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Electrical control of the sign of the g factor in a GaAs hole quantum point contact
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Zeeman splitting of one-dimensional hole subbands is investigated in quantum point contacts fabricated on
a (311)-oriented GaAs-AlGaAs heterostructure. Transport measurements can determine the magnitude of the g

factor, but cannot usually determine the sign. Here we use a combination of tilted fields and a unique off-diagonal
element in the hole g tensor to directly detect the sign of g∗. We are able to tune not only the magnitude, but
also the sign of the g factor by electrical means, which is of interest for spintronics applications. Furthermore,
we show theoretically that the resulting behavior of g∗ can be explained by the momentum dependence of the
spin-orbit interaction.
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Electrical manipulation of spin is the underlying principal
of many proposed spintronics and quantum computing device
architectures [1–4]. In particular, electrical control of the effec-
tive Landé g factor in semiconductor nanostructures has been a
major focus of recent research, with theoretical investigations
predicting strong g∗ tunability in both magnitude and sign
[5–7]. The ability to invert the sign of the g factor and tune
the system through a state of zero spin polarization (g∗ = 0)
could be a valuable asset in engineering solid-state spin devices
[8–10].

In this regard, quantum confined hole systems in GaAs are
prime candidates due to the strong coupling between spin and
orbital motion in the valence band [11]. The spin- 3

2 nature of
valence band holes in GaAs leads to several unique properties,
such as a tensor structure of g∗ with large anisotropy between
all three spatial directions [12,13], and tunability of the g factor
across orders of magnitude [14–16].

Previous studies of the g factor of quantum confined holes
revealed a nonmonotonic dependence of |g∗| on the gate
bias, suggestive of a change in sign of g∗ [6,17]. However,
these studies could not directly detect the sign of g∗, only its
magnitude. In this Rapid Communication, we directly detect
the sign of g∗ by exploiting a unique property of the (311)
GaAs hole g tensor, and demonstrate a gate-controlled sign
change of g∗ in a hole quantum point contact (QPC) on (311)
GaAs.

We also introduce a theoretical model showing that the
observed sign reversal of g∗ arises from the in-plane momen-
tum dependence of the spin-orbit interaction in the valence
band. Typically, it is not possible to experimentally probe the
directional k dependence of the two-dimensional (2D) hole
g tensor, since transport measurements represent an average
over all k states at the Fermi surface. However, by using an
electrostatically controlled QPC fabricated along particular
in-plane directions of a 2D hole system, we can perform a
direct spectroscopic measurement of g∗, and investigate its
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dependence on the magnitude and direction of the in-plane
momentum [14,17,18].

The device used in this work was fabricated from a
(311)A-oriented heterostructure, in which a 2D hole system is
induced at an AlGaAs/GaAs interface by applying a negative
voltage (−0.7 V) to a heavily p-doped cap layer [19]. The
peak 2D hole mobility was μ = 6.0 × 105 cm2 V−1 s−1 at a
density p = 1.3 × 1011 cm−2 and temperature T = 40 mK.
The 2D holes are further confined using a split-gate geometry,
to two short one-dimensional (1D) channels or quantum point
contacts (QPCs)—see Fig. 1(a). The two orthogonal 400
nm long 1D channels, oriented along the [233] and [011]
crystal directions (which we label QPC[233] and QPC[011],
respectively), were defined by electron-beam lithography and
shallow wet etching of the cap layer. Measurements were
carried out in a dilution refrigerator, with a base temperature
below 40 mK, using standard ac lock-in techniques with a
100 μV excitation at 31 Hz. A three-axis vector magnet was
used to independently control all three components of the
magnetic field, eliminating the need to thermally cycle the
device. The fields were applied along [233] and [311], as
shown by the schematic in Fig. 1(b).

Figure 1(c) shows the conductance as QPC[233] is pinched
off, revealing clean 1D conductance plateaus in units of 2e2/h

at B = 0, which evolve to spin-resolved half plateaus when a
magnetic field was applied along the in-plane [233] direction.
The g factor was extracted by measuring the Zeeman splitting
in gate voltage �VSG(B), which is then converted to a Zeeman
energy splitting �EZ(B) using the well-known source drain
bias spectroscopy technique [20] (see Supplemental Material
[21], Sec. 1).

Figures 2(a) and 2(b) show the Zeeman splitting of the 1D
subbands in the two orthogonal QPCs with a magnetic field
B[233] applied. The grayscale plots show the transconductance
∂G/∂VSG, with the dark regions corresponding to the risers
between plateaus in Fig. 1(c), hence marking the 1D subband
edges.

For both QPCs there is a clear linear Zeeman splitting of the
1D states, from which we extract the g factor. The measured
g∗

[233]
for QPC[011] is plotted in Fig. 2(c) along with earlier
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FIG. 1. (a) The center panel shows an optical image of the device
fabricated on (311)A GaAs. The left and right panels show electron
micrographs of the two orthogonal QPCs along the [233] and [011]
directions, respectively (red arrows indicate current direction). (b)
Schematic diagram showing the orientation of the magnetic fields
used in this experiment with respect to the two QPCs. (c) The
conductance G vs VSG for QPC[233] in a magnetic field applied along
[233], showing characteristic 1D conductance plateaus at B = 0,
which evolve into spin-resolved half plateaus at finite fields (traces
offset for clarity).

data from Ref. [17] taken at a higher 2D hole density. In
both cases, g∗

[233]
shows a monotonic decrease with increasing

subband index n. The equivalent g factor for QPC[233] is
shown in Fig. 2(d), and we again show earlier data taken at
a higher density [17]. In contrast to QPC[011], QPC[233]
shows a nonmonotonic evolution of g∗

[233]
as a function of

subband index, with a clear minimum at n = 5. This marked
difference in the g factor for orthogonal current directions is
due to a combination of the crystallographic anisotropy in the
(311) surface and the in-plane momentum dependence of g∗,
as shown later.

We now prove that the trend observed in Fig. 2(d) is due
to a sign change of the in-plane g factor g∗

[233]
, as the 1D

channel is tuned from the 2D to the 1D limit. Although the
observed nonmonotonic trend of g∗

[233]
is suggestive of a sign

reversal, these measurements alone cannot determine the sign
of g∗. In the following, we show that the sign of g∗ can be
explicitly extracted by simultaneously applying orthogonal
magnetic fields to exploit an unusual property of the (311)
hole g tensor: Uniquely to (311)-oriented GaAs 2D systems,
theory [22] and experiment [23] have shown that when a field
is applied along the in-plane [233] direction, in addition to
an in-plane polarization with g factor gxx , there exists an
anomalous out-of-plane polarization due to an off-diagonal

FIG. 2. Top panels show Zeeman splitting in an in-plane magnetic
field applied along the [233] direction for (a) QPC[011] and (b)
QPC[233]. Grayscale plots of the transconductance ∂G/∂VSG are
shown, where the dark regions represent the 1D subband edges.
Bottom panels show the effective g factors measured for (c) QPC[011]
and (d) QPC[233]. QPC[233] shows a nonmonotonic trend, indicative
of a sign change of g∗

[233]
at n = 5.

term gxz in the g tensor. The Hamiltonian describing the
Zeeman term for 2D heavy holes in (311) GaAs is then

H = μB

2
[(gxxBxσx) + (gxzBxσz) + (gzxBzσx)

+ (gyyByσy) + (gzzBzσz)], (1)

where x, y, and z refer to the [233], [011], and [311]
directions, respectively, with theoretical 2D values gxx =
gyy = −0.16, gxz = 0.65, gzz = 7.2 [22], and gzx � 0 [23].
With the magnetic field applied along [011], the Zeeman
splitting is �EZ = g∗

[011]
μBB[011], where g∗

[011]
is simply the

isotropic component of the g tensor gyy . However, when
the field is applied along [233], the Zeeman splitting is
�EZ = g∗

[233]
μBB[233], where |g∗

[233]
| =

√
gxx

2 + gxz
2.

If combined magnetic fields are applied both along the in-
plane [233] and out-of-plane [311] directions, the total Zeeman
splitting measured in experiment is

�E2
Z = (gxxμBB[233])

2 + (gxzμBB[233] + gzzμBB[311])
2.

(2)

The resulting Zeeman splitting is unusual in that it is sensitive
to the relative signs of the gxz and gzz terms: If both gxzB[233]
and gzzB[311] have the same sign, the total Zeeman splitting
is large. However, if one of the two terms is negative, the
total Zeeman splitting is suppressed. Therefore, applying both
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B[233] and B[311] simultaneously allows the relative signs of
gxz and gzz to be extracted.

To check if there is a sign change of g∗
[233]

as suggested
by Fig. 2(d), we again measure the Zeeman splitting of 1D
subbands as a function of B[233] but now apply an additional
fixed magnetic field along the out-of-plane [311] direction. The
magnitude of the total Zeeman splitting depends on the relative
signs of the gxzB[233] and gzzB[311] terms in Eq. (2), resulting
in an asymmetry in the Zeeman splitting around B[233] = 0.
Crucially, if the sign of gxz changes with respect to gzz, the
asymmetry in the Zeeman splitting as a function of B[233]
should reverse, providing direct proof of a sign reversal [24].

Turning to the experimental results, Fig. 3 shows the Zee-
man splitting of both QPC[011] and QPC[233] in combined
magnetic fields applied in and out of the plane. When a fixed
out-of-plane field B[311] = 0.2 T is introduced [Figs. 3(a) and
3(b)], the data become asymmetric around B[233] = 0. We note
that for 1D holes on the high symmetry (100) plane, the data
is always symmetric even in combined magnetic fields, due
to the absence of the off-diagonal gxz term (see Supplemental
Material [21], Sec. 2).

Starting with QPC[011] [Fig. 3(a)], the lower subbands do
not appear to show any asymmetry in the combined fields,
suggesting that the cancellation/addition of gzz and gxz is
minimal (this is due to the fact that gzz is small for low
subbands—see Supplemental Material [21], Sec. 3). However,

FIG. 3. Grayscale transconductance plot of the Zeeman splitting
for both QPCs as a function of B[233], for B[311] = 0.2 T [(a) and
(b)] and B[311] = 0 [(c) and (d)]. The dark regions represent the 1D
subband edges. The out-of-plane field B[311] causes an asymmetry
around B[233] = 0 due to the interplay between gzz and gxz. For
subband 6, QPC[233] shows a reversal of asymmetry due to the
sign change of gxz, as indicated by the red dashed lines.

for subbands 5 and 6, the asymmetry around B[233] = 0
becomes increasingly apparent as gzz becomes large. Subband
6 clearly shows a strong Zeeman splitting for B[233] > 0, and
a relatively weak splitting for B[233] < 0. This confirms the
predicted effect due to the competition between the gzz and
gxz terms in Eq. (2). In the case of QPC[233] [Fig. 3(b)], the
asymmetry of the Zeeman splitting around B[233] = 0 again
increases with subband index. However, the most significant
aspect of the data is that the asymmetry is reversed for subband
6, which can only occur if gxz has changed sign between n = 5
and n = 6 [25]. This is consistent with the data in Fig. 2(d),
where there is a clear minimum around n = 5.

In order to confirm that the asymmetry in the Zeeman
splitting is caused by the combination of magnetic fields, we
also show the Zeeman splitting as a function of B[233], with
B[311] = 0 [Figs. 3(c) and 3(d)]. In this case, the gzzB[311]

term in Eq. (2) becomes zero, so the Zeeman splitting is
simply �E2

Z = (g2
xx + g2

xz)B
2
[233]

= g∗2
[233]

B2
[233]

, resulting in a
symmetric evolution of the subbands either side of B[233] = 0.
The symmetry is clearly evident for both QPCs in Figs. 3(c)
and 3(d).

We now turn to the question of what is causing the sign
change of gxz for QPC[233], and show theoretically that the
data can be well explained by the dependence of the 2D g factor
on the in-plane momentum. The 1D subband index effectively
corresponds to quantized values of the in-plane momentum
〈p2

‖〉: In the 1D region, 〈p2
‖〉 is determined by the difference

between the Fermi energy EF in the 2D reservoirs and the
top of the saddle point potential created by the QPC gates
[18,26]. In the 1D limit at n = 1, the saddle point is high in
energy and 〈p2

‖〉 is small. As the subband index increases, the
saddle point decreases in energy so 〈p2

‖〉 also grows larger and
eventually saturates at 〈p2

‖〉 = p2
F . Hence, by tuning the 1D

subband index, we are effectively probing the effects of finite
momentum on g∗.

We now analyze how gxz should depend on the in-plane
momentum and directly relate this to the measurements
of gxz vs n for both QPCs. We begin with the Luttinger
Hamiltonian and take into account both the axial and cubic
terms corresponding to the crystallographic anisotropy of the
(311) surface. The 2D (z) confinement at the GaAs-AlGaAs
interface is taken as a triangular potential, and is assumed to
be far greater than the in-plane (x,y) confinement due to the
QPC, meaning we treat the hole system as quasi-2D in the (x,y)
plane with strong quantization in the z direction. The in-plane
momentum is then taken into account using perturbation theory
with the parameter 〈p2

‖〉/〈p2
z 〉, where 〈p2

‖〉 = (〈p2
x〉,〈p2

y〉). We

consider a magnetic field applied in the [233](x) direction, and
derive an expression for gxz as a function of 〈p2

x〉 and 〈p2
y〉 (see

Supplemental Material, Sec. 5, for the full derivation [21]):

gxz = 0.39 − C1

〈
p2

x

〉

〈
p2

z

〉 − C2

〈
p2

y

〉

〈
p2

z

〉 − C3

〈
p2

x

〉 − 〈
p2

y

〉

〈
p2

z

〉 . (3)

The constants C1, C2, and C3 depend on band-structure
parameters and the 2D confinement potential. We have also
included the Dresselhaus interaction which suppresses the g

factor by �40%. We note that the Rashba interaction makes a
negligible contribution to g∗ [21].
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FIG. 4. (a) Theoretically predicted dependence of gxz on the in-
plane momentum for QPC[011] (blue) and QPC[233] (red). gxz for
QPC[233] is strongly suppressed as a function of 〈p2

‖〉 and changes
sign. (b) Experimentally measured gxz vs subband index for both
QPCs. Solid squares correspond to data from this experiment, and
open squares are data from Ref. [17] at a higher 2D density.

The QPC confinement is taken into account as follows: For
QPC[233], the current is along the x direction, so 〈p2

x〉 = 0
since the spin splitting is measured at the subband edge,
and 〈p2

y〉 takes quantized values corresponding to the 1D

subbands. Conversely, for the orthogonal QPC[011], 〈p2
y〉 = 0

and 〈p2
x〉 takes quantized values. In Fig. 4(a), the theoretically

calculated gxz is plotted as a function of 〈p2
‖〉/〈p2

z 〉. The

blue trace shows QPC[011] with 〈p2
‖〉 = 〈p2

x〉, and the red

trace shows QPC[233] with 〈p2
‖〉 = 〈p2

y〉. Due to the differing
dependence of gxz on 〈p2

x〉 and 〈p2
y〉 in Eq. (3) [originating

from the crystallographic anisotropy of the (311) surface],
the two orthogonal QPCs show strikingly different behavior.
gxz for QPC[011] is positive and decreases slightly with
increasing 〈p2

‖〉/〈p2
z 〉 (and subband index), whereas gxz for

QPC[233] starts at a positive value but changes sign at
larger 〈p2

‖〉/〈p2
z 〉.

The experimentally measured gxz for both QPCs, obtained
from g∗

[233]
in Figs. 2(c) and 2(d) (gxz =

√
g2

[233]
− g2

xx =√
g2

[233]
− g2

[011]
—see Sec. 4 of the Supplemental Material

[21]), is plotted in Fig. 4(b). The data show good agreement
with the theory, with gxz for QPC[011] decreasing slightly
as the in-plane momentum increases. Meanwhile, gxz for
QPC[233] decreases strongly and changes sign around n = 5.
In the limit of the largest measurable subband—subband
7—we use the known 2D density and confinement poten-
tial to numerically estimate the quantity 〈p2

‖〉/〈p2
z 〉, giving

〈p2
‖〉/〈p2

z 〉 � 0.2. The sign change (at n = 5) should therefore
occur at 〈p2

‖〉/〈p2
z 〉 � 0.2, which is reasonably close to the

theoretically predicted value of 〈p2
‖〉/〈p2

z 〉 = 0.3. This small
discrepancy may be due to the fact that the theory does not take
into account the effects of 1D quantization, which may alter the
confinement parameters used to derive Eq. (3). Nevertheless,
the behavior we observe for gxz in both QPCs is qualitatively
consistent with that predicted by theory.

Finally, we note that although the form of gxz obtained
from the theory agrees well with experiment, a quantitative
comparison shows that the range of gxz measured experi-
mentally (−0.65 < gxz < 1.5) is larger than that predicted by
theory (−0.3 < gxz < 0.4). This enhancement of the g factor
in experiment may be attributed to many-body interactions (not
included in the theoretical calculation), previously observed in
both 1D electron and hole systems [27,28].

In conclusion, Zeeman splitting measurements of 1D
subbands were carried out for two orthogonal hole QPCs on
(311)A GaAs. Due to the low symmetry of the (311) surface,
the total Zeeman splitting in combined fields becomes sensitive
to the sign of different components of the g tensor. In this way,
we are able to prove that gxz changes sign when the 1D channel
is oriented along [233], consistent with a theoretical model of
g∗ versus in-plane momentum. Our experimental results shed
light on the complex spin physics of holes, and demonstrate
gate-controlled tuning, not only of the magnitude but also
the sign, of the g factor, which is desirable for spintronics
applications.
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