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Five-dimensional generalization of the topological Weyl semimetal
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We generalize the concept of three-dimensional topological Weyl semimetals to a class of five dimensional (5D)
gapless solids, where Weyl points are generalized to Weyl surfaces which are two-dimensional closed manifolds
in the momentum space. Each Weyl surface is characterized by a U (1) second Chern number C2 defined on a
four-dimensional manifold enclosing the Weyl surface, which is equal to its topological linking number with
other Weyl surfaces in 5D. In analogy to the Weyl semimetals, the surface states of the 5D metal take the form of
topologically protected Weyl fermion arcs, which connect the projections of the bulk Weyl surfaces. The further
generalization of topological metals in 2n + 1 dimensions carrying the nth Chern number Cn is also discussed.
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The study of topological states of matter has generated
enormous interest in condensed matter physics in the past
decade. Prominent examples of topological states include
quantum Hall states, topological insulators, and topological
superconductors, which all have a bulk gap and possess
protected gapless surface states [1–4]. Recently, the three-
dimensional (3D) Weyl semimetal has been studied exten-
sively, which is a gapless topological state that realizes
Weyl fermions and a chiral anomaly in a condensed matter
system [5–17]. The conduction and valence bands of a Weyl
semimetal are connected via a number of Weyl points, each
of which carries a topological monopole charge given by the
surrounding first Chern number C1 in the momentum space
[18]. Consequentially, the surface states of a Weyl semimetal
take the form of topological Fermi arcs, which connect the
projections of oppositely charged Weyl points [7]. The novel
features of Weyl semimetals have motivated the study of other
gapless topological phases, such as the nodal superconductor
[19,20], and their classifications in general [21–27].

As an important aspect of study, the generalization of
topological states to higher dimensions often reveals profound
understandings of topological physics [28–31]. In this Rapid
Communication, we present a generalization of the Weyl
semimetal to five spatial dimensions (5D), which goes beyond
the current tenfold-way classification scheme for gapless
topological states [21–23]. The Weyl points are generalized
to two-dimensional (2D) closed Weyl surfaces, while the
topological charge is generalized to the second Chern number
C2 of the Berry connection surrounding each Weyl surface in
the momentum space. We prove that C2 of a Weyl surface
is exactly its topological linking number with other Weyl
surfaces in the 5D momentum space. Similar to the 3D Weyl
semimetal, this 5D metal hosts topologically protected arcs of
Weyl fermions (Weyl fermion arcs) on its four-dimensional
(4D) boundaries, and the arcs connect between the projections
of Weyl surfaces on the boundaries. In cold atom systems and
photonic crystals, synthetic spatial dimensions can be created
to realize topological phases in higher dimensions [32–36],
which makes the realization of such a 5D topological metal
experimentally possible. At last, we briefly discuss the further
generalization of the Weyl semimetal to generic 2n + 1 spatial
dimensions (n ∈ Z+), where the corresponding topological
charge becomes the nth Chern number Cn. The nth Chern

number Cn reveals a nontrivial topological relationship among
n closed manifolds in 2n + 1 dimensions. These metallic states
imply the existence of a more complete classification scheme
for gapless topological states than the tenfold way.

Theoretical formulation. Here, we shall consider crystals
that have no symmetries other than the translational symmetry,
so that the electron bands are generically nondegenerate in the
momentum space except for a few band crossing submanifolds.
In the local vicinity of such a band crossing, the Hamiltonian
involves only the two crossing bands and therefore must take
the following form,

Hcr(k) = ξ0(k) + ξ1(k)σ1 + ξ2(k)σ2 + ξ3(k)σ3, (1)

where k is the momentum, and σi are the Pauli matrices for the
orbitals of the two bands. The band crossing submanifold is
then given by ξ1(k) = ξ2(k) = ξ3(k) = 0. In an n-dimensional
crystal, k is an n-component vector, so the band crossing
submanifold is n − 3 dimensional. Band crossings of this kind
are classified as class A in the Altland-Zirnbauer tenfold way
[21–23,37,38]. For n = 3, this gives exactly the Weyl points
in a Weyl semimetal.

The above classification, however, does not capture the
global topologies of the band crossing submanifolds for n > 3
dimensions. On the other hand, in 3D Weyl semimetals, the
global topology of a Weyl point is fully characterized by
the first Chern number C1 of the Berry connection of the
conduction (valence) band on a 2D surface enclosing the Weyl
point. Therefore, it is natural to expect the higher Chern
numbers to describe certain global topologies of the band
crossings in higher dimensions. Below, we shall show the
minimal generalization is the second Chern number C2 in
a class of 5D metals, and show that it is exactly given by the
linking number of Weyl surfaces.

We begin by considering the 1-form U (1) Berry connection
of a particular band |uk〉 defined as follows,

A(k) = Aμ(k)dkμ = i〈uk|∂kμ
|uk〉dkμ, (2)

where μ runs over all the spatial dimensions, and repeated
indices are summed over. The 2-form Berry curvature is given
by the exterior derivative F = dA = Fμνdkμ ∧ dkν , where
Fμν = ∂[μAν] = (∂μAν − ∂νAμ)/2 with ∂μ short for ∂kμ

and
[ ] representing antisymmetrization. Generically, F can be
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divided into two parts, F = F (�) + F (t), where F (�) and F (t)

are the longitudinal and transverse parts satisfying d∗F (�) = 0
and dF (t) = 0, respectively. Here, d∗ = ∗d∗ is the adjoint of
the exterior derivative d, and ∗ is the Hodge dual operator.
If we regard Aμ as an electromagnetic (EM) vector potential,
F (�) and F (t) will be produced by monopoles and electric
currents, respectively. In particular, the transverse part F (t)

has no contribution to the Chern numbers defined on closed
manifolds [39], so we shall simply ignore it and assume F =
F (�) hereafter. In 3D, monopoles are pointlike particles and are
coupled to the 1-form magnetic field f , which is the Hodge
dual of the Berry curvature,

f = ∗F = fμdkμ, fμ = εμνλF
νλ, (3)

where εμνλ is the Levi-Civita symbol. The condition d∗F = 0
translates into df = 0, i.e., f is curl free, which enables us to
define a 0-form magnetic potential φ such that f = dφ. For a
monopole charge at k0, φ satisfies the Poisson equation


φ = 2πρM = ±2πδ3(k − k0), (4)

where 
 = d∗d + dd∗ is the Laplace operator, ρM is the
monopole density, and the 2π factor originates from the Dirac
quantization. On a sphere S2 enclosing the monopole, the first
Chern number is

C1 = 1

2π

∮
S2

F = 1

2π

∮
S2

∗f = 1

2π

∮
S2

∗dφ

= 1

2π

∫
D3

d(∗dφ) = 1

2π

∫
D3

∗
φ = ±1, (5)

where Stokes’ theorem is used and D3 is the bulk region
enclosed by S2. This is nothing but Gauss’s law for the
magnetic field, and the monopoles are exactly the Weyl points
that are associated with band |uk〉.

The above picture of EM duality can be immediately
generalized to 5D crystals, for which the Hodge dual of the
Berry curvature F is a 3-form:

f = ∗F = fμνλdkμ ∧ dkν ∧ dkλ, fμνλ = 1

3!
εμνλρσF ρσ .

In this case, monopoles coupled to the dual field f are
2D closed manifolds, or 2-branes in the language of string
theory. Physically, these monopoles are just the band crossing
submanifolds in the 5D crystal that are associated with band
|uk〉. According to Eq. (1), a band crossing submanifold still
has a Weyl dispersion in its transverse dimensions, so we
shall name it as the Weyl surface in the following. Again,
the condition d∗F = 0 enables us to rewrite the dual field
as f = dB, or fμνλ = ∂[μBνλ], where B is a 2-form gauge
field. Under the Coulomb gauge d∗B = ∂μBμνdkν = 0, the
generalized Poisson equation can be written as


Bμν = ∂λ∂
λBμν = 2πjμν, (6)

where jμν is the 2-form monopole density of the Weyl surfaces.
For a Weyl surface M parametrized by 2D coordinates (�1,�2)
as kM(�1,�2), one can show the monopole density is

jμν(k) = 1

2

∮
M

d�1d�2 δ5[k − kM(�1,�2)]

(
∂k

μ

M
∂�1

∂kν
M

∂�2
− ∂kν

M
∂�1

∂k
μ

M
∂�2

)
= 1

2

∮
M

δ5(k − kM)dk
μ

M ∧ dkν
M. (7)

A natural solution to the Poisson equation (6) is

Bμν(k) =
∫

d5k′

4π

jμν(k′)
|k − k′|3 = 1

8π

∮
M

dk
μ

M ∧ dkν
M

|k − kM|3 , (8)

and one can easily verify it satisfies the Coulomb gauge.
Now we can investigate the global topology of the Weyl

surfaces described by the second Chern number. Unlike
a Weyl point in 3D, a Weyl surface alone in 5D can
contract itself continuously and vanish identically, and is
thus globally trivial. Instead, when there are two 2D Weyl
surfaces, they can be nontrivially linked in 5D, where the
linking number L(5D) is a global topological invariant [40].
The simplest example is the Hopf link of two 2D spheres
defined by S2

a : {k2
1 + k2

2 + k2
3 = κ2,k4 = k5 = 0} and S2

b :
{(k3 − κ)2 + k2

4 + k2
5 = κ2,k2 = k3 = 0}, respectively, where

the linking number is L(5D) = 1. It is therefore natural to expect
the second Chern number C2 to give the linking number of the
Weyl surfaces.

Consider two Weyl surfaces M1 and M2 associated with
band |uk〉 in the 5D momentum space. The gauge field B can
then be written as B = B(1) + B(2), where B(1) and B(2) are
the solutions to the two Weyl surfaces as given in Eq. (8),
respectively. We can draw a 4D closed manifold ∂V being the
boundary of a 5D region V that encloses M1 but not M2. This

can always be done by choosing V in the vicinity of M1 and
thin enough in the transverse dimensions of the M1 surface.
This is analogous to the 3D case, where, when given two loops
L1 and L2 linked together, one can always draw a thin torus
∂V around L1 that encloses L1 but not L2. We then define the
second Chern number C2 of the Weyl surface M1 as

C2(M1) = 1

8π2

∮
∂V

F ∧ F. (9)

By noting F = ∗f = ∗dB and using the Stokes’ theorem, we
can rewrite C2(M1) as

C2(M1) =
∮

∂V

∗dB ∧ ∗dB

8π2
=

∫
V

d(∗dB ∧ ∗dB)

8π2

=
∫
V

d∗dB ∧ dB

4π2
=

∫
V


B ∧ dB

4π2

=
∫
V


B(1) ∧ dB(2)

4π2
= L

(5D)
M1

, (10)

where

L
(5D)
M1

= 1

(2!)2

3

8π2

∮
M1

dk
μ

M1
∧ dkν

M1

∮
M2

dkλ
M2

∧ dk
ρ

M2

× εμνλρσ

(
kσ
M1

− kσ
M2

)
∣∣kM1 − kM2

∣∣5
(11)
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is exactly the linking number between M1 and M2 as
we expected. In deriving Eq. (10), we have used the facts

B(1) ∧ dB(1) = 0 and 
B(2) = 0 inside the region V . The
expression in Eq. (11) is simply a 5D generalization of the
Gauss linking number of loops in 3D given by Polyakov
[41–43]. The geometrical meaning of Eq. (11) is the total
solid angle wrapped by (kM1 − kM2 ) when kM1 and kM2 runs
over M1 and M2, respectively, divided by the total solid angle
of a 4D sphere, 8π2/3. Note the sign of L

(5D)
M1

depends on the
orientation of the momentum space.

When there are N > 2 Weyl surfaces Mj (1 � j � N )
associated with the same band |uk〉, it is straightforward to
prove that C2(Mj ) = L

(5D)
Mj

is the total linking number of
Mj with the other Weyl surfaces. Since the linking number
in Eq. (11) reverses sign under the interchange of M1 and
M2, one would always have

∑N
j=1 C2(Mj ) = 0. In analogy

to the 3D Weyl semimetal where the Weyl-point first Chern
number C1 leads to surface Fermi arcs, the second Chern
number C2(Mj ) also produces Weyl fermion arcs on the 4D
boundary of the 5D metal, as we shall show in the explicit
model constructed below.

An explicit model. To verify the theory and the prediction
we derived above, it is instructive to construct a lattice model
of the 5D topological metal. A simple example is a four-band
model Hamiltonian as given below,

H (k) =
5∑

i=1

ζi(k)�i + ia
[�4,�5]

2
, (12)

where �i (1 � i � 5) are the five 4 × 4 Gamma matrices
satisfying the anticommutation relation {�i,�j } = 2δij , the
functions ζi(k) are defined as ζ1(k) = sin k1, ζ2(k) = sin k2,
ζ3(k) = sin k3 + w(3 − cos k1 − cos k2 − cos k4), ζ4(k) =
sin k4 + t(1 − cos k5), ζ5(k) = sin k5, and a is a number
satisfying 0 < a < 1. Hereafter we shall take the Gamma
matrix representation �1,2,3,4,5 = {σ3τ1,σ3τ2,σ3τ3,σ1,σ2},
where σ1,2,3 and τ1,2,3 are both Pauli matrices. The parameters
in the model are constrained by 2t > 1 and 2w > a + 1. The
dispersions of the four bands of H (k) can be easily derived to
be

εi(k) = νi

√
[η(k) + λia]2 + ζ4(k)2 + ζ5(k)2, (13)

where εi(k) (i = 1,2,3,4) stands for the ith lowest band,
η(k) =

√
ζ1(k)2 + ζ2(k)2 + ζ3(k)2, while νi and λi are signs

defined as νi = (−, − , + ,+) and λi = (+, − , − ,+). We
shall focus on the third band ε3(k) to see whether Eq. (10)
holds.

From the energy dispersion in Eq. (13), it is straightforward
to show that band ε3(k) is associated with three Weyl surfaces
in the momentum space: The first two Weyl surfaces M1,2 are
between bands ε2(k) and ε3(k), which are given by η(k) − a =
ζ4(k) = ζ5(k) = 0. Topologically, they are both 2D spheres in
the subspace k4 = k5 = 0 of the Brillouin zone, as shown in
Fig. 1(a). The third Weyl surface M3 is between bands ε3(k)
and ε4(k), and is described by ζ1(k) = ζ2(k) = ζ3(k) = 0. As
is plotted in Fig. 1(b), M3 is a 2D torus in the subspace k1 =
k2 = 0. Both of the two spheres M1 and M2 are topologically
linked with the torus M3. One way to see this is to plot M1,2,3

k3

k1

k2

0

-

2

k4=k5=0

0 -0 -k3 k4

0

1
2

-1
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E
(k

)

top boundary arc

bottom boundary arc

-

-
1

k3

k4

k5

0
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k1=k2=0

-
-

3
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k5
k1

1

2

3

(a) (b)

(c) (d)

2

Weyl fermion arc

FIG. 1. (a) Weyl surfaces M1 and M2 plotted in the subspace
k4 = k5 = 0. (b) Weyl surface M3 plotted in the subspace k1 = k2 =
0. (c) The Weyl surfaces can be seen linked in the subspace k2 = k4 =
0. A Weyl fermion arc occurs on the boundary and crosses all the
possible ∂V2. (d) Energy spectrum E(k) in the subspace k1 = k2 = 0
calculated with the open boundary condition in the k5 direction, where
there are two arcs from the top and bottom boundaries, respectively.

in the k2 = k4 = 0 slice of the momentum space, where they
appear as linked loops, as shown in Fig. 1(c).

Now we can calculate the second Chern numbers of the
Weyl surfaces using the Berry connection of band ε3(k). The
wave function of band ε3(k) can be written as

|u3,k〉 =
(

cos
α

2
cos

θ

2
, cos

α

2
sin

θ

2
eiϕ,

sin
α

2
cos

θ

2
eiψ , sin

α

2
sin

θ

2
eiψ+iϕ

)T

, (14)

where the angles θ , ϕ, α, and β are defined by cos θ =
ζ3(k)/η(k), eiϕ sin θ = [ζ1(k) + iζ2(k)]/η(k), cos α =
[η(k) − a]/ε3(k), and eiψ sin α = [ζ4(k) + iζ5(k)]/ε3(k).
Therefore, the 1-form Berry connection of band ε3(k) takes
the form

A = i〈u3,k|d|u3,k〉 = cos θ − 1

2
dϕ + cos α − 1

2
dψ, (15)

from which we find F ∧ F = (1/2) sin θ sin α dθ ∧ dϕ ∧
dα ∧ dψ . The next step is to construct a 4D manifold that
encloses the Weyl surface we are interested in. Since ε3(k) � 0
and reaches zero only on M1 and M2, the Fermi surface at
ε3(k) = εF with εF positive and sufficiently small (0 < εF <

1 − a) naturally consists of two 4D manifolds ∂V1 and ∂V2

that enclose M1 and M2, respectively. Both ∂V1 and ∂V2

have a topology S2 × S2, where S2 stands for a 2D sphere,
and the angles θ,ϕ and α,ψ wind exactly once around the
former and latter S2 in the direct product, respectively. While
the winding orientations of α,ψ on ∂V1 and ∂V2 are the same,
the winding orientations of θ,ϕ on them are opposite. As a
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result, the second Chern numbers of M1 and M2 are

C2(M1,2) = 1

8π2

∮
∂V1,2

F ∧ F

= ±
∫ π

0
dθ

∫ 2π

0
dϕ

∫ π

0
dα

∫ 2π

0
dψ

sin θ sin α

16π2

= ±1, (16)

respectively. Similarly, one can show the second Chern number
of the third Weyl surface M3 is zero. This is exactly what we
expect from Eq. (10) and the topological linking numbers of
the Weyl surfaces.

The second Chern number of the Weyl surfaces will lead
to a Weyl fermion arc on the boundary of the 5D metal.
Heuristically, we can think of the 4D manifold ∂V2 surrounding
M2 as a 4D gapped system with the second Chern number
C2 = −1. Such a 4D system is known to exhibit the 4D
quantum Hall effect and host surface states in the form of
a (3+1)D Weyl fermion [28,29]. Furthermore, ∂V2 can be
deformed freely as long as it does not touch any Weyl surfaces.
Therefore, for instance, if we take an open boundary condition
in the k5 direction, we will obtain a 1D arc of (3+1)D Weyl
fermion on the boundary that crosses any possible ∂V2, as
illustrated in the k2 = k4 = 0 momentum space slice shown

in Fig. 1(c). The projection of M3 on the boundary is then
connected by the arc.

In general, such a Weyl fermion arc can be verified easily
by numerical calculations, but is hard to visualize as a high-
dimensional object. Here in our model, however, a symme-
try (�1�2)†H (k1,k2,k3,k4,k5)�1�2 = H (−k1, − k2,k3,k4,k5)
enables us to see the arc in a lower-dimensional subspace.
This symmetry ensures the energy spectrum to be symmetric
under the partial inversion (k1,k2) → (−k1, − k2), so the
only Weyl fermion arc must be lying in the k1 = k2 = 0
subspace. Figure 1(d) shows the energy bands calculated
with an open boundary condition in the k5 direction and
k1 = k2 = 0, and one can find two arcs coming from the
top and bottom 4D boundaries, respectively. Due to another
symmetry �5†H (k1,k2,k3,k4,k5)�5 = −H (k1,k2,k3,k4,−k5),
the two arcs on the top and bottom boundaries have opposite
energies, which are related to each other by k5 → −k5.

Higher-dimensional generalizations. This scheme of gen-
eralizing the Weyl semimetal can be continued to arbitrary
2n + 1 dimensional solids (n ∈ Z+), where the band crossing
submanifolds Mj are 2n − 2 dimensional. Similarly, we can
define the nth Chern number Cn of a band crossing M1 on a
2n-dimensional manifold ∂V that encloses M1. When there
are n band crossings Mj (1 � j � n), Cn can be rewritten
as

Cn(M1) =
∮

∂V

Fn

n!(2π )n
=

∮
M1

n∏
r=2

∧
[

dk
μr

1
M1

∧ dk
μr

2
M1

2!(2n − 2)!�2n

∮
Mr

εμr
1···μr

n

(
k

μr
3

M1
− k

μr
3

Mr

)
dk

μr
4

Mr
∧ · · · ∧ dk

μr
2n+1

Mr∣∣kM1 − kMr

∣∣2n+1

]
, (17)

where �2n is the area of the 2n-dimensional unit sphere. It
characterizes a certain topology between the n band crossings,
which is, however, not yet fully understood at this moment.
Such a topological number may play a role in the understand-
ing of high-dimensional knot theory, which may have applica-
tions in string theory and other high-dimensional theories.

Discussions. The above 5D generalization of Weyl
semimetals based on the second Chern number C2 can be
viewed as a finer classification in 5D for gapless phases
of class A that have no symmetries. This indicates that
the previous classification scheme of noninteracting gapless
phases based on the Altland-Zirnbauer tenfold way [21–23]
is not yet complete in high dimensions. Our work sheds light
on a more complete classification which could be carried out
in the future. Besides, the recent development of synthetic

dimensions makes it possible to implement additional spatial
dimensions with certain internal degrees of freedoms in cold
atom systems or photonic crystals [32–36]. This could possibly
lead to the realization of such a 5D topological metal in
experiments. Finally, the topological meaning of the nth Chern
number Cn in 2n + 1 spatial dimensions is yet to be made clear.
With the band crossing manifolds resembling the D-branes
in superstring theory, the high-dimensional knot structure
indicated by Cn, together with the high-dimensional Fermi
arcs on the boundaries, may have potential reinterpretations
and applications in string theories or high-energy theories with
extra dimensions [21,44,45].
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G. Juzeliūnas, and M. Lewenstein, Phys. Rev. Lett. 112, 043001
(2014).

[33] M. Mancini, G. Pagano, G. Cappellini, L. Livi, M. Rider, J.
Catani, C. Sias, P. Zoller, M. Inguscio, M. Dalmonte et al.,
Science 349, 1510 (2015).

[34] B. K. Stuhl, H.-I. Lu, L. M. Aycock, D. Genkina, and I. B.
Spielman, Science 349, 1514 (2015).

[35] H. M. Price, O. Zilberberg, T. Ozawa, I. Carusotto, and
N. Goldman, Phys. Rev. Lett. 115, 195303 (2015).

[36] T. Ozawa, H. M. Price, N. Goldman, O. Zilberberg, and
I. Carusotto, Phys. Rev. A 93, 043827 (2016).

[37] M. R. Zirnbauer, J. Math. Phys. 37, 4986 (1996).
[38] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 (1997).
[39] Calculation of the (nth) Chern number only involves integrations

of F (t) on closed manifolds, which are always zero since dF (t) =
0 in the entire momentum space.

[40] Two closed manifolds of dimensions d1 and d2, respectively, can
be nontrivially linked in a d1 + d2 + 1 dimensional space.

[41] F. Wilczek and A. Zee, Phys. Rev. Lett. 51, 2250 (1983).
[42] A. M. Polyakov, Mod. Phys. Lett. A 03, 325 (1988).
[43] E. Witten, Commun. Math. Phys. 121, 351 (1989).
[44] S. Ishikawa, Y. Iwama, T. Miyazaki, and M. Yamanobe, Int. J.

Mod. Phys. A 10, 4671 (1995).
[45] A. Strominger, Phys. Lett. B 383, 44 (1996).

041105-5

http://dx.doi.org/10.1126/science.aaa9297
http://dx.doi.org/10.1126/science.aaa9297
http://dx.doi.org/10.1126/science.aaa9297
http://dx.doi.org/10.1126/science.aaa9297
http://dx.doi.org/10.1103/PhysRevB.86.115133
http://dx.doi.org/10.1103/PhysRevB.86.115133
http://dx.doi.org/10.1103/PhysRevB.86.115133
http://dx.doi.org/10.1103/PhysRevB.86.115133
http://dx.doi.org/10.1103/PhysRevB.88.104412
http://dx.doi.org/10.1103/PhysRevB.88.104412
http://dx.doi.org/10.1103/PhysRevB.88.104412
http://dx.doi.org/10.1103/PhysRevB.88.104412
http://dx.doi.org/10.1103/PhysRevB.87.235306
http://dx.doi.org/10.1103/PhysRevB.87.235306
http://dx.doi.org/10.1103/PhysRevB.87.235306
http://dx.doi.org/10.1103/PhysRevB.87.235306
http://dx.doi.org/10.1103/PhysRevB.90.155316
http://dx.doi.org/10.1103/PhysRevB.90.155316
http://dx.doi.org/10.1103/PhysRevB.90.155316
http://dx.doi.org/10.1103/PhysRevB.90.155316
http://dx.doi.org/10.1016/0550-3213(81)90361-8
http://dx.doi.org/10.1016/0550-3213(81)90361-8
http://dx.doi.org/10.1016/0550-3213(81)90361-8
http://dx.doi.org/10.1016/0550-3213(81)90361-8
http://dx.doi.org/10.1103/PhysRevB.85.024522
http://dx.doi.org/10.1103/PhysRevB.85.024522
http://dx.doi.org/10.1103/PhysRevB.85.024522
http://dx.doi.org/10.1103/PhysRevB.85.024522
http://dx.doi.org/10.1103/PhysRevB.90.045130
http://dx.doi.org/10.1103/PhysRevB.90.045130
http://dx.doi.org/10.1103/PhysRevB.90.045130
http://dx.doi.org/10.1103/PhysRevB.90.045130
http://dx.doi.org/10.1103/PhysRevLett.95.016405
http://dx.doi.org/10.1103/PhysRevLett.95.016405
http://dx.doi.org/10.1103/PhysRevLett.95.016405
http://dx.doi.org/10.1103/PhysRevLett.95.016405
http://dx.doi.org/10.1103/PhysRevLett.110.240404
http://dx.doi.org/10.1103/PhysRevLett.110.240404
http://dx.doi.org/10.1103/PhysRevLett.110.240404
http://dx.doi.org/10.1103/PhysRevLett.110.240404
http://dx.doi.org/10.1088/0953-8984/27/24/243201
http://dx.doi.org/10.1088/0953-8984/27/24/243201
http://dx.doi.org/10.1088/0953-8984/27/24/243201
http://dx.doi.org/10.1088/0953-8984/27/24/243201
http://dx.doi.org/10.1088/1367-2630/15/6/065001
http://dx.doi.org/10.1088/1367-2630/15/6/065001
http://dx.doi.org/10.1088/1367-2630/15/6/065001
http://dx.doi.org/10.1088/1367-2630/15/6/065001
http://dx.doi.org/10.1038/ncomms5898
http://dx.doi.org/10.1038/ncomms5898
http://dx.doi.org/10.1038/ncomms5898
http://dx.doi.org/10.1038/ncomms5898
http://dx.doi.org/10.1146/annurev-conmatphys-031113-133912
http://dx.doi.org/10.1146/annurev-conmatphys-031113-133912
http://dx.doi.org/10.1146/annurev-conmatphys-031113-133912
http://dx.doi.org/10.1146/annurev-conmatphys-031113-133912
http://dx.doi.org/10.1103/PhysRevB.90.205136
http://dx.doi.org/10.1103/PhysRevB.90.205136
http://dx.doi.org/10.1103/PhysRevB.90.205136
http://dx.doi.org/10.1103/PhysRevB.90.205136
http://dx.doi.org/10.1126/science.294.5543.823
http://dx.doi.org/10.1126/science.294.5543.823
http://dx.doi.org/10.1126/science.294.5543.823
http://dx.doi.org/10.1126/science.294.5543.823
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1103/PhysRevB.78.195424
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1088/1367-2630/12/6/065010
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1103/PhysRevLett.112.043001
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8736
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1126/science.aaa8515
http://dx.doi.org/10.1103/PhysRevLett.115.195303
http://dx.doi.org/10.1103/PhysRevLett.115.195303
http://dx.doi.org/10.1103/PhysRevLett.115.195303
http://dx.doi.org/10.1103/PhysRevLett.115.195303
http://dx.doi.org/10.1103/PhysRevA.93.043827
http://dx.doi.org/10.1103/PhysRevA.93.043827
http://dx.doi.org/10.1103/PhysRevA.93.043827
http://dx.doi.org/10.1103/PhysRevA.93.043827
http://dx.doi.org/10.1063/1.531675
http://dx.doi.org/10.1063/1.531675
http://dx.doi.org/10.1063/1.531675
http://dx.doi.org/10.1063/1.531675
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevB.55.1142
http://dx.doi.org/10.1103/PhysRevLett.51.2250
http://dx.doi.org/10.1103/PhysRevLett.51.2250
http://dx.doi.org/10.1103/PhysRevLett.51.2250
http://dx.doi.org/10.1103/PhysRevLett.51.2250
http://dx.doi.org/10.1142/S0217732388000398
http://dx.doi.org/10.1142/S0217732388000398
http://dx.doi.org/10.1142/S0217732388000398
http://dx.doi.org/10.1142/S0217732388000398
http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/10.1007/BF01217730
http://dx.doi.org/10.1142/S0217751X95002163
http://dx.doi.org/10.1142/S0217751X95002163
http://dx.doi.org/10.1142/S0217751X95002163
http://dx.doi.org/10.1142/S0217751X95002163
http://dx.doi.org/10.1016/0370-2693(96)00712-5
http://dx.doi.org/10.1016/0370-2693(96)00712-5
http://dx.doi.org/10.1016/0370-2693(96)00712-5
http://dx.doi.org/10.1016/0370-2693(96)00712-5



