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Trion formation in a two-dimensional hole-doped electron gas
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The interaction between a single hole and a two-dimensional, paramagnetic, homogeneous electron gas is
studied using diffusion quantum Monte Carlo simulations. Electron-hole relaxation energies, pair-correlation
functions, and electron-hole center-of-mass momentum densities are reported for a range of electron-hole mass
ratios and electron densities. We find numerical evidence of a crossover from a collective excitonic state to a
trion-dominated state in a density range in agreement with that found in recent experiments on quantum-well
heterostructures.
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The rich physics arising from the Coulomb attraction
between electrons and holes in layered semiconductor systems
continues to generate fundamental and technological interest.
Collective many-body effects, such as the Fermi-edge sin-
gularities (FESs) in absorption spectra predicted by Mahan
[1], dominate at high carrier densities, while excitonic species
form in dilute systems [2]. Neutral excitons, consisting of
bound electron-hole pairs, and charged trions, which are
bound states of two electrons and one hole, or two holes
and one electron, are elementary quasiparticles that can
be created via photoexcitation or by chemical or electrical
means in a wide range of materials. Many optoelectronic
devices, from photovoltaics and light-emitting diodes [3] to
optoelectronic storage devices [4], interconnects, and switches
[5,6], exploit excitonic effects, as does nature in, for example,
plant photosynthesis.

Modulation-doped or gated semiconductor quantum wells,
including GaAs wells with AlGaAs barriers and In-
GaAs/InAlAs junctions, offer convenient experimental access
to high-mobility electron gases. The control of carrier density
and creation of electron-hole pairs via photoexcitation are
readily achieved and early studies identified the FES [7,8]
at high carrier densities. Kheng et al. [9] identified negatively
charged trions in CdTe quantum wells at low carrier densities,
35 years after their prediction by Lampert [10]. Particle
confinement in a quasi-two-dimensional well increases the
overlap of the hole and electron wave functions and increases
the binding energy of the hole compared to the bulk semicon-
ductor [11], making this an ideal system in which to study
trions. The crossover between high-density FES dominated by
many-body correlations, which we refer to as the collective
excitonic state, and the low-density behavior, characterized
by the presence of excitons and trions, has been investigated
experimentally [2,12–14].

Huard et al. [2] observed a gradual change in the ab-
sorption spectrum of modulation-doped CdTe semiconductor
quantum wells from discrete excitonic peaks at low carrier
density to broad FES at high density. Rapid changes in
line shapes and transition energies seen in the absorption
and photoluminescence spectra of a gated modulation-doped
GaAs quantum well allowed Yusa et al. [12] to locate a
critical “crossover” density. Similar methods were used by

Bar-Joseph [13]. Yamaguchi et al. [14] recently showed that
the photoluminescence linewidth of a gated, undoped GaAs
quantum well as a function of energy shift in a perpendicular
electric field can be used to measure the spatial extent of the
trion at a given carrier density. The measured trion radius
increases sharply above a critical density, which is identified
as the crossover. A theoretical description of the crossover
was given by Hawrylak [15] via an approximate treatment of
electron-electron interactions.

Despite the wealth of experimental information, interpre-
tation of spectroscopic data is often not straightforward and
the properties of excitonic states are still debated. Emission
of photons at the anticipated exciton frequencies does not
unambiguously signal the presence of excitons, as a system
formed by an electron gas and a hole will resonate at the
exciton frequency due to many-body interactions [16]. In
addition, experimental samples exhibit great sensitivity to
variables such as temperature, finite quantum-well width,
and the presence of disorder and localization effects from
the, albeit spatially removed, dopants in modulation-doped
quantum wells. Further theoretical insight into such electron-
hole systems is urgently needed. We have therefore performed
variational and diffusion quantum Monte Carlo (VMC and
DMC) [17] calculations to understand the important limit of
a zero-temperature, two-dimensional (2D) system comprising
a single hole immersed in a 2D homogeneous electron gas
(HEG) interacting via the Coulomb (1/r) interaction.

The relevant length scale in a 2D HEG is its density
parameter rs = 1/

√
πn, where n is the number density, while

the excitonic length scale is the exciton Bohr radius a∗
0 =

4πε0ε�
2/(μe2), where μ = memh/(me + mh) is the reduced

mass of the electron-hole pair, me and mh are the electron and
hole effective masses, and ε is the static dielectric constant of
the host material. The energy scale of excitonic systems is the
exciton Rydberg (Ry∗), where 1 Ry∗ = μe4/(32π2ε2

0ε
2
�

2).
We use Hartree atomic units (� = |e| = me = 4πε0ε = 1)
unless otherwise stated.

We use the CASINO code [18] and VMC and DMC methods
to simulate systems containing 86 electrons and a single hole
in a periodic cell in the presence of a uniform, neutralizing
background charge density. In VMC, expectation values are
evaluated using a trial wave function containing optimizable
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parameters. The more accurate DMC method projects out the
lowest energy state with the same nodal surface as the trial
wave function [19]. The accuracy achieved for expectation
values of operators that commute with the Hamiltonian is
determined by the trial nodal surface, while the accuracy of
other expectation values and the statistical efficiency achieved
are influenced by the quality of the entire trial wave function.
Quantum Monte Carlo (QMC) methods have previously been
used to study related systems including three-dimensional
(3D) electron-hole gases [20], 2D electron-hole gases [21],
trions in 2D materials [22,23], excitons and biexcitons in
bilayer systems [24–26], and positrons immersed in 3D
electron gases [27,28].

We use a trial wave function of the form

�T(R) = eJ (R)�S[X(R)], (1)

where R denotes the particle coordinates, eJ (R) is a Jas-
trow factor that describes electron-electron and electron-hole
correlations [29,30], X(R) is a set of backflow-transformed
coordinates [31,32], and

�S(R) = det[φi(r
↑
j − rh)] det[φi(r

↓
j − rh)] (2)

is a product of Slater determinants containing orbitals that pair
each electron with the hole, where rσ

j is the position vector of
the j th electron of spin σ and rh is the position of the hole. We
use a novel form of flexible pairing orbital whose parameters
are optimized within VMC and which provides an accurate
description of electron-hole and electron-electron correlation,

φi(r) = exp [uGi
(r)] exp{iGi · [r − ηGi

(r)]r̂}, (3)

where r̂ is the unit vector in the direction of r. The orbital-
dependent electron-hole Jastrow function uGi

and orbital-
dependent electron-hole backflow function ηGi

, where Gi

is the ith shortest reciprocal lattice vector, are described
in the Supplemental Material [33]. The free parameters in
the backflow transformation, Jastrow factor, and orbitals are
optimized using energy minimization techniques [34]. We
impose the electron-electron and electron-hole Kato cusp
conditions [35] via the Jastrow factor.

The pairing orbitals lower the VMC energies, roughly
halving the difference between the VMC and DMC relaxation
energies, compared to equivalent calculations with plane-wave
orbitals. The DMC energies are only lowered slightly by
the use of pairing orbitals; this insensitivity to changes in
the nodal surface indicates that the effect of the fixed-node
approximation on the energies is small. A detailed comparison
of results obtained using optimized orbitals and plane-wave
orbitals can be found in the Supplemental Material [33].

We use full shells of electrons in hexagonal simulation cells
subject to periodic boundary conditions. In our production
calculations we use systems with Ne = 86 electrons, which
we deemed sufficiently large after a finite-size-effect analysis
involving systems of up to Ne = 146 electrons [33]. We use
a cell area of (Ne − 1)πr2

s , so that the electron density far
from the hole is correct [36,37]. We calculate the electron-hole
relaxation energy, also called the electron-hole correlation
energy, by subtracting the energy of a HEG of the same
area containing the same number of electrons. The energy
required to create an electron-hole pair, for example, via
photoexcitation, is given by the sum of the band gap, Fermi

0 2 4 6 8 10
rs / a0

*

-4.6

-4.4

-4.2

-4.0

-3.8

-3.6

-3.4

R
el

ax
at

io
n 

en
er

gy
 (

R
y* )

mh / me = 0.5
mh / me = 1
mh / me = 2
mh / me = 4
mh / me = 8

FIG. 1. Electron-hole relaxation energies for mass ratios
mh/me = 0.5, 1, 2, 4, and 8, and HEG densities rs = 1, 2, 4, 6,
and 10 a.u. The brown dashed line indicates the isolated exciton
energy at −4 Ry∗, and the magenta dotted, black short-dashed, red
long-dashed, green dotted-dashed, and blue dotted-dotted-dashed
lines show isolated trion energies at mass ratios mh/me = 0.5, 1,
2, 4, and 8, respectively. Fits of the electron-hole relaxation energies
at each mass ratio have been constrained to tend to the respective trion
energies at rs/a

∗
0 → ∞. Error bars are smaller than the symbols.

energy, and relaxation energy, the latter arising from the
response of the electron gas to the point-particle impurity.
Finite-size effects in the electron-hole relaxation energy are
small, and the pair-correlation functions (PCFs) are well
converged with respect to system size [33]. We study systems
with mass ratios mh/me = 0.5, 1, 2, 4, and 8.

The calculated electron-hole relaxation energies are shown
in Fig. 1 together with the energy of the isolated exciton,
EX = −4 Ry∗ [38]. We fit the electron-hole relaxation energies
for each mass ratio to functions that tend to the energy of
an isolated negative trion at rs/a

∗
0 → ∞, which is the low

carrier density limit of the electron-hole relaxation energy. We
evaluate isolated trion energies in separate DMC calculations;
numerical values are shown in Fig. 2 and tabulated in the
Supplemental Material [33]. Since trions are composed of
inequivalent particles, the wave function is nodeless and DMC
is exact in this case. To obtain the μ/me → 0 limit, we
minimize the DMC energy as a function of the separation
of two fixed electrons, finding an equilibrium separation of
0.51454(2)a∗

0 . Our data are in good agreement with previous
results [39,40] in the limiting cases studied in those articles,
and are compatible with recent calculations using the 1/r

potential for trions in transition metal dichalcogenides [23],
although our energies are somewhat different from those of
Ref. [41].

At low densities the localized trion is similar to an electron,
and therefore the variation of the relaxation energy with rs is
dominated by the energy required to remove one electron from
the HEG, which is minus its Fermi energy. At high densities the
localized trion does not form, and at rs/a

∗
0 → 0 the relaxation

energy diverges towards −∞, as it does in three dimensions
[33,42].
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FIG. 2. Total energy of an isolated trion as a function of μ/me

(circles). The energy of the neutral exciton is also shown (dashed
line). Error bars are smaller than the symbols.

We calculate PCFs g(r) using an extrapolated estimation
[33,43] to eliminate the leading-order dependence on the
trial wave function. The VMC and DMC PCFs calculated
using plane-wave or optimized orbitals are almost identical,
indicating the robustness of the results. Representative PCF
data are shown in the Supplemental Material [33]. In Fig. 3
we show integrated electron-hole PCFs which give the total
electron weight within a circle of radius r centered on the
hole. As the density is lowered, the r2 behavior associated
with the electron gas is modified by the formation of a plateau
at a weight of two electrons, indicating the emergence of a
trion. Figure 3 shows that the trion radius decreases somewhat
for heavier holes; in excitonic units (not shown) these curves
coincide for r � rs . The electron-hole PCF tends to that of
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FIG. 3. Cumulative (integrated) electron-hole PCFs normalized
to show the total electron weight within a circle of radius r centered
on the hole. Data are plotted for constant mass ratio mh/me = 1 and
HEG densities rs = 1, 2, 4, 6, and 10 a.u. (left panel), and for constant
HEG density rs = 6 a.u. and mass ratios mh/me = 0.5, 1, 2, 4, and 8
(right panel).

an isolated trion at low density, while at high density the
free electrons screen the attractive potential from the hole,
preventing trion formation. An intuitive explanation of the
trends seen in the relaxation energy is afforded by its close
relationship with the electron-hole PCF. At low density, the
relaxation energy approaches the sum of the trion energy and
the cost of the reduction in density of the surrounding electron
gas far from the trion caused by the addition of the hole. For
rs � a∗

0 , the screening charge becomes more localized close to
the hole, increasing the relaxation energy at high density [33].

The on-top electron-hole PCF geh(0) is proportional to
the rate of electron-hole recombination. It could also be
used to create semilocal two-component exchange-correlation
functionals for use in density functional theory calculations
for modeling holes immersed in inhomogeneous 2D systems
[44]. Considering the limits of an exciton in a dilute electron
gas and a trion without an electron-electron interaction in a
dilute electron gas, we propose a relation [33]

geh(0) = cμ2r2
s + 1, (4)

where c is a dimensionless parameter that is roughly indepen-
dent of μ and rs and takes values slightly above the exciton
limit of c = 8. We have extrapolated the PCFs to r = 0 and
plotted the results against μrs (=rs/a

∗
0 ) in Fig. 4. Equation (4)

fits the data well over the parameter space studied. We obtain
c = 9.742(7) from the fit; the variation of c with μ and rs is
analyzed in the Supplemental Material [33].

The value of the electron-hole PCF at r is the ratio of the
electronic density a distance r from the hole to that of the
surrounding electron gas. Thus, the value of the PCF at its
first minimum, also shown in Fig. 4, measures the degree of
isolation of the localized trion. The minimum in the electron-
hole PCF develops at about rs ∼ a∗

0 and rapidly becomes more
pronounced as the carrier density decreases, with the minimum
electron density falling below 25% of that of the surrounding
HEG by rs ∼ 4.5a∗

0 .
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FIG. 4. Values of the electron-hole PCF at r = 0 (on-top PCF)
and at its first minimum. The solid line is a least-squares fit of the
on-top PCF data to Eq. (4). The PCF values 0.25, 0.5, and 0.75 are
represented with dotted gray lines. Error bars are smaller than the
symbols. Note the logarithmic scales.
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FIG. 5. Crossover of hole-in-HEG system from the high-density
collective excitonic state to a localized trion immersed in a low-
density HEG as a function of mass ratio mh/me and density parameter
rs/a

∗
0 . Experimental data showing the evolution of absorption

and photoluminescence spectra from the Fermi-edge singularity to
discrete trion and exciton peaks are shown as colored areas, and are
consistent with our results.

The gradual emergence of trions in our QMC calcula-
tions is compared to experimental data from semiconductor
quantum-well systems in Fig. 5. This gradual crossover occurs
in a parameter range consistent with the absorption and
photoluminescence spectra seen experimentally. The values of
the dielectric constant and effective masses used are given in
the Supplemental Material, together with an alternative picture
of the crossover in the same parameter range [33].

We have calculated the electron-hole center-of-mass mo-
mentum density ρ(k̄) by constraining one electron to remain
on top of the hole [28,33,37]. Since it is not possible to use
an extrapolated estimation for this quantity, we report VMC
results using the optimized orbitals. The momentum density
is sensitive to the quality of the trial wave function, which has
been compensated for by using 500 000 configurations, a much
larger number than is required to converge the VMC energy, in
order to minimize noise during optimization. In addition, each
result is an average over eight independently optimized wave
functions [33]. We have applied this method to compute the
momentum densities of four representative systems, as shown
in Fig. 6.

At high density we obtain strong enhancement of momen-
tum density just below the Fermi edge, together with a small
tail above the edge. This behavior was predicted theoretically
by Carbotte and Kahana [45,46] and recently demonstrated
numerically by Drummond et al. [28] for a positron in a 3D
HEG at metallic densities. However, our results for 2D systems

0.0

0.5

1.0

1.5

0 1 2 3
k / kF

0.0

0.3

0.6

M
om

en
tu

m
 d

en
si

ty

0 1 2 3
k / kF

rs = 1 a.u. rs = 1 a.u.
mh / me = 1

rs = 6 a.u.rs = 6 a.u.

mh / me = 1

mh / me = 8

mh / me = 8

FIG. 6. Momentum density for four representative points of our
“phase diagram”: left column, mh/me = 1; right column, mh/me =
8; top row, rs = 1 a.u.; bottom row, rs = 6 a.u. Error bars are
shown but are sometimes smaller than the symbols. Our results are
normalized such that

∫ ∞
0 2πk̄ρ(k̄) dk̄ = πk2

F .

also show the formation of a small, broad peak above the Fermi
edge as the density is lowered. In contrast to the momentum
density for k̄ < kF , this unusual peak is insensitive to small
changes in the wave-function parameters and to the precise
form of optimizable wave function used. The peak emerges
gradually as the density is lowered from that at which we
estimate trion formation to begin, and becomes higher and
narrower, its center moving closer to the Fermi edge, as the
density is lowered to rs = 10 a.u. We demonstrate that this peak
is associated with the formation of a trion in the Supplemental
Material [33].

In conclusion, we have performed highly accurate QMC
calculations for a system containing a single hole immersed in
a 2D electron gas. Our results demonstrate a crossover between
a collective excitonic state and a trion state as the density of
the electron gas is lowered and as the mass ratio is increased.
The electron-hole relaxation energy, PCF, and electron-hole
center-of-mass momentum density each show evidence of the
crossover. The density and mass range in which trion formation
begins is in good agreement with recent experiments [2,12,14].

The authors acknowledge financial support from the
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under Grant No. EP/J017639/1. Supporting research data may
be freely accessed at http://dx.doi.org/10.17863/CAM.565, in
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Computing Service of the University of Cambridge.
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