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Decoherence of high-energy electrons in weakly disordered quantum Hall edge states
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We investigate theoretically the phase coherence of electron transport in edge states of the integer quantum
Hall effect at filling factor ν = 2, in the presence of disorder and inter edge state Coulomb interaction. Within
a Fokker-Planck approach, we calculate analytically the visibility of the Aharonov-Bohm oscillations of the
current through an electronic Mach-Zehnder interferometer. In agreement with recent experiments, we find that
the visibility is independent of the energy of the current-carrying electrons injected high above the Fermi sea.
Instead, it is the amount of disorder at the edge that sets the phase space available for inter edge state energy
exchange and thereby controls the visibility suppression.
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Phase coherent electron transport at the edge of a two-
dimensional electron gas (2DEG) is a fascinating topic in
condensed matter physics, both because of its fundamental role
in unveiling new correlated states of matter [1,2], as well as for
its practical implications for electronic quantum information
processing [3–6], and the emerging field of quantum coherent
thermoelectrics [7,8]. Although among the oldest quasi-one-
dimensional systems to have been discovered [9–13], edge
states (ESs) in the integer quantum Hall regime are still not
fully understood theoretically. In particular, despite intense
activity [14–35], our understanding of the dominant decoher-
ence mechanism in transport through ESs is incomplete. This
is illustrated by the recent experiment of Tewari et al. [33],
in which it was observed that decoherence of high-energy
electrons sent through a Mach-Zehnder interferometer (MZI),
formed with two copropagating ESs at filling factor ν = 2,
does not depend on the energy of the injected electrons. This
contradicts theoretical predictions based on the Luttinger-
liquid model for one-dimensional, translationally invariant
systems [25–27,33,34]. Disorder, however, is conspicuous
for its absence in these approaches. While macroscopic
phenomena, such as the quantization of the Hall resistance,
are robust to disorder, more subtle quantum effects, such as
energy exchange and phase coherence between copropagating
ESs, can be expected to be sensitive to even weak disorder at
the edge of a high mobility 2DEG [36].

In this work, we show that by taking into account dis-
order, which breaks translation invariance along the edge,
a gapless continuum of low-energy quasiparticle excitations
emerges. Their dynamics provides a simple physical picture
of interaction-induced decoherence, which in turn provides
a natural explanation for the experimental findings of [33].
Our theory has previously also been successfully applied
to energy relaxation in out-of-equilibrium ESs [23,37]. In
particular, in [37], we showed that energy relaxation of
electrons injected high above the Fermi sea into the outermost
of two copropagating, interacting and weakly disordered ESs,
can be described in terms of a drift-diffusion process of
their energy distribution function: As the injected electrons
propagate along the outer ES, they lose energy and their energy
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FIG. 1. Schematics of a Mach-Zehnder interferomter realized
in [33] with ESs of the integer quantum Hall effect at filling factor
ν = 2. (a) The outer (inner) chiral ES is shown by a solid red
(blue) line following the edge of the patterned 2DEG structure
(light-gray area). The arrows indicate the propagation direction which
is determined by the orientation of the magnetic field perpendicular
to the 2DEG (not shown). A quantum dot (bottom right) is used for
energy-resolved injection of high-energy electrons, with mean energy
E0, into the outer ES by filtering the electrons emitted at the source
marked with S. This creates a nonequilibrium energy distribution
in the outer ES composed of a Fermi sea part and a narrow bump
around E0 as shown in (b). An injected electron is scattered at two
QPCs and can follow two possible paths, marked by dashed (black)
lines, before exiting the interferometer at the top left corner where
the current is measured. Interference between the current amplitudes
corresponding to these two paths can be modulated either by threading
a magnetic flux � through the loop created by the two paths or, as
in the experiment [33], by applying a local gate voltage along one
arm, in order to modify the path length difference �L (dark-blue side
gate). The visibility of the current oscillations in either �L or �,
is suppressed by inelastic scattering between electrons in the inner
and outer ESs, which follow the equipotential lines of the disordered
confinement potential [36] (c). In the case of unequal arm lengths,
additional dephasing takes place due to the initial energy spread �0

of the injected electrons (b).
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distribution moves towards the Fermi sea with a constant
energy drift velocity and broadens at a position-dependent rate.
The latter is determined by the induced heating of the inner
ES, which absorbs the energy lost by the injected electrons
and subsequently redistributes part of this energy to the Fermi
sea of the outer ES. The central new idea of the present work
is that, given a relation between the energy and the phase of
a propagating electron, knowing the dynamics of the energy
distribution function enables us to calculate the statistics of
the interaction-induced phase fluctuations. In the absence of
extrinsic dephasing mechanisms, the latter fully determines
the coherence of electron transport.

Explicitly, we find that the interaction-induced suppression
of the visibility of the current interference fringes through an
electronic MZI [see Fig. 1(a)] is determined by the temperature
of the electronic system, the drift velocity of the energy
distribution of the electrons injected into the outer ES, and the
heating of the Fermi sea of the inner ES. Importantly, none of
these quantities depend on the injection energy of the electrons,
resulting in dephasing that is independent of the injection
energy, in line with the experiment of Tewari et al. [33].
Rather, the amount of dephasing is governed by the amount
of disorder, which sets the available phase space for inelastic,
non momentum conserving, electron-electron scattering. This
result suggests that disorder along the edges of a patterned
2DEG plays a more important role, with regards to energy
relaxation and decoherence of ESs, than hitherto assumed.

The system we consider is that of [33] and is depicted
schematically in Fig. 1. It consists of two copropagating chiral
ESs, one of which is split via two quantum point contacts
(QPCs) such as to form a MZI. Furthermore, a quantum
dot (QD) side-coupled to the sample edge at the input of
the interferometer is used for energy-resolved injection of
electrons into the outer ES with an average energy E0 much
larger than the Fermi energy μo of the outer ES as compared
with the initial energy spread �0 of the injected electrons,
i.e., E0 − μo � �0 [see Fig. 1(b)]. If all contacts, with the
exception of the source, are kept at the same voltage, the dc
current I (�,�L) measured at the output port of the interfer-
ometer will stem exclusively from electrons injected into the
outer ES via the QD energy filter. The flux dependence of this
current is thus a sensitive probe of phase coherence along the
outer ES. Instead of varying a magnetic flux � through the
loop formed by the two arms of the interferometer, one may
alternatively, as in the experiment [33], vary the path length
difference �L = L1 − L2, e.g., by applying a gate voltage to
one of the arms. A similar setup, albeit with a simpler topology,
has been used previously to investigate energy relaxation in
out-of-equilibrium ESs [20,21].

We focus on Coulomb mediated energy exchange between
the inner and outer copropagating ESs, without particle
exchange. This is reasonable in the absence of magnetic
impurities, since the two edge states have opposite spins
and therefore particle exchange would require a spin flip. In
analogy with the noninteracting scattering theory [38,39], the
contribution from the outer ES to the current at the output port
of the MZI can then be written as

I (�,�L) = e

h

∫
dE b0(E) 〈|r1r2 + t1t2e

iφE |2〉 . (1)

Here b0(E) denotes the energy distribution function of the
electrons injected via the QD and centered at E0. ri (ti) is the
real reflection (transmission) probability amplitude at the ith
QPC, and φE denotes the relative phase acquired by an electron
injected with energy E but traversing different arms of the
MZI. Crucially, the phase φE is a random variable that depends
on the injection energy E, and on the random energy exchange
events between injection and detection. The brackets 〈·〉 denote
averaging over all possible realizations of scattering events.
Assuming that the energy dependence of the transmission and
reflection amplitudes through the QPCs around the injection
energy is negligible [18,33], it follows from Eq. (1) that the
coherent part of the current is given by

Iϕ = e

h
(r1r2t1t2)

∫
dE b0(E) 〈eiφE + e−iφE 〉 . (2)

Hence, assuming b0(E) is known, our task is reduced to
computing the average of exp(iφE) over scattering events.

For the case of a linear dispersion considered here, the phase
acquired by an electron propagating in the outer ES along one
of the arms of the interferometer (say l = 1 for the upper and
l = 2 for the lower arm according to Fig. 1) is simply given by

φ
(l)
E (x) = 1

�vo

∫ x

0
dy E(y), (3)

where vo is the velocity of the electron in the outer ES and
E(y) denotes the energy of the electron at position y in arm
l, given the initial energy E(0) = E. The relative phase at the
detector is then simply given by

φE = φ
(1)
E (L1) − φ

(2)
E (L2) + 2π�/�0, (4)

where Ll is the length of interferometer arm l, possibly includ-
ing a gate-induced path length variation. Because electrons
on different arms do not interact, owing to screening and a
sufficiently large spatial separation, the average over scattering
events factorizes

〈eiφE 〉 = 〈
exp

[
iφ

(1)
E (L1)

]〉〈
exp

[−iφ
(2)
E (L2)

]〉
e2πi�/�0 , (5)

and it is sufficient to evaluate the interaction-induced coher-
ence suppression factor F(l)

E (x) ≡ 〈exp(iφ(l)
E (x))〉 for one arm.

From now on, we thus suppress the arm label l.
Our starting point for evaluating FE(x) is the kinetic

Boltzmann equation for the energy distribution functions fα

of the inner (α = i) and outer (α = o) ESs

vα∂xfα(E,x) = IExα[fα,fᾱ]. (6)

The term on the right-hand side is the difference of in-
scattering ({E′} → E) and out-scattering (E → {E′}) energy
exchange processes between the inner and outer ESs [40]. Here
and below, we use the shorthand notation α = δαio + δαoi. If
both energy and momentum are conserved, then two-body
collisions cannot change the distribution function in one
dimension, as long as vi �= vo [41]. However, disorder along
the edge breaks translation invariance such that inelastic
electron-electron scattering without momentum conservation
becomes possible. Thereby, an effective interaction is induced
and the phase space for energy exchange between electrons
in the inner and outer ESs opens up. In contrast to collective
excitations in a finite length system [42], these excitations are
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gapless. As shown in [23,37,43], this situation is described by
Eq. (6) with the collision integral

IExα[fα,fᾱ] = vαγ

∫
dω e−(ω/�E)2

× {
fα(E + ω,x)[1 − fα(E,x)]Dᾱ(ω,x)

− fα(E,x)[1 − fα(E + ω,x)]Dᾱ(−ω,x)
}
,

(7)

where γ is the effective inter-ES interaction strength, �E is
the energy scale for the amount of energy exchanged per non
momentum conserving collision [43], and

Dα(ω,x) =
∫

dE fα(E − ω,x)[1 − fα(E,x)]. (8)

The inner ES is initially in thermal equilibrium so
that fi(E,0) = 1/{1 + exp[(E − μi)/kBT ]}. Furthermore,
because we consider electrons injected high above the Fermi
sea in the outer ES (E0 − μo � �0), we can split the
distribution function in the outer ES into two essentially
nonoverlapping contributions

fo(E,x) = fo(E,x) + b(E,x), (9)

where fo(E,x = 0) = 1/{1 + exp[(E − μo)/kBT ]} and b(E,x)
is the energy distribution of the injected electrons at position
x with boundary condition b(E,0) = b0(E). If, as in the
experiment [33], the transmission probability through the QD
is small, then b(E,x) 	 1. Consequently, we can neglect, in
the collision integral, all terms of order O(b2,bfo). Finally,
since we are interested in the limit of weak disorder, �E is
taken to be the smallest energy scale, e.g., �E 	 kBT ,�0.
These steps allow us to derive, from the kinetic equation, the
following set of coupled Fokker-Planck equations [37]:

∂xb(E,x)=η
{
∂Eb(E,x) + Di(0,x)∂2

Eb(E,x)
}
, (10a)

∂xfi(E,x)=η
Nb

ρo

∂2
Efi(E,x)

+η
{
[1−2fi(E,x)]∂Efi(E,x)+Do(0,x)∂2

Efi(E,x)
}
,

(10b)

∂xfo(E,x)=η
{
[1−2fo(E,x)]∂Efo(E,x)+Di(0,x)∂2

Efo(E,x)
}
.

(10c)

Here η = (
√

π/4)γ (�E)3 is the energy drift velocity, ρo is
the density of states in the outer ES, Nb = ρo

∫
dE b0(E)

is the mean number of injected electrons, and Do(ω,x) =∫
dE fo(E − ω,x)[1 − fo(E,x)].
The Fokker-Planck equation (10a) is equivalent [44] to the

Itô stochastic differential equation

dE = −ηdx + g(x)dWx, (11)

where g(x) = √
2ηDi(0,x) and dWx is a Wiener process. The

random energy of an electron injected at x = 0 with energy
E is obtained by integrating Eq. (11) and using the initial
condition E(x = 0) = E:

E(x) = E − ηx +
∫ x

0
g(y)dWy. (12)

The last term in Eq. (12) is a stochastic Itô integral. By applying
the Itô calculus [〈dWxdWx ′ 〉 = δ(x − x ′)dx, 〈dWx〉 = 0], we
find the mean and variance (Var[·] = 〈(·)2〉 − 〈·〉2) of the
energy at position x as

〈E(x)〉 = E − ηx, (13a)

Var[E(x)] = 2η

∫ x

0
Di(0,y)dy. (13b)

Note that averaging Eq. (13a) over the injection energy using
the probability density (ρo/Nb)b0(E) yields 〈〈E(x)〉〉0 = E0 −
ηx, which explains why η is called the energy drift velocity
of the energy distribution of the injected electrons. Because
of Eq. (13b), we further call 2ηDi(0,x) the dynamic diffusion
coefficient [37]. According to Eq. (3), the phase of the electron
at position x is now given by

φE(x) = 1

�vo

(
Ex − 1

2
ηx2

)
+ 1

�vo

∫ x

0

∫ y

0
g(z)dWz dy.

(14)

Using again the Itô calculus [43], the last integral can be
rewritten as∫ x

0

∫ y

0
g(z)dWz dy =

∫ x

0
(x − y)g(y)dWy, (15)

from which it follows that the variance of the phase is

δφ2(x) ≡ Var[φE(x)] = 2η

(�vo)2

∫ x

0
(x − y)2Di(0,y)dy.

(16)

Because the fluctuating part of the phase is itself a Gaussian
random variable with zero mean, we can use the iden-
tity 〈exp(iφ)〉 = exp(i 〈φ〉) exp(−δφ2/2), and the interaction-
induced dephasing factor is therefore given by

FE(x) = exp

(
i

�vo

[
Ex − 1

2
ηx2

])
exp

(
− δφ2(x)

2

)
. (17)

Equation (17) together with Eq. (16) are the main analytic
results of this work. They link the interaction-induced phase
coherence suppression factor of the outer ES to the relaxation-
induced smearing of the energy distribution of the inner
ES, quantified by Di(0,x) [see Eq. (8)]. Importantly, the
latter is independent of the injection energy as shown below.
Combining Eqs. (2), (4), (5), and (17), we obtain an explicit
expression for the coherent current through the interferometer

Iϕ(�,�L) = 2e

h

Nb

ρo

(r1r2t1t2)B0(�L)e−(1/2)[δφ2(L1)+δφ2(L2)]

× cos

(
E0�L

�vo

− η
(
L2

1 − L2
2

)
2�vo

+ 2π�

�0

)
.

(18)

Here the factor B0(�L) = ρo

Nb

∫
dE b0(E + E0)ei E�L

�vo char-
acterizes the dephasing due to the initial energy spread
of the injected electrons for finite path length differ-
ence, and the exponential factor quantifies the interaction-
induced dephasing. For an initial Gaussian energy distribution
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of the form b0(E) = Nb

ρo

√
π�0

exp[(E − E0)2/�2
0], we have

B0(�L) = exp[−(�0�L

2�vo
)2]. For an initial distribution of the

form b0(E) = Nb

4�0ρo
cosh−2(E−E0

2�0
), which with �0 = kBT is

appropriate for injection through a thermally broadened QD
level [33], we have B0(�L) = π�0�L

2�vo
csch(π�0�L

�vo
). In both

cases B0(�L → 0) → 1 as expected. The experimentally
relevant visibility of the current interference V ≡ (Imax −
Imin)/(Imax + Imin) is found by extremizing the cosine in
Eq. (18) over either � or variations of the path length difference
�L [45] and reads

V = 2r1r2t1t2

(r1r2)2 + (t1t2)2
B0(�L)e−(1/2)[δφ2(L1)+δφ2(L2)]. (19)

To obtain the variance of the phase fluctuations, we need to
evaluate the function Di(0,x), i.e., solve Eqs. (10b) and (10c).
A thorough discussion of these equations can be found in [37],
where it was shown that an approximate solution takes the form
of an effective temperature ansatz for fi(E,x) and fo(E,x):

f F
i (E,x) = 1

1 + exp
[

E−μi

kBTi (x)

] , (20a)

fFo (E,x) = 1

1 + exp
[

E−μo

kBTo(x)

] . (20b)

From Eq. (8) it immediately follows that, within the effective
temperature approximation, Di(0,x) = kBTi(x). The coupled
Fokker-Planck equations (10b) and (10c) now reduce to
coupled ordinary differential equations for Ti(x) and To(x):

kB∂xTi(x) = η
3

π2

(
Nb/ρo

kBTi(x)
+ To(x)

Ti(x)
− 1

)
, (21a)

kB∂xTo(x) = η
3

π2

(
Ti(x)

To(x)
− 1

)
. (21b)

In the case of interest here, the Fermi seas of the inner and
outer ESs initially have the same temperature Ti(0) = To(0) =
T . Moreover, since we are working in the limit of weak
disorder where �E 	 kBT , it is reasonable to expect that
the difference between the two effective temperatures Td (x) =
[Ti(x) − To(x)]/2 remains small compared with the sum of the
temperatures Ts(x) = [Ti(x) + To(x)]/2 at all positions. From
this assumption, one can then derive an approximate solution
of (21) which yields [37]

kBTi(x) � kBT

√
1 + x

xs

+ Nb

4ρo

(
1 − e

4kBT

Nb/ρo

[
1−√

1+ x
xs

])
,

(22)

with xs = (πkBT )2ρo/(3ηNb). At short distances x 	 xs , we
have Ti(x) � T (1 + x/xs), in which case the integral in (16)
can be evaluated analytically, yielding

|FE(x)|2 � exp

[
−2

3

ηkBT

(�vo)2

(
x3 + x4

12xs

)]
, for x 	 xs.

(23)

Hence, the smaller the propagation velocity vo, the stronger the
dephasing, a trend which was recently observed by Gurman
et al. [35]. At large distances x � xs , the exponential term in
Eq. (22) vanishes and Ti(x) � kBT

√
1 + x/xs + Nb/(4ρo).

From the data in [33], we can estimate that in the
experiment, Nb/ρo ≈ 1.6 μeV [43]. The only remaining free
parameter η can then be determined by fitting Eq. (19) to
the measured visibility, using the experimentally determined
values for the other parameters [33]: kBT ≈ 31 mK, vo ≈
5 × 104 ms−1 and r1 = r2 = t1 = t2 ≈ 1/

√
2, as well as L1 =

L2 = L ≈ 7.2 μm. This yields [43] an energy drift velocity of
η ≈ 2.8 μeV/μm. This value further justifies our perturbative
analysis for weak momentum conservation breaking of the
experiment [33], where a visibility independent of the injection
energy is observed in the range (E0 − μo) ∈ [30,130] μeV >

ηL ≈ 28 μeV. The regime where ηL > E0 − μo is outside
of the Fokker-Planck regime, since the distribution in the
outer ES can no longer be separated into two nonoverlapping
contributions. Experimentally, dephasing in this regime is
observed to depend on the injection energy [33]. Using the
above estimates, we plot the visibility according to Eq. (19),
with �L = 0, as a function of the interferometer length in
Fig. 2.

To further validate our analytic results, we compare them
with the results from a Monte Carlo simulation of the
Fokker-Planck dynamics of the kinetic equation, for different
values of the injection energy. In this simulation, we discretize
the stochastic energy exchange process for a given injection
energy. At each step, we determine the scattering rate and
the distribution of scattering energies from Eq. (7). We then
use these to update the energy and accumulated phase of an

FIG. 2. Visibility of the current interference fringes (19) as
a function of the interferometer arm length for �L = 0, r1 =
r2 = t1 = t2 = 1/

√
2, and vo = 5 × 104 m/s. The solid (red) curve

shows the result obtained by numerically integrating the differential
equations (21). The dashed (blue) curve shows the analytic result
obtained using Eq. (22). The thin dashed (black) curve shows
Eq. (23), obtained from the short distance limit of (22), when
x 	 xs ≈ 5.2 μm. The symbols show results from Monte Carlo
simulations of the kinetic equation for different injection energies
E ∈ {40,70,100,130} μeV [43].
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electron as it propagates along the edge. The phase suppression
factor is estimated by averaging over many such “trajectories”:
FE(x) = (1/M)

∑M
m=1 exp[iφE,m(x)]. Further details on our

implementation are given in [43]. The results confirm our
analytic predictions (see Fig. 2).

In conclusion, we have shown how the interplay of disorder
and Coulomb interaction leads to the loss of phase coherence
of the current through a MZI formed with two copropagating
ESs of the integer quantum Hall effect. Crucially we find
that dephasing does not depend on the injection energy,
in agreement with recent experiments [33]. Furthermore,

our theory makes quantitative predictions for the length
dependence of the dephasing [see Fig. 2 and Eqs. (16), (17),
and (22)], which could easily be tested by adapting existing
experimental systems.

We thank Karsten Flensberg for discussion. The Monte
Carlo simulations were performed in a parallel computing
environment at sciCORE [46] scientific computing core
facility at University of Basel. S.E.N. acknowledges financial
support from the Swiss National Science Foundation and
A.M.L. from the Carlsberg Foundation.
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[10] M. Büttiker, Phys. Rev. B 38, 9375 (1988).
[11] S. Komiyama, H. Hirai, S. Sasa, and S. Hiyamizu, Phys. Rev. B

40, 12566 (1989).
[12] D. B. Chklovskii, B. I. Shklovskii, and L. I. Glazman,

Phys. Rev. B 46, 4026 (1992).
[13] R. J. F. van Haren, F. A. P. Blom, and J. H. Wolter, Phys. Rev.

Lett. 74, 1198 (1995).
[14] Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D.

Mahalu, and H. Shtrikman, Nature (London) 422, 415
(2003).

[15] F. Marquardt and C. Bruder, Phys. Rev. Lett. 92, 056805
(2004).

[16] P. Roulleau, F. Portier, D. C. Glattli, P. Roche, A. Cavanna,
G. Faini, U. Gennser, and D. Mailly, Phys. Rev. B 76, 161309
(2007).

[17] L. V. Litvin, H.-P. Tranitz, W. Wegscheider, and C. Strunk, Phys.
Rev. B 75, 033315 (2007).

[18] P. Roulleau, F. Portier, P. Roche, A. Cavanna, G. Faini,
U. Gennser, and D. Mailly, Phys. Rev. Lett. 101, 186803
(2008).

[19] I. P. Levkivskyi and E. V. Sukhorukov, Phys. Rev. B 78, 045322
(2008).

[20] H. le Sueur, C. Altimiras, U. Gennser, A. Cavanna, D. Mailly,
and F. Pierre, Phys. Rev. Lett. 105, 056803 (2010).

[21] C. Altimiras, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly,
and F. Pierre, Nat. Phys. 6, 34 (2010).

[22] C. Altimiras, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly,
and F. Pierre, Phys. Rev. Lett. 105, 226804 (2010).

[23] A. M. Lunde, S. E. Nigg, and M. Büttiker, Phys. Rev. B 81,
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