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Giant permanent dipole moment of two-dimensional excitons bound to a single stacking fault
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We investigate the magneto-optical properties of excitons bound to single stacking faults in high-purity GaAs.
We find that the two-dimensional stacking fault potential binds an exciton composed of an electron and a heavy
hole, and we confirm a vanishing in-plane hole g-factor, consistent with the atomic-scale symmetry of the system.
The unprecedented homogeneity of the stacking-fault potential leads to ultranarrow photoluminescence emission
lines (with a full width at half-maximum �80 μeV) and reveals a large magnetic nonreciprocity effect that
originates from the magneto-Stark effect for mobile excitons. These measurements unambiguously determine the
direction and magnitude of the giant electric dipole moment (�e × 10 nm) of the stacking-fault exciton, making
stacking faults a promising new platform to study interacting excitonic gases.
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I. INTRODUCTION

The stacking fault (SF), a planar, atomically thin defect,
is one of the most common extended defects in zinc-blende,
wurtzite, and diamond semiconductors. A fundamental under-
standing of the SF potential is important for determining how
the defect affects semiconductor device performance [1,2],
engineering heterostructures based on crystal phase [3–5],
and providing a new two-dimensional (2D) platform for
fundamental physics [6,7]. Here we report on excitons bound
to large-area, single SFs in high-purity GaAs, a unique
system in which SFs are easily isolated with far-field optical
techniques. The atomic smoothness of the potential and the
extreme perfection of the surrounding semiconductor result
in ultrahigh optical homogeneity (�80 μeV). This enables
optical resolution of the SF exciton fine structure and thus
direct measurement of the giant built-in dipole moment
(�e × 10 nm) via the magneto-Stark effect. These results
indicate that the extremely homogeneous SF potential may
be promising for studies of many-body excitonic physics,
including coherent phenomena [8–10], spin currents [11],
superfluidity [12], long-range order [13–17], and large optical
nonlinearities [18–20].

II. STACKING FAULT PHOTOLUMINESCENCE

Figure 1(a) shows a spectrally resolved confocal scan of SF
structures in a GaAs epilayer, excited with an above-band-gap
laser (1.53 eV, 1.5 K) [21]. The image is colored red, green, or
blue according to three characteristic emission bands shown
in Fig. 1(e). The narrowband photoluminescence (PL) at
1.493 and 1.496 eV originates from excitons, electron-hole
pairs, bound to the 2D SF potential [22,23]. The sample
consists of a 10 μm GaAs layer on 100 nm AlAs on a
5 nm/5 nm AlAs/GaAs (10×) superlattice grown directly on a
semi-insulating (100) GaAs substrate. Stacking fault structures
nucleate near the substrate-epilayer interface during epitaxial
growth [21,24,25].

The physical origin of the potential can be understood
from the atomic structure of the SF defect: the lattice-plane

ordering in the [111] direction of zinc-blende is modified by
subtracting a layer [intrinsic SF; see Fig. 1(c)] or adding
a layer (extrinsic SF). The intrinsic SF can be viewed as
a monolayer of wurtzite (AB AB stacking) surrounded by
zinc-blende (ABC ABC stacking) [3,26]. Due to the band
offset [27–29] and spontaneous polarization at the stacking
fault [30], electrons and/or holes are attracted to the SF plane.
While useful for physical motivation, this bulk phase change
model must be taken with caution when applied to atomically
thin SFs, which can deviate from simple theory [31]. Here,
however, we find that single SFs in bulk GaAs bind excitons,
confirming that the potential is attractive for at least one carrier.

In the confocal scan in Fig. 1(a), most of the SF defects
appear as single triangles, which we identify as a pair of nearby
SFs [32,33]. Because the binding energy of excitons to a pair
of SFs depends on the distance between the SFs [34], the PL
emission energy from excitons bound to these structures has a
high variability of 10 meV between structures. Strikingly, this
inhomogeneity disappears when four SFs grow in an inverted
pyramid structure consisting of four well-isolated {111} SF
planes [Fig. 1(b)], which we refer to as up, down, left, and
right [35]. The full width at half-maximum (FWHM) of the
SF PL line in our sample is (77 ± 19) μeV at zero magnetic
field [21], somewhat narrower than excitonic lines associated
with stacking faults in previous work [22,36]. In comparison,
the narrowest reported linewidth for a GaAs/AlGaAs quantum
well is 130 μeV [37], while PL linewidths from analogous
zinc-blende/wurtzite quantum disks in nanowires range from
0.6–10 meV [29,38–40]. This unprecedented homogeneity
allows us to resolve the SF–bound-exciton fine structure.

III. NATURE OF THE HOLE IN THE SF EXCITON

Experimentally, we determine that the SF exciton is
composed of an electron and a heavy hole using polarization-
resolved PL, consistent with the atomic-scale symmetry of the
system [21]. For linearly polarized light incident from above
(along the [001] axis), the largest overlap between the light
polarization and the in-SF-plane heavy-hole dipole occurs
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FIG. 1. (a) Confocal scan of SF structures. The image is formed by coloring emission in different wavelength bands as red, blue, or green, as
depicted in (e). Excitation at 1.53 eV, 100 μW, and 1.9 K excite and collect H polarization [see (b)]. (b) Diagram of SF pyramid. The up, down,
left, and right SFs are labeled, along with the H and V polarizations. (c) Comparison of perfect zinc-blende and stacking fault crystal structure.
(d) Detail of SF pyramid structure. Excitation at 1.53 eV, 100 μW, 1.7 K. (e) Low-power PL spectra at colored dots in (d). Polarizations: blue,
excite and collect H ; green and red, excite and collect V . Broadband luminescence is observed from the SF edges (red); 1.53 eV, 2 μW, and
1.7 K. (f) PL from down SF [blue dot in (d)]. Polarizations: dark blue, excite and collect H ; light blue, excite and collect V .

when exciting and collecting along the H direction for the
down SF [Fig. 1(d)], in agreement with our experimental data
[Fig. 1(f)]. On the other hand, the main dipole moment for
the light-hole exciton is along the SF normal, which would
give rise to a maximum signal at V polarization, contrary to
what is observed. Further, we also note that no hole Zeeman
splitting is observed for in-plane magnetic fields B up to 7 T
(Fig. 2). This observation is fully consistent with our symmetry
analysis, which finds that B-linear splitting for in-plane fields
is forbidden for heavy holes but allowed for light holes [21].
The substantial separation of the heavy- and light-hole states
prevents their magnetic-field-induced mixing, in line with
experiments on GaAs nanowires [21,41,42].

IV. NONRECIPROCAL PHOTOLUMINESCENCE

PL from SFs shows a remarkable nonreciprocity with
in-plane applied magnetic field: Figure 2(a) shows that the
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FIG. 2. (a) Spectra from up and down SFs as a function of in-
plane magnetic field. The spectra show a nonreciprocity with applied
magnetic field. Excite at 1.65 eV, 0.5 μW, 1.6 K, excite and collect
H . The inset shows the geometry of the stacking fault pyramid and
applied magnetic field. (b) Spectra from left and right SFs as a function
of partially out-of-plane magnetic field. The spectra are similar at
positive and negative fields. Excitation at 1.65 eV, 0.5 μW, 1.6 K,
excite and collect V.

PL detected in linear polarization from the up SF occurs at
a different energy depending on whether the magnetic field
is parallel (positive) or antiparallel (negative) to the [1̄10]
axis. Interestingly, the down SF demonstrates the opposite
behavior. Such an asymmetric behavior of the PL is surprising
because in general, time-reversal symmetry makes B and −B
equivalent. (Our sample is nonmagnetic, and we use linearly
polarized light to avoid dynamic polarization of nuclear spins.)
The observed nonreciprocal behavior of the PL spectrum with
respect to inversion B → −B is only possible if the PL arises
from moving excitons. In this case, time reversal changes the
direction of both the magnetic field and the exciton wave
vector K.

Based on the C3v point symmetry of the SF and time-
reversal invariance, the effective Hamiltonian for an exciton
moving in the presence of an in-SF-plane magnetic field B is

HKB = ge

2
μB(σxBx + σyBy) + βB2 + β ′[K × B]z, (1)

where ge is the electron g-factor, μB is the Bohr magneton,
σx,y are the electron spin Pauli matrices, β is a parameter
describing the excitonic diamagnetic shift, and β ′ is a constant
responsible for the nonreciprocal effect [21,43–48]. In Eq. (1)
we only retain first- and second-order terms in B and use
a frame of axes related to the SF plane: z ‖ [111] is the
SF normal, x || [112̄], and y || [1̄10]. Each symmetry-derived
term in Eq. (1) manifests itself in the energetic shift of the
SF PL lines with magnetic field (Fig. 2). The first term is the
electron Zeeman effect and gives rise to the doublets visible
at ±7 T, since an electron with a particular spin projection can
recombine with the corresponding hole. The second term is
the exciton diamagnetic shift, arising from the magnetic-field-
induced shrinking of the exciton wave function [49]. The last
term is the magneto-Stark effect, which, as we show below,
quantitatively explains the nonreciprocal PL spectra.

The experimental geometry, Fig. 1(b), is such that only
light emitted normal to the sample surface is collected. For
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FIG. 3. (a) Because of the conservation of in-plane momentum during exciton recombination, the angle of light emission depends on the
exciton wave vector. Collecting different angles probes different exciton momenta. The SF has a built-in potential that creates a zero-field dipole
moment for the SF exciton. In the exciton frame of reference, the in-plane magnetic field becomes an out-of-plane electric field, leading to the
magneto-Stark effect. (b) Spectra of up and down SFs as a function of θ and in-plane magnetic field By . (c) Light from the up SF originates
from excitons with larger Kx than light from the down SF (for θ > 0). (d) and (e) Spectra of up and down SF at positive and negative By

for θ = 0◦ and 43◦. At θ = 0◦, �Eup and �Edown have the same magnitude, while for θ = 43◦, the magnitude of �Eup is larger than that of
�Edown. (f) and (g) Splitting �Eup/down as a function of magnetic field. Data are obtained from Voigt fits to spectra similar to those shown in
(d) and (e). Solid lines are a fit to �E = aB for the first three data points. (h) The ratio of B = 0 slopes, Eq. (6), depends only on geometrical
constraints. The theory (solid line) has no adjustable parameters. Data for other angles in Ref. [21].

a high-quality 2D potential, in-plane exciton momentum is
transferred to the photon during recombination, as depicted in
Fig. 3(a). This conservation of momentum implies

Kx = ωn

c
sin θ ′′, (2)

where θ ′′ is the angle between the SF normal and the emitted
photon momentum inside the semiconductor [Fig. 3(a)], ω is
the photon frequency, n is the refractive index, and c is the
speed of light. Thus, the collected SF PL arises only from
excitons with a specific center-of-mass momentum. [Experi-
mentally, the NA = 0.7 objective lens collects luminescence
from a range of angles. In our system, light is collected from
exciton momenta within 7% of �Kx in Eq. (2).] The last term
in Eq. (1) provides, for a fixed Kx [Eq. (2)], an odd in By

contribution to the overall PL energy shift, giving rise to a
magnetic nonreciprocity effect. It is worth noting that the up
and down SFs are related by a mirror reflection in the (110)
plane, and such a reflection is accompanied by By → −By ,
resulting in the opposite behavior of up and down PL spectra
observed in Fig. 2(a).

V. MAGNETO-STARK EFFECT

The physical origin of the nonreciprocal PL is the magneto-
Stark effect, i.e., the interaction of a moving exciton’s electric
dipole moment with a magnetic field [50,51]. The effect can be
understood with a relativistic argument: motion with velocity
v = (�Kx/M)x̂ through a magnetic field B = By ŷ gives rise
to an electric field Eeff = �KxBy/(Mc)ẑ in the moving frame
of reference, where M is the exciton mass in translational

motion and c is the speed of light. Since the ẑ || [111] and
−ẑ directions are not equivalent for the SF, the SF-bound
exciton has a nonzero dipole moment p = edheẑ, where e = |e|
is the elementary charge and dhe is the average separation
between the hole and electron along the z axis. The Stark
effect Hs = −p · Eeff in the exciton’s reference frame thus
becomes the magneto-Stark effect:

HS = − e�

Mc
dheKxBy, (3)

in agreement with Eq. (1) with β ′ = −e�dhe/(Mc); see
Ref. [21,49] for a formal derivation.

Physically, the dipole moment of a SF bound exciton
is a consequence of symmetry breaking and spontaneous
polarization similar to that in zinc-blende/wurtzite heterostruc-
tures [23,52]. The hole in the exciton is presumably localized
in the SF plane while the electron is weakly bound via the
Coulomb interaction. The spontaneous polarization shifts the
electron cloud to one side of the SF, resulting in a giant
excitonic dipole moment.

Equations (1)–(3) predict that the asymmetric energy shift
of the exciton PL is linearly related to the in-plane wave vector
K. Since the angle of light collection determines the exciton
momentum [Eq. (2)], we test the applicability of the model
by recording spectra of the up and down SFs as a function
of the collection angle θ and magnetic field By [Fig. 3(b)].
The collection angle is related to the emission angle from
the up/down SF by sin θ = n sin θ ′ = ±n sin(θ ′′ − θSF), where
θSF is the angle the SF normal ẑ || [111] makes with [001]
[Fig. 3(c)].
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In this experiment, we modified the collection angle by
mounting the sample at different angles. Since the sample was
removed from the cryostat to change the angle, different SF
pyramids were used at different angles. This does not introduce
artifacts because of the extreme similarity of different SFs,
which have a standard deviation of line-center energies of only
57 μeV, less than the linewidth. Spectra were acquired with By

ranging from −6.5 to 6.5 T on the up and down SFs. We fit the
spectra to one or a sum of two Voigt function(s) depending on
whether the electron Zeeman splitting is resolved. The singlet
or doublet line center is denoted Eup/down(By). The part of the
exciton energy odd with magnetic field is found by computing

�Eup/down(By) = Eup/down(By) − Eup/down(−By). (4)

It follows from Eq. (3) that the asymmetric shift is

�Eup/down(By) = ∓2n�ω
edhe

Mc
sin(θSF ± θ ′)By. (5)

Thus the proportionality constant of �Eup/down versus By

provides a measurement of the SF exciton’s built-in dipole
moment. The experimental values and first-order theory for
�E are shown in Figs. 3(f) and 3(g). Further, the ratio

r(θ ) = |�Eup| − |�Edown|
1
2 (|�Eup| + |�Edown|)

(6)

depends (to first order in By) only on the experimental
geometry and the index of refraction: r(θ ) vanishes for
collection angle θ = 0 and increases as a function of θ

[Fig. 3(h)]. We obtain good agreement between r(θ ) calculated
experimentally from the B = 0 slope of �E without any fit
parameters [Fig. 3(h)].

Further, by fitting �Eup/down(By) with a By-linear func-
tion, we can estimate the dipole moment of the exciton
p = edhe = e × (10+20

−1 ) nm. The main uncertainties result
from the accuracy of the By-linear fit and the value of
the in-(111)-plane heavy-hole mass, which depends on the
details of the SF potential [21,53,54]. The exciton mass can
be roughly estimated as 0.17mo, the sum of the bulk-GaAs
in-(111)-plane heavy-hole mass and the isotropic electron
mass, where mo is the free-electron mass. In addition, we
note that the magneto-Stark induced splitting saturates at high
fields [Figs. 3(f) and 3(g)], possibly due to a decreased exciton
dipole moment from the magnetic-field-induced shrinking of
the exciton wave function. Future work will investigate exciton
confinement potentials consistent with the observed dipole

moment, diamagnetic shift, and saturation of the magneto-
Stark effect. A microscopic understanding of the confinement
potential may enable predictions for the binding potential and
excitonic dipole moment for SFs in other semiconductors.

VI. CONCLUSION

We have shown that SFs in GaAs are an almost perfect
2D potential that binds heavy-hole excitons. These excitons
freely propagate in the SF plane, a conclusion confirmed via
the magneto-Stark effect. Further, an asymmetry of the SF
potential induces a giant dipole moment of the SF-bound
exciton. Such excitons could be useful for studying the
many-body physics of interacting dipoles. In conventional
excitonic systems, typical electron-hole separations are on the
order of several nm [6,55], whereas the SF-bound exciton has a
gigantic electron-hole separation of 10 nm and the possibility
to modify this value with an applied field. In addition, the
ultranarrow linewidths in the SF system will allow the small
energy shifts present in many-body interactions to be observed.
As a rough estimate, the interaction energy of two such dipoles
will exceed the SF FWHM of 77 μeV when the exciton
density is greater than 230 μm−2. Using a wave-function
size of approximately 10 nm, the critical density for exciton
overlap in the 2D potential is 10 000 μm−2. Therefore, the
SF-bound exciton system could show sizable dipole-dipole
interactions and may demonstrate coherent phenomena at
reasonable exciton densities [24,25,53].
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Rudolph, E. Uccelli, F. Peiró, J. R. Morante, D. Schuh, E. Reiger,
E. Kaxiras, J. Arbiol, and A. F. i Morral, Direct correlation of
crystal structure and optical properties in wurtzite/zinc-blende
GaAs nanowire heterostructures, Phys. Rev. B 83, 045303
(2011).
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