-reversal and the even-parity symmetry, G(R)

ab (k) = G
(A)
ab (k)∗; as described in Sec. II C, for more general derivation, we should

replace ImG
(R)
ab (k) by 1

2i
[G(R)

ab (k) − G
(A)
ab (k)]. (The similar remark holding in the other cases of the AL term is not described

below.) Then, in the similar way for region 22-II by using the contour C shown in Fig. 23(b), we obtain the AL1 term in region
22-III or 22-IV:

�
(1)AL1
22-III;abcd (k,k′; q) = − 1

N

∑
q ′

∑
{A}

∫ ∞

−∞

dω′

2π
tanh

ω′ + ε′

2T
ImG

(R)
CA(k′ + q ′)G(R)

BD(k + q ′)WAL(RA)
aBcA;dCbD(q − q ′; −q ′)

− 1

N

∑
q ′

∑
{A}

∫ ∞

−∞

dω′

2π
tanh

ω′ + ε

2T
G

(A)
CA(k′ + q ′)ImG

(R)
BD(k + q ′)WAL(RA)

aBcA;dCbD(q − q ′; −q ′)

+ (principal integral terms) (F6)

and

�
(1)AL1
22-IV;abcd (k,k′; q) = �

(1)AL1
22-III;abcd (k,k′; q). (F7)
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Third, carrying out the analytic continuation of the AL2 term in the similar way for the AL1 term by using the contour C

shown in Fig. 23(c) or 23(d), we obtain the AL2 term for region 22-II or 22-III or 22-IV. Namely, the AL2 terms in regions 22-II,
22-III, and 22-IV are given by, respectively,

�
(1)AL2
22-II;abcd (k,k′; q) = − 1

N

∑
q ′

∑
{A}

∫ ∞

−∞

dω′

2π
tanh

ω′ − ε′

2T

[−ImG
(R)
AC(k′ − q ′)

]
G

(R)
BD(k + q + q ′)WAL(RA)

aBAd;CcbD(−q ′; −q − q ′)

− 1

N

∑
q ′

∑
{A}

∫ ∞

−∞

dω′

2π
tanh

ω′ + ε + ω

2T
G

(R)
AC(k′ − q ′)ImG

(R)
BD(k + q + q ′)WAL(RA)

aBAd;CcbD(−q ′; −q − q ′)

+ (principal integral terms), (F8)

�
(1)AL2
22-III;abcd (k,k′; q) = �

(1)AL2
22-II;abcd (k,k′; q), (F9)

and

�
(1)AL2
22-IV;abcd (k,k′; q) = − 1

N

∑
q ′

∑
{A}

∫ ∞

−∞

dω′

2π
tanh

ω′ − ε′

2T

[−ImG
(R)
AC(k′ − q ′)

]
G

(A)
BD(k + q + q ′)WAL(RA)

aBAd;CcbD(−q ′; −q − q ′)

− 1

N

∑
q ′

∑
{A}

∫ ∞

−∞

dω′

2π
tanh

ω′ + ε + ω

2T
G

(A)
AC(k′ − q ′)ImG

(R)
BD(k + q + q ′)WAL(RA)

aBAd;CcbD(−q ′; −q − q ′)

+ (principal integral terms). (F10)

APPENDIX G: TECHNICAL DETAILS ABOUT NUMERICALLY SOLVING THE BETHE-SALPETER
EQUATION FOR THE CURRENT

In this appendix, I give several technical remarks about the numerical calculations to self-consistently determine the current
from the Bethe-Salpeter equation. Before the remarks about the iterative self-consistent procedures of the Bethe-Salpeter equation,
I remark on how to numerically calculate the frequency integral. We calculate the frequency integral by discretizing it with finite
interval such as 	εj and approximating the upper and the lower values of the integral by the finite cutoff values such as εc and
−εc, respectively; those values can be appropriately chosen within the numerical accuracy. (In the similar way, we numerically
calculate the frequency integrals of the conductivities.)

We can self-consistently solve the Bethe-Salpeter equation for the current including the � CVC, the MT CVC, and the AL
CVC by iteration in the following procedures.

First, we determine the MT CVC in the presence of the � CVC. Using the input of the current, which is �
(0)
ν;2;AB (k,εj ; 0) for

the first iteration, we determine �̃ν;2;ab(k,εj ; 0) from Eq. (74). After carrying out the Fourier transformations of �̃ν;2;CD(k,εj ; 0)
and ImV

(R)
cCdD(k − k′,εj − ε′

j ′) about momentum, we calculate 	�MT
ν;2;cd (r,εj ; 0) as follows:

	�MT
ν;2;cd (r,εj ; 0) =

∑
C,D

∑
ε′
j ′

	ε′
j ′

2π
F MT

ct (εj ,ε
′
j ′ ; T )ImV

(R)
cCdD(r,εj − ε′

j ′ )�̃ν;2;CD(r,ε′
j ′ ; 0). (G1)

Since F MT
ct (εj ,ε

′
j ′ ; T ) includes the hyperbolic cotangent [see Eq. (65)] and its principal integral has the 0/0 structure due to

ImV
(R)
cCdD(r,0) = 0, the principal integral can be calculated as follows [10]:

∑
ε′
j ′

	ε′
j ′

2π
coth

εj − ε′
j ′

2T
ImV

(R)
cCdD(r,εj − ε′

j ′)�̃ν;2;CD(r,ε′
j ′ ; 0)

=
∑

ε′
j ′ �=εj

	ε′
j ′

2π
coth

εj − ε′
j ′

2T
ImV

(R)
cCdD(r,εj − ε′

j ′ )�̃ν;2;CD(r,ε′
j ′ ; 0) − 	ε′

j ′

2π
T

∂

∂ε′
j ′

× [
(e

ε′
j ′ −εj

T + 1)ImV
(R)
cCdD(r,εj − ε′

j ′)�̃ν;2;CD(r,ε′
j ′ ; 0)

]∣∣
ε′
j ′=εj

. (G2)

After the Fourier transformation of 	�MT
ν;2;cd (r,εj ; 0) about r , we obtain the MT CVC, 	�MT

ν;2;cd (k,εj ; 0), and then add this to the
input of the current. (If we consider only the MT CVC, i.e., neglect the AL CVC, we skip the following second and third steps,
and the sum of the input and the MT CVC becomes the output.)
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Second, we turn to the calculation of the AL1 CVC. Carrying out the Fourier transformation of ImG(R)
cc (k,ε′

j ′ ) about k and using
�̃ν;2;cc(r,εj ; 0), which is the same for the calculation of the MT CVC, we calculate [ImG�̃]c(−k; ε′

j ′ ,ω
′
j ′′ ) from the equation,

[ImG�̃]c(−k; ε′
j ′ ,ω

′
j ′′ ) =

∑
r

eik·r ImG(R)
cc (r,ε′

j ′ + ω′
j ′′ )�̃ν;2;cc(−r,ε′

j ′ ; 0). (G3)

After calculating ÑS(R)
cccc (q,ωj ) and ÑC(R)

cccc (q,ωj ) from Eqs. (78) and (79), respectively, and using Eq. (77), we determine
XAL1

c (k; εj ,ω
′
j ′′ ) from the following equation:

XAL1
c (k; εj ,ω

′
j ′′ ) =

∑
ε′
j ′

	ε′
j ′F

AL1
tt (εj ,ε

′
j ′ ,ω

′
j ′′ ; T )F AL1

ct (εj ,ε
′
j ′ ; T )WAL(RA)

c (k, − ω′
j ′′ )[ImG�̃]c(−k; ε′

j ′ ,ω
′
j ′′ ). (G4)

In the above equation, we can calculate the principal integral of the hyperbolic cotangent of F AL1
ct (εj ,ε

′
j ′ ; T ) in the similar way

for the MT CVC since that principal integral also has the 0/0 structure due to F AL1
tt (εj ,εj ,ω

′
j ′′ ; T ) = 0 [see Eq. (67)]. Carrying

out the Fourier transformation of XAL1
c (k; εj ,ω

′
j ′′ ) about k and using the equation,

	�AL1
ν;2;cc(k,εj ; 0) = − 1

4π2

∑
r

e−ik·r ∑
ω′

j ′′

	ω′
j ′′ ImG(R)

cc (r,εj + ω′
j ′′ )XAL1

c (r; εj ,ω
′
j ′′ ), (G5)

we obtain the AL1 CVC, 	�AL1
ν;2;cc(k,εj ; 0). At this point, we add the AL1 CVC to the sum of the input of the current and the MT

CVC.
Third, we calculate the AL2 CVC. Using [ImG�̃]c(k; ε′

j ′ , − ω′
j ′′ ) and WAL(RA)

c (k, − ω′
j ′′ ) (which have been determined in the

above second step), we calculate XAL2
c (k; εj ,ω

′
j ′′ ) from the following equation:

XAL2
c (k; εj ,ω

′
j ′′ ) =

∑
ε′
j ′

	ε′
j ′F

AL2
tt (εj ,ε

′
j ′ ,ω

′
j ′′ ; T )F AL2

ct (εj ,ε
′
j ′ ; T )WAL(RA)

c (k, − ω′
j ′′ )[ImG�̃]c(k; ε′

j ′ , − ω′
j ′′ ). (G6)

Since F AL2
tt (εj , − εj ,ω

′
j ′′ ; T ) = 0 is satisfied in the above equation [see Eq. (69)], we can calculate the principal integral of the

hyperbolic cotangent of F AL2
ct (εj ,ε

′
j ′ ; T ) in the similar way for the MT CVC. After the Fourier transformation of XAL2

c (k; εj ,ω
′
j ′′ )

about k, we obtain the AL2 CVC, 	�AL2
ν;2;cc(k,εj ; 0):

	�AL2
ν;2;cc(k,εj ; 0) = − 1

4π2

∑
r

e−ik·r ∑
ω′

j ′′

	ω′
j ′′ ImG(R)

cc (r,εj + ω′
j ′′ )XAL2

c (r; εj ,ω
′
j ′′ ). (G7)

Adding the AL2 CVC to the sum of the input of the current, the MT CVC, and the AL1 CVC, we obtain the output of the current
for the Bethe-Salpeter equation with the � CVC, the MT CVC, and the AL CVC.

Finally, estimating the sum of the difference between the absolute values of the output and the input of the current, we judge
whether the output can be regarded as the solution of the Bethe-Salpeter equation within the numerical accuracy: if the difference
becomes less than 10−4, the solution is assumed to be obtained; otherwise, after replacing the input by the output, we solve the
above procedures again.

APPENDIX H: METHOD TO DETERMINE THE
DOMINANT FLUCTUATIONS IN A MULTIORBITAL

HUBBARD MODEL

In this appendix, I explain how to determine the dominant
fluctuations in a multiorbital Hubbard model among the four
kinds of fluctuations. To discuss the dominant fluctuations
in a multiorbital Hubbard model, we need to consider
charge fluctuations, spin fluctuations, orbital fluctuations, and
spin-orbital-combined fluctuations [65]. This is because the
Hubbard interaction terms can be expressed in terms of
their operators [65]. Then, spin and spin-orbital-combined
fluctuations are described by χS

abcd (q,i�n), and charge and
orbital fluctuations are described by χC

abcd (q,i�n) [65,66]. For
example, spin fluctuations are characterized by χS(q,i�n) =∑

a,b χS
aabb(q,i�n) [65,66]; spin-orbital-combined fluctua-

tions are characterized by the correlation function between
the products of the spin and the orbital operators, e.g.,∑

a[χS
aa32(q,i�n) + χS

aa23(q,i�n)] [65,66].

Since those four kinds of fluctuations have the different
dependence on JH or U , the dominant fluctuations can be
determined by analyzing JH and U dependence of λS

max(q)−1

and λC
max(q)−1. The difference in the JH or U dependence arises

from the difference in the dependence of the bare four-point
vertex function characterizing the fluctuation. For example,
in case [66] of a t2g-orbital Hubbard model with J ′ = JH

and U ′ = U − 2JH, the bare four-point vertex function for
charge fluctuations is −U − 4U ′ + 2JH = −5U + 10JH; that
for spin fluctuations is U + 2JH; that for orbital fluctuations is
U ′ − 2JH − J ′ = U − 5JH or U ′ − 2JH + J ′ = U − 3JH or
−U + 2U ′ − JH = U − 5JH; that for orbital-spin-combined
fluctuations is U ′ + J ′ = U − JH or U ′ − J ′ = U − 3JH or
U − JH. Thus, if orbital or spin-orbital-combined fluctuations
are dominant, we obtain nonmonotonic JH dependence of
λC

max(q)−1 or λS
max(q)−1, respectively, with increasing JH

since the bare four-point vertex function characterizing those
fluctuations changes from repulsive to attractive at a critical
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value of JH as a function of U ; if spin fluctuations are dominant,
we obtain monotonic JH dependence of λS

max(q)−1 with
increasing JH due to the always repulsive bare four-point vertex

function characterizing those. Note that charge fluctuations are
always suppressed in a realistic set of the Hubbard interaction
terms.
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