
PHYSICAL REVIEW B 94, 045106 (2016)

Local moment approach as a quantum impurity solver for the Hubbard model

Himadri Barman*

Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Mumbai 400005, India
(Received 28 April 2015; published 5 July 2016)

The local moment approach (LMA) has presented itself as a powerful semianalytical quantum impurity solver
(QIS) in the context of the dynamical mean-field theory (DMFT) for the periodic Anderson model and it correctly
captures the low-energy Kondo scale for the single impurity model, having excellent agreement with the Bethe
ansatz and numerical renormalization group (NRG) results. However, the most common correlated lattice model,
the Hubbard model, has not been explored well within the LMA+DMFT framework beyond the insulating phase.
Here in our work, within the framework we complete the filling-interaction phase diagram of the single band
Hubbard model at zero temperature. Our formalism is generic to any particle filling and can be extended to finite
temperature. We contrast our results with another QIS, namely the iterated perturbation theory (IPT) and show
that the second spectral moment sum rule improves better as the Hubbard interaction strength grows stronger in
LMA, whereas it severely breaks down after the Mott transition in IPT. For the metallic case, the Fermi liquid (FL)
scaling agreement with the NRG spectral density supports the fact that the FL scale emerges from the inherent
Kondo physics of the impurity model. We also show that, in the metallic phase, the FL scaling of the spectral
density leads to universality which extends to infinite frequency range at infinite correlation strength (strong
coupling). At large interaction strength, the off half-filling spectral density forms a pseudogap near the Fermi
level and filling-controlled Mott transition occurs as one approaches the half-filling. As a response property,
we finally study the zero temperature optical conductivity and find universal features such as absorption peak
position governed by the FL scale and a doping independent crossing point, often dubbed the isosbestic point in
experiments.
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I. INTRODUCTION

The Hubbard model (HM) [1] is the simplest model that
incorporates the on-site correlation effect between electrons
in a lattice. Despite its appealing simplicity and applicability
to Mott metal-to-insulator transition (MIT) [2], and high-
temperature superconductivity [3], the model has remained
a daunting challenge to the condensed matter physicists. It has
been studied extensively from many angles including mean-
field analytics and exact diagonalization numerics [4,5]. Dur-
ing the past decades, the dynamical mean-field theory (DMFT)
has exhibited itself as an extremely powerful numerical method
that simplifies the lattice model problem by mapping onto an
effective interacting single impurity problem self-consistently
connected to a fermionic bath via a hybridization function
[6]. The mapping becomes exact at the infinite coordination
number of the lattice and the self-energy becomes momentum
independent at that limit. Even after the advent of the DMFT,
solving an interacting lattice model remained elusive at the
level of the effective impurity model problem. Therefore apart
from the challenges that arise due to additional complication
of a model (e.g., multiple orbitals, spin-orbit interaction,
electron-phonon coupling, etc.), finding a suitable quantum
impurity solver (QIS) for the DMFT method is still an ongoing
issue. In addition to this, a quick or computationally less
expensive QIS is required for systems having multiple bands,
multiple layered structures, finite cluster sizes, and consisting
of other real material-based parameters. In fact, besides the
holy grail of getting the most accurate QIS, a race has began
towards achieving the fastest QIS, which can at least capture
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the qualitatively correct physics and energy scales associated
with it [7,8].

Depending on the invention of several QISs we may divide
the DMFT timeline into two major decades starting from the
early nineties. At the first decade several methods came up as
candidates of the QIS, such as the iterated perturbation theory
(IPT) [9–12], exact diagonalization (ED) [13], Hirsch-Fye
quantum Monte Carlo (HFQMC) [11,14,15], noncrossing
approximation (NCA) [16], and numerical renormalization
group (NRG) [17,18]. All these methods could successfully
capture the Mott MIT signaled by opening of a gap at the Fermi
level of the spectral density. However, all of them suffer from
limitations. For instance, ED exhausts the computational limit
before one achieves a reasonable size of a lattice; HFQMC
becomes disadvantageous at low temperature and suffers from
the fermion sign problem [19]; NCA is only reliable for the
insulating solution as the metal fails to promise a Fermi liquid;
NRG becomes less accurate towards the high-energy (Hubbard
bands) regime. Moreover, both ED and NRG suffer from
energy discretization artifacts [20].

In the next decade, density-matrix renormalization group
(DMRG) [21], dynamical density-matrix renormalization
group (DDMRG) [22,23], fluctuation exchange approximation
(FLEX) [24], and comparatively more recently the continuous
time quantum Monte Carlo (CTQMC) [25–28] came up. FLEX
becomes limited to a certain range of interaction strength [29].
On the other hand, although CTQMC can promise to work
at very low temperature, it requires analytical continuation
in order to get physical quantities in real frequency and
the method of doing so is tedious and introduces additional
errors [30]. Moreover, ED, DMRG, and CTQMC methods all
demand expensive computational challenges.
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Therefore if we just want to seek a semianalytical method,
apart from the IPT and the NCA, another QIS, namely the
local moment approach (LMA) deserves attention. LMA was
pioneered by Logan and his co-workers at the end of the first
decade and it became very efficient in capturing the low-energy
Kondo scale in the single-impurity Anderson model (SIAM),
and its strong-coupling behavior (infinite Hubbard interaction)
shows excellent agreement with the Bethe ansatz [31] and
NRG results [32]. Within the DMFT framework, LMA has
been extensively applied to the particle-hole symmetric and
asymmetric periodic Anderson model (PAM) that corresponds
to Kondo insulators and heavy fermionic systems, respectively.
In both cases the strong coupling (Kondo lattice limit) behavior
of the low-energy scale has been captured well, and addi-
tionally the finite temperature transport and optical properties
can explain many universal features found in experiments
[33–37]. A recent study has exhibited how doping leads to
mix valence to Kondo lattice crossover, in accord with such
signatures found in transport and optical properties of several
heavy fermion compounds [38]. In spite of all these successes,
the Hubbard model has received less attention from the LMA
aspect. Only the results of half-filling HM at large interaction
have been reported, where LMA finds insulating spectral
density for both the paramagnetic and antiferromagntic cases,
and the strong-coupling Heisenberg (t-J ) limit is captured
correctly [39,40].

Here we extend the scenario for all interaction strengths and
fillings. Recently a generic version of LMA with a variational
method, called the variational LMA (VLMA) [41], was
proposed for the multiorbital extension of the LMA. However,
the method deviates from the conventional formalism, as
already applied to SIAM and PAM, and does not ensure the
Luttinger pinning (discussed in Sec. V) of the spectral density.
In principle, our method could be applied to finite temperature
as well, however, we restrict ourselves to the ground state only,
leaving the finite temperature results a topic for a subsequent
paper. We must mention another important concern of modern
day QIS: the obedience of sum rules [20,42–44], e.g., whether
the spectral moments from the numerics become closer to their
exact values (details are discussed in the Sec. III). We discuss
this aspect in the LMA case and show that the stronger the
interaction, the spectral moment becomes more accurate.

Our work is organized as follows. In Sec. II we first describe
the formalism for the half-filling, i.e., particle-hole (p-h)
symmetric case, then we discuss the modification over it to deal
with the asymmetric case, which specifically incorporates the
Luttinger’s sum rule [45] in the formalism. Next in Sec. III
we show the numerical results, viz. spectral densities and
properties derived from them. In places where required, we
compare our results with that from another semianalytical
QIS, namely the IPT. First we discuss the Fermi liquid
behavior and its universal features in the metallic phase
and Mott transition that occurs when interaction strength
crosses a critical value (Sec. III A). In the same subsection,
we describe one remarkable observation: LMA obeys the
spectral moment sum rule very accurately at strong interaction,
whereas the sum rule breaks down sorely after the MIT in IPT.
We make a separate subsection for the off half-filling case
(Sec. III B), where we show similar Fermi liquid universality
found in the spectral density in the presence of a pseudogap

at strong interaction and near the Fermi level. We show
the spectral density evolution with the occupancy and find
the filling controlled Mott transition signaled by vanishing
quasiparticle residue at the half-filling. As an end result,
we discuss the universal features of the optical conductivity,
namely the universal absorption peak position and filling
independent universal crossing point. We devote Sec. IV for
comparisons with other numerical methods, particularly NRG
and DDMRG. Then we discuss the low quasiparticle residue
issue of LMA and propose a few possible variants of the
standard LMA in Sec. V, that can remedy the issue. Finally in
Sec. VI, we make a short summary of our results and analysis
and discuss a few possible future extensions of the problem
presented in the paper.

II. FORMALISM

As a part of formal introduction and for future references
in the discussion part, we first write down the single band
Hubbard model Hamiltonian below:

Ĥ =−
∑
〈ij〉,σ

tij c
†
iσ cjσ + (εd − μ)

∑
iσ

c
†
iσ ciσ + U

∑
i

n̂i↑n̂i↓,

(1)

where tij is the amplitude of hopping from site i to site j in
a lattice (〈 〉 notation restricts hopping to nearest neighbor
sites only), operator c

†
iσ creates and ciσ destroys an electron

with spin σ at site i, respectively, (n̂σ = c
†
iσ ciσ ), U is the

strength of on-site local Coulomb interaction, εd is the orbital
energy of electrons at each site, and μ is the chemical potential
of the system. The LMA formalism is built up on the fact
that the transverse spin-flip scattering can play a crucial role
in determining the energy scale that governs the physics of
correlated lattice models. Such a transverse spin-flip scattering
process appears as a polarization propagator in the standard
diagrammatic perturbation theory and the site-diagonal term
can be mathematically written as a convolution integration of
“bare” propagators Gσ [46],

�0
σ −σ (ω) = i

2π

∫ ∞

−∞
dω′ G−σ (ω′) Gσ (ω′ − ω). (2)

Here we consider Gσ to be the spin symmetry broken
or unrestricted Hartree-Fock (UHF) propagator: Gσ (ω) =
1/(ω − �0

σ − �(ω)), where �0
σ = εd − μ + U 〈n̂−σ 〉 =

εd − μ + U
2 (n − σm) is called the UHF self-energy,

n ≡ ∑
σ 〈n̂〉 = − 1

π
Im

∑
σ

∫ ∞
−∞ dω Gσ (ω), m ≡ ∑

σ σ 〈nσ 〉 =
− 1

π
Im

∑
σ

∫ ∞
−∞ dω σ Gσ (ω), and �(ω) is the Feenberg

self-energy [47].
Similar polarization propagators appear also in the higher

order terms of the perturbation series and a careful observation
infers that the local (site diagonal) terms of all orders can
be arranged in a geometric progression and hence the net
polarization propagator �σ −σ can be expressed as [40]

�σ −σ (ω) = �0
σ −σ (ω)/

(
1 − U �0

σ −σ (ω)
)
. (3)

�σ −σ is often termed the random phase approximation
(RPA) polarization propagator. It leads to a dynamic self-
energy contribution that can be expressed in terms of another
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convolution integral [40]:

�σ (ω) = U 2

2πi

∫ ∞

−∞
dω′G−σ (ω − ω′) �σ −σ (−ω′)

= U 2

2πi

∫ ∞

−∞
dω′G−σ (ω + ω′) �σ −σ (ω′). (4)

Thus collecting the static UHF part �0
σ as well, we obtain the

total self-energy:

�tot
σ (ω) = �0

σ + �σ (ω). (5)

The two spin-dependent self-energies give rise to two interact-
ing Green’s function Gσ = (G−1

σ − �σ )−1 ≡ (G−1 − �tot
σ )−1,

which is not directly useful in the case where spin symmetry
is not actually broken (usual paramagnetic case). Therefore to
calculate the impurity Green’s function in the DMFT context,
we find the spin-averaged Green’s function,

G(ω) = 1
2 (G↑(ω) + G↓(ω)), (6)

and obtain a spin-independent self-energy by exploiting the
Dyson’s equation (G−1 = G−1 + μ − εd − �):

�(ω) =1

2
(�tot

↑ (ω) + �tot
↓ (ω))

+
[

1
2 (�tot

↑ (ω) − �tot
↓ (ω))

]2

G−1(ω) − 1
2 (�tot

↑ (ω) + �tot
↓ (ω))

, (7)

where G is the host Green’s function of DMFT’s effective
impurity model G(ω) = 1/(ω − �(ω)) with �(ω) playing the
role of the hybridization function. Instead of using Eq. (7),
which apparently looks cumbersome, we find � by writing

G(ω) = 1

γ (ω) − �(ω)
; γ (ω) ≡ ω + (μ − εd ) − �(ω). (8)

We similarly can express Gσ (ω) = 1/(γσ (ω) − �(ω)) with
γσ (ω) ≡ ω − �tot

σ (ω) and then by exploiting Eq. (6) we
determine

γ (ω) = 2γ↑(ω)γ↓(ω) − [γ↑(ω) + γ↓(ω)]�(ω)

γ↑(ω) + γ↓(ω) − 2�(ω)
. (9)

To attain the DMFT self-consistency on the lattice side, we find
the local Green’s function by performing the Hilbert transform:
G(ω) = ∫ ∞

−∞ dε D0(ε)/(γ (ω) − ε) for a given noninteracting
lattice density of states (DoS) D0(ω). Furthermore, for the
metallic phase, in order to ensure the Fermi-liquid property
(Im�(ω) ∝ (ω − μ)2), we add the following condition (often
dubbed symmetry restoration in earlier literature) into the
DMFT equations: ∑

σ

σ�σ (0) = |m| U. (10)

In the p-h symmetric case, we use the condition εd − μ =
−U/2, where μ is chosen to be zero in practice. However,
for the asymmetric case, we do not have such a simple
relation between the orbital energy and the Coulomb in-
teraction strength. Also there should be a shift δμ from
the chemical potential μ, which is set to be zero in the
symmetric case. Therefore the UHF Green’s function gets
modified as Gσ (ω) = 1/[ω+ − ε̃ + σ |m|U/2 − �(ω)] where

ε̃ ≡ ε − δμ ≡ εd − μ + Un/2 − δμ which is zero only in the
half-filled case (ε = 0, δμ = 0).

Now there are two important algorithmic steps that are
worth mentioning.

(i) We parametrize a quantity x ≡ 1
2 |m|U and for a given

x; we determine U by the Fermi liquid condition [Eq. (10)]
for the metallic case. For the insulating case, this condition is
not required, however, a pole arises at ω = 0 in Im�σ −σ (ω),
which needs to be taken care by analytically adding its weight
to the self-energy [40].

(ii) For the p-h asymmetric case, once we find U , we
calculate �(ω) and G(ω) for a fixed ε̃ = εd − μ + Un/2 −
δμ, and then setting μ = 0, we find εd by self-consistently
satisfying Luttinger’s sum-rule [45,48,49]:

Im
∫ μ

−∞
dω G(ω)

∂�(ω)

∂ω
= 0. (11)

An asymmetry parameter η ≡ 1 + 2εd/U (μ = 0) is in-
troduced to quantify p-h asymmetry in our calculations.
Note that for the symmetric case, εd = −U/2 and hence
η = 0.

III. RESULTS AND DISCUSSIONS

We separate our results and corresponding discussions into
Sec. III A, the particle-hole symmetric or half-filling (n = 1)
case, and Sec. III B, the case away from it (n 
= 1). Our
discussions mostly comprise the properties of single-particle
spectral density and analysis following those at different
parameter regimes at zero temperature. Note that as a part
of the DMFT method, the hopping amplitude in Eq. (1) is
taken to be uniform and we define a new hopping amplitude
t∗ such that tij = t∗/

√
z, z being the coordination number.

Throughout the paper we choose t∗ = 1 for our calculation, and
results are mainly discussed for the d-dimensional hypercubic
lattice (z = 2d) although we mention results for the Bethe
lattice explicitly where it is required (e.g., comparing with
results from NRG calculations). The noninteracting DoS of the
lattice is defined as D0(ω) ≡ 1/(

√
πt∗) exp(−ω2/t2

∗ ). At the
end of Sec. III B, we keep a special subsection for the optical
properties, for which we use the standard Kubo formula from
the linear response theory [16,50].

A. Half-filling

1. Universal scaling behavior of spectral density

The key investigative question that arises at the half-filling
case is whether the Mott transition is seen at large Coulomb
interaction U , which should be reflected by formation of a
gap at the Fermi level (set at ω = 0 in our convention) in
the spectral density, D(ω) = − 1

π
ImG(ω). Before we seek

an answer, we first look at the low-energy behavior of
the spectral density for small interaction strength U and
hence for small x. Figure 1(a) shows the presence of finite
DoS at the Fermi level in the form of quasiparticle or the
Abrikosov-Suhl resonance, clearly signaling a metallic phase
(The inset figure shows the usual three-peak full spectral
density at various U/t∗’s.). We notice that all the resonance
peaks are pinned at the noninteracting value at the Fermi
level: D(0) = D0(0) = 1/

√
π . This is known as the Luttinger
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FIG. 1. Spectral densities and their scaling collapse. (a)
Abrikosov-Suhl resonance appears at the Fermi level (ω = 0) and the
resonance width decreases with increasing x or U . (Inset) Full spectra
for the same. (b) Scaling collapse of spectral densities when the
frequency axis is scaled by the low-energy scale ωL = Zt∗. Note that
the collapse deviates from the noninteracting curve (U = 0) almost
immediately away from the Fermi level.

pinning [51], which is a direct consequence of the Luttinger’s
sum rule mentioned in the earlier section [45]. The resonance
width shrinks gradually as we increase x or U , and we can
associate an effective low-energy scale, ωL = Zt∗, determined
from the quasiparticle residue Z = 1/(1 − ∂ωRe�(ω)|ω=0),
proportional to the width of the resonance. From Fig. 1(b)
we can see that all spectral densities collapse to a universal
value around the Fermi level when we scale the frequency
axis by ωL. Nevertheless the collapsed spectral density seems
to deviate from the noninteracting limit almost immediately
away from the Fermi level. Thus, even though adiabatic
continuity at the Fermi level is maintained in our formalism
through satisfying Eq. (10), the renormalized noninteracting

-4 -2 0 2 4
ω/ω

L

-1.5
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1.5

-5 -2.5 0 2.5 5

ω/ω
L

-3

-1.5

0

1.5

Re Σ(ω)

Im Σ(ω)

FIG. 2. Reason for noncollapse with the noninteracting DoS.
Dashed lines (blue in color) and full lines (red in color) are the
imaginary and real part of the self-energy, respectively. The static part
�(0) = U/2 has been subtracted from the real part. Im�(ω) grows
far more rapidly from ω = 0 in LMA (main panel) than that in IPT
(inset) suggesting that not only in the strong coupling regime, but also
in the intermediate correlation regime, incoherent scattering effects
become important at energies even slightly away from the Fermi
level. The interaction strength for the LMA, U = 1.13t∗ (x = 0.2t∗);
for the IPT, U = 3.0t∗.

limit (RNIL) description is seen to be invalid. This can
be explained if we look at the self-energy behavior at low
frequency.

The RNIL assumes that contribution from Im�(ω) is
negligible compared to the contribution from Re�(ω) at low ω

since the former vanishes as ω → 0 with one power of ω (∝ω2)
higher than the latter (∝ω). This assumption does hold in IPT
over a large interval around the Fermi level. However, the
contributions from both the real and imaginary parts of �(ω)
become comparable when the coefficient of the imaginary part
becomes large enough. Figure 2 shows that the slope change
in Im�(ω) away from ω = 0 is faster in LMA (shown in the
main panel) compared to that in IPT (shown in the inset).
Nevertheless the scaling collapse and Luttinger pinning of the
spectral density ensure the Fermi liquid nature of the metallic
phase in LMA.

2. Emergence of low-energy scale in susceptibility

Since spin-flip scattering is responsible for the rise of the
Kondo energy scale of an impurity model and the impurity
physics persists in a lattice through the self-consistency of
the DMFT formalism, it is natural to intuit such a scale in
LMA. Moreover, in the strong-coupling Kondo regime (Fermi
liquid) the Kondo scale should be proportional to ωL = Zt∗
[52]. The bottom inset of Fig. 3 shows that Im�σ −σ (ω) has
a maximum or peak at ω = ωm. Once we scale the frequency
axis by ωL (main panel of Fig. 3), the positions of those peaks
fall at the same value, which clearly indicates a proportional
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FIG. 3. (Bottom inset) The peak position of Im�σ −σ (ω) gives
rise to an energy scale ωm for various U ’s. (Main panel) The
position becomes universal when the frequency is scaled by ωL = Zt∗
signifying a proportional relation between Z and ωm. (Top inset) Z

vs ωm plot is a nice straight line with slope 1.59.

relation between ωm and the Fermi liquid scale ωL. The
presence of such maxima gives rise to maxima in response
functions such as the imaginary part of spin susceptibility
and absorption spectrum (real part of dynamic conductivity).
Recent DMFT studies using various impurity solvers have
shown that indeed the position of the imaginary part of local
spin susceptibility becomes universal while the frequency axis
is scaled by ωL [53]. The top inset of Fig. 3 reaffirms our
statement showing a linear dependence of Z on ωm with a
slope 1.59 (proportionality constant).

3. Mott transition and presence of hysteresis

It has already been mentioned that the width of the quasi-
particle resonance in the spectral density shrinks gradually as
U/t∗ is increased, which disappears finally by opening up a gap
at the Fermi level. Thus our primary question is answered and
indeed an interaction-driven MIT, i.e., Mott transition occurs
when interaction strength is greater than a critical value, i.e.,
U � Uc2. For the hypercubic lattice, we find approximately
xc2 = 1.2t∗ which implies Uc2 � 2.64t∗. This value is close
to the analytically estimated value 2.69t∗ (see Appendix). In
the main panel of Fig. 4 we see that a gap opens at the Fermi
level in the spectral density at U = 3.56t∗. The estimation
of Uc2 is carried out through an extrapolation of the zero
crossing of the low-energy scale ωL with increasing U (see
line with open circles in Fig. 5). In IPT, it has been seen [50],
in the zero temperature evolution of spectral densities with
interaction strength, that there exist two transition points Uc1

and Uc2 depending on whether we are changing U from the
metallic or insulating side. Therefore it is natural to ask: If
we start from an insulating regime and keep on decreasing x

(hence U ), do we get an insulator to metal transition at the
same point that we have mentioned above? The right inset
of Fig. 4 shows that we find that the gap decreases as we
decrease x from 2.0t∗ (U = 4.13t∗) and it appears that the
gap closes at x ∼ 1.06t∗, i.e., U = 2.38t∗. However, the gap
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FIG. 4. Mott transition reflected from the spectral density evolu-
tion as U changes at zero temperature (for the hypercubic lattice).
(Main panel) Quasiparticle resonance shrinks as U is increased. At
U = 3.56t∗, a clear gap opens up at the Fermi level signaling the Mott
metal-to-insulator transition (MIT). The gap gets enhanced as U is
increased further. (Right panel) Starting from a Mott insulator if U is
decreased, the gap at the Fermi level decreases and eventually closes
at U < 2.38t∗. (Left panel) A finite gap still persists at U = 2.38t∗.
Therefore an extrapolation method is required to find the critical
value Uc1 where insulator-to-metal transition (IMT) happens (see
Fig. 5).

is truly not zero at U = 2.38t∗ as the left inset of Fig. 4 shows
in a zoomed view. For this reason we plot the gap (�g) as a
function of U/t∗ in Fig. 5 (dashed line with open squares). We
find that �g almost linearly decreases with U/t∗ and to our
estimation Uc1 � 2.36t∗. Thus similar to the IPT result, LMA
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2.4 2.5 2.6 2.710-4
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ωL

FIG. 5. Decay of the low-energy scale ωL = Zt∗ with increasing
U/t∗ (solid line). Inset shows the same in log scale. ωL seems to
vanish at Uc2 = 2.64t∗. Note that we have been able to reach a value
of the low-energy scale ∼10−4t∗, which requires very high precision
calculations. The dashed line shows that the spectral gap �g of the
Mott insulator decreases linearly with decreasing U/t∗ and closes at
Uc1 = 2.36t∗.
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also shows the presence of a coexistence regime (possibility
of having both metallic and insulating solutions) and hence
hysteresis driven by interaction. The width of the coexistence
regime, i.e., �Uc ≡ Uc2 − Uc1 is 0.28t∗ for the hypercubic
lattice, which is quite less than that found in IPT (�Uc ∼ 0.7t∗)
[50]. In Bethe lattice the coexistence regime is further small
(Uc2 � 3.5t∗ and Uc1 = 3.4t∗ for bandwidth 4t∗) and thus
a question remains open: Does interaction-driven hysteresis
indeed occur in LMA or is it due to an artifact of the numerical
limitation?

4. Spectral moment sum rules

Spectral moments are often considered to be important in
testing the robustness of a certain numerical or analytical
method for a many-body problem [42,54]. An mth spectral
moment is defined as Mm ≡ ∫ ∞

−∞ dω ωmD(ω), which at the
same time, can be exactly evaluated from a model Hamiltonian
using the equation of motion method: Mm = 〈{Lndσ ,d†

σ }〉 with
LO = [O,H], L2O = [[O,H],H], so on. M0 = 1 is true for
any model and for the Hubbard model one can find: M1 =
εd − μ + U 〈nσ 〉, M2 = ∑

k ε2
k + (εd − μ)2 + U 〈nσ 〉[2(εd −

μ) + U ], M3 = M1M2. Here εk is the dispersion of the
given lattice whose momentum (k) sum is nothing but the
second spectral moment of the noninteracting DoS, i.e.,∑

k ε2
k = M0

2 ≡ ∫ ∞
−∞ dω ω2D0(ω). For instance, for a Bethe

lattice DoS, D0(ω) ≡ 1
2πt2∗

√
4t2∗ − ω2, M0

2 = t2
∗ , and for our

hypercubic lattice DoS, M0
2 = 1

2 t2
∗ . For the half-filling case,

we obtain further simplification: M1 = 0, M2 = M0
2 + U 2/4,

M3 = 0. Now in the IPT calculation, the relative errors in
M1 and M3 vary within the order 10−3–10−5 and 10−2–10−3.
On the other hand, in LMA, the error goes to the order of
10−10–10−12 as one approaches towards higher U . In the
half-filling case, specifically the second moment M2 becomes
very crucial. Figure 6(a) shows that numerically calculated
M2 significantly agrees with the expected analytical value,
however, the agreement severely breaks down in the insulating
regime in IPT (U > Uc2 = 4.4t∗). On the contrary, in LMA,
the agreement is comparatively poor in the metallic side, but
the difference (�M2) between the exact and numerical values
decreases as U increases and it appears that �M2 → 0 as
U → ∞ [see Fig. 6(b)]. The absolute values of the relative
errors are shown in the insets. A very recent paper [44] has
reported higher accuracy in the spectral moments up to the
third order using a new alternative diagonalization-based QIS.
Nevertheless the method is heavily expensive in computation
time and limited by a finite number of sites, and errors could be
introduced by the broadening over discretization, which fails
to ensure the Luttinger pinning at the Fermi level.

5. Strong correlation universality

As noticed in Fig. 1(b), the spectral density seems to assume
a universal form D(ω) = D(ω/ωL) leading to collapse of D(ω)
up to a certain frequency range. As U/t∗ increases, this range
keeps on increasing and close to the Mott transition, we find
scaling collapse in the spectral densities for decades of ωL

(see main panel of Fig. 7: U ranging from 2.07t∗ to 2.60t∗),
when the frequency axis is scaled by the same energy scale.
Moreover, this universal regime extends to higher and higher
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FIG. 6. Second spectral moment M2 in (a) IPT and (b) LMA for
various interaction strengths. The insets show the respective absolute
values of relative error.

frequencies as we increase U/t∗ suggesting that in the limit
U → U−

c2, the universal scaling region extends to all the way
until the frequency reaches one of the Hubbard bands. The
universal scaling form is seen to be very different from the
RNIL suggesting very nontrivial tails of the spectral function
for large ω/ωL. These tails should manifest themselves in
transport and other finite temperature/frequency properties that
would be an interesting feature to look for in experiments
[34].

B. Away from half-filling

1. Spectral density: empty orbital, mixed valence, and doubly
occupied orbital states

Before we embark on the results, we first make a few
qualitative remarks. When the electron density is not equal
to one per site, i.e., away from the half-filling, there are
always empty sites available for electrons/holes to hop without
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FIG. 7. Scaling universality at strong correlation strength: As
U → U−

c2, the collapse of the spectral density extends all the way
after the frequency being scaled by ωL, despite being limited to the
low-energy scale regime, which could be order of ωL. For example,
the scaling agreement between spectral densities at U = 2.51t∗ and
U = 2.60t∗ runs up to ∼30ωL. The inset shows the same spectral
densities without the scaling.

encountering the Coulomb repulsion U . Therefore we can get
Mott insulators only when the filling reaches the half-filled
value (n = 1). However, there can be special situations, namely
n = 2 where electron’s hopping is forbidden since orbitals
at all sites are fully (doubly) occupied. This leads to an
insulator, which is in fact a band insulator. Similarly for
the n → 0 case, there will be only a few electrons left for
conduction, or from the hole point of view, the sites will
be fully occupied by holes and will lead to a band insulator
again. Thus at zero temperature we can divide the n space
into five distinct regimes, viz. (i) empty orbital (n → 0), (ii)
mixed valence-I (0 < n < 1), (iii) symmetric metal or Mott
insulator (n = 1), (iv) mixed valence-II (1 < n < 2), and (v)
doubly occupied orbital (n → 2). The regimes (iv) and (v)
are p-h symmetric counterparts of (ii) and (i), respectively.
Figures 8(a) and 8(b) show the evolution of spectral density
towards the two extremes [regime (i) and regime (v)] for
the hypercubic lattice, starting from a half-filled Fermi liquid
metal (n = 1). In the first case, the lower Hubbard band starts
moving towards the Fermi level (n = 0.75) with decreasing its
height compared to the upper Hubbard band, then it coalesces
with the quasiparticle resonance (n = 0.42) where resonance
itself shifts away from the Fermi level. Gradually the lower
Hubbard band and the qausiparticle features do not remain
significant any more (n = 0.14) and the density just behaves
like a noninteracting one, situated above the Fermi level, thus
being a band insulator with the band edge at the Fermi level.
Similarly in the second case, the upper Hubbard band moves
towards the Fermi level and finally the lower Hubbard band
occupies the whole spectral region and the system becomes an
empty orbital band insulator [regime (i)]. Thus Figs. 8(a) and
8(b) reflect the fact that a particle with 1 � n � 2 has its hole
counterpart in 0 � n � 1. A schematic phase diagram on the
occupancy-interaction plane at zero temperature is shown in
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FIG. 8. Evolution of spectral densities for x = 0.5t∗ (U � 1.5t∗)
at n 
= 1 (away from half-filling), for the hypercubic lattice. Parent
(half-filled, i.e., n = 1) phase is metallic. (a) Evolution from n � 1
to n → 0. (b) Evolution from n � 1 to n → 2.

Fig. 9(a). The filling control MIT can be inferred by looking
at quasiparticle residue Z, as it continuously vanishes at the
half-filling (n = 1). Figure 9(b) shows this behavior for both
LMA (main) and IPT (inset), where Z only differs by an order
of magnitude.

2. Pseudogap formation and strong-coupling universality

The main panel of Fig. 10 shows that after certain U/t∗
(∼2.7t∗) a pseudogap starts to form near the Fermi level
(pseudo since the gap does not open exactly at the Fermi
level). The gap increases as we increase U/t∗ further. We
notice that the pseudogap has the same width as the gap in the
Mott insulator has in half-filling. It seems that the quasiparticle
weight never vanishes at any large finite U/t∗ above Uc2/t∗
and hence the pseudogap never touches (however close it may
be) the Fermi level. This is expected because once we go
away from half-filling, even by infinitesimal doping, we never
expect a Mott transition. The pseudogap feature, however, is
not observed using IPT [55]. Therefore, the feature might be
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plane. The region is bounded along the filling axis by empty orbital
and doubly occupied band insulator lines. The metal emerging by
doping a Mott insulator side is known as the filling controlled (FC)
metal (U > Uc2) and remaining region is the bandwidth controlled
(BC) metal since interaction is low. In case of LMA, Uc2 = 2.64t∗. (b)
Disappearance of quasiparticle residue Z as occupancy approaches
the half-filling value n = 1 in IPT (inset, U = 5.0t∗) and LMA (main,
U = 2.9t∗).

tied to the transverse spin-flip scattering process inherent in
LMA.

Similar to the half-filled case, the scaling universality for
strong interaction strength extends to very large frequencies
beyond the low-energy Fermi liquid scale ωL (see inset of
Fig. 10) and it appears that as we increase U/t∗ further, the
scaling agreement extends further and at strong-coupling limit
(U → ∞), we expect the scaling universality will extend all
the way in frequency, i.e., up to ω/ωL → ±∞, since the
Hubbard bands are positioned at ±∞ now.
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FIG. 10. (Main) Spectral densities at various U/t∗’s at asymmetry
parameter η = 0.3. A pseudogap (a gap close to the Fermi level) forms
in the spectral density at U = 2.9t∗. (Inset) Scaling universality at
strong interaction values at η = 0.25: U/t∗ = 2.89, 2.92, 2.96, and
3.00. The universal region extends to very large values of ω/ωL

and the universal scaling form is seen to be very different from the
renormalized noninteracting Gaussian form.
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The first absorption peaks arise at ω = ωL (inset), as revealed from
the scaling of the frequency axis by ωL, leaving all peaks appearing
at ω/ωL = 1 (main).

3. Optical conductivity

Carrying a motivation to derive some physical properties
out of our zero temperature spectral densities, we seek
the optical properties. Being doped and hence metallic in
nature, a divergent Drudé peak appears at ω = 0 of the
optical conductivity σ (ω), accompanied by an absorption peak
positioned at ω = ωL (see inset of Fig. 11, Drudé peaks are out
of scale). This uniqueness of the peak position becomes evident
when we divide the frequency axis by corresponding ωL for
various U/t∗’s at fixed asymmetry parameter η. For instance,
at η = 0.3 all of the first absorption peak of σ (ω) for different
U/t∗’s, arise at ω/ωL = 1 (see main panel of Fig. 11). This
result is very significant because any experimental probe that
finds the absorption spectra of a material in a certain condition,
can easily determine the associated low-energy scale of it by
looking at the position of the first absorption peak. Moreover,
this universal feature of the absorption peaks implies that such
a universality is merely a signature of a Fermi liquid and does
not get affected by doping as long as the phase remains a
Fermi liquid. Another interesting feature is noticed when the
optical conductivity is computed for different hole dopings
δ ≡ 1 − n, keeping the interaction unchanged. The main panel
of Fig. 12 depicts σ (ω) at various dopings (δ ranging from
0 to 0.25) where we notice that a universal crossing point
appears around ω � t∗. This behavior does indeed bear close
similarity to the experiments on compounds of the formulas
R1−xCaxTiO3+y , R representing rare-earth metals, done by
Katsufuji et al. [56] (see inset of Fig. 12). Similar spectral
weight transfer through a universal point or a pointlike region
in the cuprates (e.g., La2−xSrxCuOx [57] and Pr2−xCexCuO4

[58]), Sr doped LaCoO3 [59], and very recently in NiS2−xSex

[60] has been observed. Such a universal point is termed the
isosbestic point and presence of it is often considered to be
reminiscence of the correlation effect [61,62].
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FIG. 12. (Main) LMA results for optical conductivity with
various hole concentrations: δ = 1 − n. (Inset) Optical conductivity
for Sm1−xCaxTiO3 where W̃ is the bandwidth obtained from a
tight-binding calculation, mentioned in Ref. [56], normalized to that
of LaTiO3.

IV. COMPARISONS TO OTHER METHODS

It is evident in Fig. 9(b) that the value of Z is one order of
magnitude less compared to that in IPT at U/t∗ of the same
order. However, the essential physics does not alter much (e.g.,
Fermi liquid properties of the metallic phase, bandwidth, and
filling controlled Mott transition). Now when we scale the
frequency by the FL scale ωL, we find excellent agreement
with NRG spectral density up to ∼2ωL in the p-h symmetric
case, while the IPT spectral density deviates from the NRG
immediately after the Fermi level [main, Fig. 13(a)] [63]. In
the p-h asymmetric case, the agreement between scaled NRG
and LMA spectral densities continues beyond ∼2ωL and stops
almost at the onset of the Hubbard bands [inset, Figure 13(a)].
It is needless to say that one should not expect the agreement in
the Hubbard bands during such low-energy scaling of spectral
densities. The scaling agreement indicates that the spin-flip
dynamics incorporated in LMA, missed in IPT, indeed captures
the same Kondo scale physics, in parallel with the agreement
already found in the single impurity and pseudogap Anderson
models [32,64,65].

We also compare the closing of the Mott gap with various
other methods. Figure 13(b) shows that the Mott gap �g

diminishes with decreasing U/t∗ in the insulating regime and
finally closes at U = Uc1. Although Uc2 differ significantly, as
mentioned in [41] for the Bethe lattice of bandwidth (BW)
2t∗, Uc1 in LMA and VLMA are quite close (1.45t∗ and
1.6t∗, respectively) and they differ a little in the gap size.
The �g vs U/t∗ curve behaves almost linearly for LMA and
strong-coupling perturbation theory (SCPT) by Eastwood et al.
[66], whereas the curve for IPT and DDMRG by Karski et al.
[23] show almost identical nonlinear power-law-like behavior
[23].
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FIG. 13. (a) Scaling agreement with the NRG spectral densities.
Main panel shows that at half-filling, spectral density from LMA
(pink line) agrees with that from NRG (red dash) up to ω ∼ 2ωL,
while IPT spectral density (green dotted dash) only agrees in the
vicinity of the Fermi level. Inset shows that the agreement extends
further in the p-h asymmetric case and ends near the onset of the
Hubbard bands. (b) (Main) Mott gap (�g) closes as the interaction
strength U decreases leading to an insulator-to-metal transition at Uc1.
Uc1 is higher in DDMRG (Karski et al.), SCPT (Gebhard et al.), and
IPT, while VLMA (Kauch and Byczuk) and LMA show Uc1 � 1.45t∗
and Uc1 � 1.6t∗, respectively. (Inset) Spectral densities as functions
of frequency for various methods at U = 4t∗ showing Mott gaps at the
Fermi level. The gaps in VLMA and LMA appear larger compared to
that in DDMRG, SCPT, and IPT although the position of the Hubbard
bands remain more or less the same.

V. VARIANTS OF LMA

LMA incorporates all higher order transverse spin-flip
scattering or polarization diagrams in the perturbation series
and hence, through DMFT, nonperturbatively captures the
strong-coupling limit, e.g., |m| approaching the mean-field
value 1 at U → ∞. However, one may investigate what
happens if other kinds of diagrams are incorporated or if
the RPA sum is calculated differently. For instance, Logan
and his co-workers included the particle-particle and other
bubble diagrams to the self-energy and found no appreciable
contributions to spectral densities [31]. One can also look for
another possibility, namely performing a diagrammatic sum
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within GW approximation, where instead of the polarization
propagator, the Coulomb interaction gets “dressed” and RPA
summed [67]. However, since there are no exchange diagrams
or Fock contributions considered, GW and conventional self-
energies yield identical results.

Since the order of magnitude in Z does not follow many
of the existing numerical results, we decide to look for open
scopes where the present version of LMA can be modified.
Conventional LMA uses Eq. (10) to ensure Fermi liquid
properties of metallic phase and such a condition may be
satisfied in various ways (e.g., Luttinger pinning, Luttinger’s
sum rule, variational approaches), without altering the basic
physics of LMA (transverse spin-flip dynamics). This leaves
open the possibility of modifying LMA from its conventional
form. We discuss a few such variations that we have tested and
mention their outcomes below.

A. VLMA

The VLMA is already mentioned in previous sections.
Kauch and Byczuk [68] proposed that the ground state
would be found through minimization of the impurity energy
functional with respect to the local moment m and occupation
number. For the half-filling case, only m is treated as a
variational parameter. Such a variational method remains
unbiased in the sense that it does not need to impose an
FL condition like Eq. (10); the FL property and the Fermi
level pinning is expected to be the natural outcome of the
ground state, obtained through the minimization. Unlike the
conventional LMA, VLMA is remarkably devoid of the low Z

pathology in the former. Despite this success, the minimization
procedure becomes extremely difficult at large U/t∗ [68]
and standard minimization routines often break down [69].
For example, we also encounter difficulties with the golden
section search method based minimization for U > 1t∗. For
U = 1t∗, we compare our spectral density to that by Kauch
and Byczuk in the inset of Fig. 14 and find close agreement.
Due to this subtlety associated with VLMA, we look for
further alternatives which may overcome the low Z issue
of the conventional LMA and discuss a few of them in the
forthcoming subsections.

B. Luttinger LMA (L-LMA)

Another alternative way of bypassing Eq. (10) could be
tuning m such that Luttinger’s sum rule [Eq. (11)] is satisfied.
For the half-filling case, satisfying the sum rule is redundant,
when Fermi liquid condition is already satisfied through
Eq. (10). We dub this method Luttinger LMA (L-LMA) and it
shows a “sensible” Z and the quasiparticle width agrees with
low U/t∗ spectral density of VLMA (thick violet curve in inset
of Fig. 14). Nevertheless the Luttinger pinning is missing and
finding legitimate numerical solutions at higher interaction
strength remains challenging. A possible remedy could be
tuning occupancy or εd such that D(0) = D0(0) is satisfied
(for the half-filling the solution for εd must be equal to −U/2),
which we have not attempted yet.

C. Self-energy averaged LMA (SEA-LMA)

By construction, the spin-dependent self-energies behave
like the self-energy of an FL, i.e., Im�σ (ω) ∼ ω2 [31] as ω →

-4 -2 0 2 4 6 8 10
ω/t*

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
(ω

)

NRG
VLMA
SEA-LMA

-3 -2 -1 0 1 2 30
0.1
0.2
0.3
0.4
0.5
0.6

L-LMA
VLMA (G)
VLMA (K-B)
SEA-LMA

Bethe lattice,
BW=2t*

U=2t*

U=1t*

FIG. 14. (Main) Spectral densities against frequency for NRG,
VLMA, and SEA-LMA at U = 2t∗. Although the weight of Hubbard
bands differ, both VLMA and SEA-LMA show resemblance with
NRG in low-energy behavior (width of quasiparticle resonance) at
U = 2t∗. (Inset) The same at U = 1t∗ for Luttinger LMA (L-LMA),
VLMA by golden section search (G), VLMA by Kauch and Byczuk
(K-B), and SEA-LMA. All show close resemblances, however, L-
LMA misses the Luttinger pinning at the Fermi level.

0. We exploit this property and define an average self-energy
for the paramagnetic case: �(ω) ≡ [�tot

↑ (ω) + �tot
↓ (ω)]/2.

This averaged self-energy is directly used in finding the local
Green’s function and through Gσ in the DMFT iteration the
local moment gets updated. We name this self-energy averaged
LMA (SEA-LMA). This always ensures the FL nature in the
spectral density along with the Luttinger pinning since now
Im �(ω) ∼ ω2 as ω → 0 as well. The main panel in Fig. 14
shows well the agreement with the NRG spectral density in the
quasiparticle regime. We also notice that at moderate U/t∗’s
both NRG and SEA-LMA have almost equal values of Z (e.g.,
Z � 0.26 at U = 2t∗). The VLMA spectral density also agrees
around the Fermi level. However, VLMA and SEA-LMA show
diminished and enhanced Hubbard band heights compared to
that in NRG.

We must mention that a physical justification of self-energy
averaging is still required and further detailed analysis is
needed to be done, which is beyond the scope of this paper.
As of now SEA-LMA works like another ansatz that preserves
the FL property in the metallic regime.

VI. SUMMARY

In summary, we must say that, within the LMA+DMFT
framework, our work investigates the unexplored part of
the single orbital Hubbard model, i.e., the metallic phase at
arbitrary filling and the phase diagram on the filling-interaction
plane at zero temperature. LMA shows Mott MIT like many
other solvers of the DMFT impurity problem. However, the
transition point differs from many other methods, mainly
due to the lower value of the quasiparticle residue Z (at
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least by one order of magnitude). This is also what prevents
LMA spectral densities from getting directly benchmarked
against other numerical methods. Nevertheless we compare
the spectral densities in the renormalized Fermi liquid scale
ωL and find excellent agreement with results obtained from
NRG calculations for both p-h symmetric and asymmetric
cases, signifying that ωL indeed behaves like the Kondo scale,
similarly found in case of LMA for the Anderson impurity
model. We also propose a few possible modifications to the
conventional LMA, such as variational LMA, Luttinger LMA,
and self-energy averaged LMA, that remedy the low Z issue.
However, these methods require systematic physical justifica-
tions and benchmarking with numerical consistency checks. If
we leave this issue aside for a moment, we can see that LMA
successfully captures all essential physics of the Hubbard
model. For instance, the spectral density with the three-peak
structure (quasiparticle resonance plus two Hubbard bands) in
the metallic phase. Specifically the Luttinger pinning of the
spectral density is excellently fulfilled in LMA, which is a
difficult challenge for many other numerical methods. Being
semianalytical, IPT and LMA both possess similar advantages,
e.g., being computationally nonexpensive and capable of
producing qualitatively correct physics. However, the spectral
moment sum rule breaks down for IPT in the insulating
regime, where LMA plays its best role. The strong-coupling
universality and presence of the pseudogap may require deeper
understanding in connection with the impurity model physics
[35]. The optical properties also reflect universal features
and a finite temperature extension to it, which in principle
requires no extra formalism, could be a topic of our follow-up
paper and this may attempt to find some answers to the
long-lasting puzzles in experiments of doped Mott insulators
[70]. Being semianalytical and hence computationally less
expensive, a multiorbital extension of LMA would be an
extremely powerful tool to investigate related problems.
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APPENDIX: ANALYTICAL DETERMINATION OF Uc2

Close to the MIT, singularities arise in �(ω) and G(ω) and
both of their positions shift to the Fermi level (ω = 0) after the
Mott transition. Let us assume that the poles occur at ω = ±ω0

in G(ω) and at ω = ±ω′
0 in �(ω), respectively, near the MIT.

Then we can express the self-energy in a generic way [50,71]:

�(ω) = U 2A

[
1

ω − ω′
0

+ 1

ω + ω′
0

]
+ Bω + C, (A1)

where B ≡ 1 − 1/Z.

If we write: ω′
0 = βω0, then at ω = ω0,

�(ω0) = U 2A

[
1

ω0(1 − β)
+ 1

ω0(1 + β)

]
+ Bω0 + C

= − U 2

rω0
+ Bω0 + C; (A2)

r ≡ 2A/(β2 − 1).
Now the Dyson’s equation provides

�(ω0) =−G−1(ω0)

=−εd − γ (ω0)
[
1 − M0

2 /γ 2(ω0)
]

=−εd − γ (ω0) + M0
2

γ (ω0)
(A3)

=−εd − [ω0 − εd − �(ω0)] + M0
2

ω0 − εd − �(ω0)

=−ω0 + �(ω0) + M0
2

ω0 − εd − �(ω0)
, (A4)

where we use the fact that G−1
0 (ω0) = 0 and G(ω0) � [1 +

M0
2 /γ 2(ω0)]/γ (ω0), M0

2 ≡ M2(U = 0) setting the chemical
potential μ = 0.

Equation (A4) can be reduced to a quadratic equation
of ω0,

ω0[ω0 − εd − �(ω0)] − M0
2 = 0 , (A5)

which, by using Eq. (A2), can be expressed as

ω2
0 − �(ω0)ω0 − εdω0 − M0

2 = 0

⇒ ω2
0 −

[
− U 2

rω0
+ Bω0 + C

]
ω0 − εdω0 − M0

2 = 0

⇒ ω2
0 −

[
− U 2

r
+ Bω2

0 + Cω0

]
− εdω0 − M0

2 = 0

⇒ (1 − B)ω2
0 − (C + εd )ω0 = M0

2 − U 2

r

⇒ ω2
0

Z
− (C + εd )ω0 = M0

2 − U 2

r
. (A6)

Now ω0 vanishes when the right-hand side of Eq. (A6)
disappears at U = Uc2. (Note that the position of ω0 decides
whether Z remains finite or zero, hence ω0 → 0 limit domi-
nates over Z → 0.) Therefore,

Uc2 =
√

rM0
2 . (A7)

From Eq. (A6) we can estimate r by plotting ω2
0/Z against

U 2 considering the fact that ω2
0/Z remains the dominating

term on the left-hand side as Z approaches zero near the
transition. Thus we find 1/r = 0.069 for the hypercubic lattice
(M0

2 = t2
∗/2) and 1/r = 0.08 for the Bethe lattice of bandwidth

4t∗ (M0
2 = t2

∗ ) which lead to Uc2 = 2.69t∗ and Uc2 = 3.53t∗
respectively.
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