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Parity-time symmetry-breaking mechanism of dynamic Mott transitions in dissipative systems
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We describe the critical behavior of the electric field-driven (dynamic) Mott insulator-to-metal transitions in
dissipative Fermi and Bose systems in terms of non-Hermitian Hamiltonians invariant under simultaneous parity
(P) and time-reversal (T ) operations. The dynamic Mott transition is identified as a PT symmetry-breaking
phase transition, with the Mott insulating state corresponding to the regime of unbroken PT symmetry with a
real energy spectrum. We establish that the imaginary part of the Hamiltonian arises from the combined effects
of the driving field and inherent dissipation. We derive the renormalization and collapse of the Mott gap at the
dielectric breakdown and describe the resulting critical behavior of transport characteristics. The obtained critical
exponent is in an excellent agreement with experimental findings.
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Non-Hermitian PT -symmetric quantum Hamiltonian
models introduced in the seminal work of Bender and
Boettcher [1] offer a foundation for the description of
nonequilibrium steady states of dissipative quantum systems
[2–5]. The basic property of non-Hermitian PT -symmetric
models is that their eigenstates exhibit a continuous PT
symmetry-breaking phase transition when the strength of
the external nonconservative driving force exceeds a certain
threshold value. Below this threshold, i.e., in the regime of
unbrokenPT symmetry, the energy eigenvalues are real, while
above it the energy spectrum acquires an imaginary part.

The PT -symmetric models arise across the entire nonequi-
librium physics and describe optical waveguides [6], electric
RLC circuits [7], microwave cavities [8], and superconducting
wires [9], to name a few. Here we focus on a theory
of the electric field- or current-driven Mott metal-insulator
transitions (MIT) as a PT symmetry-breaking phenomenon.
The interest in the nonequilibrium MIT is motivated by both
the intellectual appeal of understanding dynamic instabilities
in quantum many-body strongly correlated systems and the
high technological promise of Mott systems as a platform for
switching devices in emergent electronics [10]. There have
been tantalizing reports of field-driven Mott MIT in VO2

[11,12], La2−xSrxNiO4 [13], one-dimensional Mott insulators
Sr2CuO3/SrCuO2 [14], and organic compounds [15], yet the
critical behavior at the dynamic Mott transition remained
unexplored. In a recent experimental breakthrough [16], the
current-driven Mott transition has been observed in a system
of vortices pinned by a periodic array of proximity coupled su-
perconducting islands. Notably, the revealed critical behavior
of the dynamic resistance near the dynamic Mott critical point
appeared to belong to the liquid-gas transition universality
class. Here we propose the PT symmetry-breaking mecha-
nism of the dynamic MIT and derive the critical behavior that
perfectly agrees with the experimental findings.

There has been a remarkable progress in unearthing the
mechanism of the field-driven breakdown of the Mott insulator,
which was identified as the Landau-Zener-Schwinger (LZS)
process of generation of free particle-hole excitations by
an external driving field [17–19]. The remaining puzzle
concerns the description of the collapse of the Mott gap at
the transition. As we show below, this can be achieved by

taking into account dissipation processes. A recent numerical
study [20] that included dissipation still did not address the
critical behavior. An important step towards including the
dissipation effects into the picture was taken in [21] via
the Bethe ansatz treatment of a half-filled Hubbard chain
subject to a constant imaginary gauge field, the approach
resembling the delocalization transition induced in a system
of noninteracting vortices by an imaginary vector potential
[22]. In an intriguing parallel development in high-energy
physics, a numerical treatment of the Schwinger mechanism in
scalar electrodynamics revealed mass renormalization due to
thermalization of produced particles [23]. Dissipation-assisted
enhancement of LZS tunneling is also known to occur in
noninteracting systems [24].

Here we address the challenge of description of the collapse
of the Mott gap at the transition. We develop a theory of the
electric field-driven MIT based on the concept of the PT

symmetry breaking. We show that it is the applied electric
field which, in the presence of dissipation, generates an
imaginary part of the system’s Hamiltonian while retaining
its PT symmetry. We consider fermionic and bosonic sys-
tems that undergo the transition and identify their MITs as
PT symmetry-breaking phase transitions. For a half-filled
Hubbard chain we adopt the Bethe ansatz approach [21] and
obtain the critical scaling of the Mott gap � with driving field
F,� ∼ (Fc − F )1/2. Then we find the probability P ∼ e−2γ

for the LZS dielectric breakdown with the LZS tunneling
parameter γ ∼ (Fc − F )3/2. For a two-dimensional model we
employ a dynamical mean field theory (DMFT) approach with
an iterative perturbation theory (IPT)-based impurity solver
[25] and find a critical scaling � ∼ (Fc − F )0.78±0.03. For
the vortex (bosonic) Mott transitions driven by the current
I , we derive � ∼ (Ic − I )1/2 scaling of the spectral gap, and
γ ∼ (Ic − I )3/2 collapse of the LZS parameter, in an excellent
accord with experimental results of Ref. [16].

The model. Let |0〉 be the ground state of an interact-
ing quantum system, |1〉 be the lowest excited state, and
� = E1 − E0 be the spectral gap, with E0 and E1 being
the eigenvalues for the ground and lowest excited state,
respectively. Within the LZS framework, the electric field-
induced probability for the |0〉 → |1〉 transition is given by
the Landau-Dykhne formula [26], P = |〈0|1〉|2 ∼ e−2γ , where
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FIG. 1. Integration contour in the complex � plane for cal-
culating the Landau-Zener-Schwinger transition probability. The
point �c = Fct + iχc is a degeneracy point where the energy gap,
� ≡ E1 − E0, closes. Only the parts of the contour parallel to the
imaginary axis contribute to the transition probability. For finite
dissipation, the vertical part of the contour begins from a nonzero
value of χ , whose implicit dependence on the dissipation and driving
field is obtained in the main text.

γ = (1/�)Im
∫ ∞
−∞ dt �[�(t)], and � is the time-dependent

phase factor related to the driving field, F . For electrons
hopping along a 1D lattice under the constant electric field, we
choose the gauge where the driving field is the time derivative
of the vector potential. We replace the integration over time
by that over complex � = F t + iχ (F ), where the imaginary
component χ , shown below to be directly responsible for
energy gap renormalization, originates from the effects of
dissipation and is an odd function of F . Assuming that �(F )
is differentiable and that at some critical χc ≡ χ (Fc) the gap
completely closes, we find that the imaginary part of the inte-
gral over � comes from the degeneracy point iχc, see Fig. 1:

γ ∼ 1

F
Re

∫ χc

χ

dχ ′[E1(χ ′) − E0(χ ′)]. (1)

In nondissipative models, the Landau-Dykhne formula (1)
reduces to the Landau-Zener result, γ ∼ �2/vF , where
v = |d�/dt |/F is the speed of convergence of E1 and
E2 upon variation of �, which is assumed to be constant
(i.e., independent of �) in the usual Landau-Zener analysis.
Writing γ = Fth/F , we identify the threshold field for the
LZS tunneling, Fth = �2/v. The same relation has been
obtained in Ref. [17] for the half-filled Hubbard chain.

Before turning to our major theme of how the external drive
and dissipation induce the imaginary component of the vector
potential, note that Eq. (1) implies that the Landau-Zener factor
is determined completely by the imaginary part of �. Hence
in the following analysis we will be setting the real part of
� be zero. To see that such a choice does not lead to any
loss of generality, let us consider, as a tutorial example, the
one-dimensional Hubbard model subject to a finite electric
field. The corresponding Hamiltonian reads

H = −t
∑
〈ij〉,σ

[ei�(t)c
†
iσ cjσ + e−i�(t)c

†
jσ ciσ ] + U

∑
i

ni↑ni↓,

(2)
where t is the hopping amplitude and U > 0 is the on-site
repulsive Coulomb interaction strength. The model is exactly
solvable by Bethe ansatz; see [17] and SM [33]. The real part of
�(t) = F t + iχ imparts a monotonous time dependence to the

excitation momenta, which on account of only being defined
modulo a reciprocal lattice vector, results in the well-known
Bloch oscillations as in the nondissipative case [17]. However,
as we have shown above, the real part of � is not responsible
for renormalization of the Landau-Zener factor, which depends
solely on the imaginary component. Thus in the following
analysis we focus on the effect of the imaginary component
of � and set Re�(t) = 0. The Hubbard models with the
imaginary vector potentials have been studied in the past
in the context of field-driven Mott transitions [21,27]. Phys-
ically, the imaginary vector potential arises from asymmetric
hopping matrix elements, respectively along and opposed to
the potential gradient, in the presence of dissipation.

We now argue that the finite imaginary component of the
vector potential � arises naturally in any driven dissipative
system endowed with the PT -symmetric Hamiltonian. Let
us express the non-Hermitian Hubbard model in Eq. (2) as a
Legendre transform of a Hermitian model [28,29]:

H = H0 − iλJ, (3)

where H0 is defined in Eq. (2) with χ = 0, J is the
current operator that commutes with H0, and λ = sinh(χ ).
For sufficiently small λ, the spectral gap in H0 implies that
the expectation value of J vanishes. In the opposite limit
of large λ, the eigenfunctions of H are essentially those of
J , and the system becomes a gapless phase with the finite
steady current I . The phase transition between the equilibrium
and the finite current-carrying states takes place at some
critical value |λ| = λc, and the corresponding value of the
Lagrange multiplier is related to the current as I = 〈J (λ)〉.
Since H0 and J are both Hermitian operators, for purely
real λ the eigenvalues of H are real only when 〈J (λ)〉 = 0,
and complex when 〈J (λ)〉 �= 0. Real λ in Eq. (3) guarantees
inherent PT symmetry of H . From the viewpoint of the
PT -symmetric quantum mechanics, the parametric region
|λ| < λc corresponds to the regime where eigenstates preserve
PT symmetry resulting in a real spectrum for H and the
zero steady current. For |λ| > λc the spectrum of H acquires
an imaginary component, and the energy gap closes leading
to the finite steady current I . Thus λc marks the transition
into the phase with broken PT symmetry. The PT symmetry
breaking differs from the conventional spontaneous symmetry
breaking phenomena in the sense that it is not associated with
a bifurcation to degenerate ground states; rather, it manifests in
the form of a complex energy spectrum and the eigenfunctions
of H no longer remain eigenstates of PT .

To see that a real λ is consistent with a nonequilibrium
steady state of a dissipative driven system, we consider the
dynamic equation for the density matrix ρ:

dρ

dt
= −i[H0,ρ] − λ({J,ρ} − 2tr(ρJ )ρ). (4)

For pure states, Eq. (4) reduces to the Schrödinger equation
[30] with the non-Hermitian Hamiltonian from Eq. (3). The
formal solution to Eq. (4) reads [30]

ρ(t) = e−i(H0−iλJ )t ρ(0)ei(H0+iλJ )t

tr(e−i(H0−iλJ )t ρ(0)ei(H0+iλJ )t )
, (5)

where ρ(0) is the density matrix corresponding to the initial
state. Formula (5) generalizes the unitary evolution (which
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corresponds to λ = 0) onto the dissipative case (λ �= 0) and
preserves the norm, trρ(t) = 1 so that d tr(ρ(t))/dt = 0.
The expectation value of any physical observable A is
〈A(t)〉 = tr(ρ(t)A), so the expectation value of the current
operator is

d〈J 〉
dt

= −2λ(〈J 2〉 − 〈J 〉2). (6)

Therefore, if λ is real, the system relaxes to a state with
the constant current since 〈J 2〉 − 〈J 〉2 � 0. This, in turn,
means that the transition between the equilibrium zero-current
and steady-current states caused by varying the Lagrange
multiplier λ mirrors the electric field-driven dynamic Mott
transition: below some critical field Fc (corresponding to λc)
the spectral gap is finite and I = 0, while at larger applied
fields a finite current flows with a magnitude that increases
monotonically with F (or λ).

Now we complete the derivation of the electric field-
induced suppression of the Landau-Zener parameter γ (χ )
and its ultimate vanishing at χ = χc. Provided that �(χ ) is
a continuous function of χ , the energy gap vanishes smoothly
as χ → χc. The fermionic and bosonic Mott insulator systems
we study all exhibit a power-law collapse for the spectral
gap, �(χ ) ∼ (χc − χ )α , with α = 0.5 and α = 0.78 ± 0.03
respectively for the 1D and 2D half-filled Hubbard models,
and α = 0.5 for the (bosonic) vortex Mott insulator. This
presents one of the main results of this Rapid Communication.
Similar field-induced gap renormalizations have been reported
in studies of other non-Hermitian models, with α = 0.5 for
the non-Hermitian XXZ chain [31] experiencing an Ising
transition. Dynamic phase transition of the same universality
class has also been predicted for a quasi-1D superconducting
wire subject to imaginary vector potential destroying super-
conducting fluctuations beyond a certain threshold [2,9].

Fermionic dynamic Mott transition. To derive critical
behavior of the dynamic Mott transition, we consider the
Hamiltonian of the half-filled fermionic Hubbard chain
[Eq. (2)], retaining only the imaginary component χ of the
vector potential. Starting from the Bethe ansatz solution [21]
of Eq. (2), one obtains the following expression for the Mott
gap [32] on the insulating side of the transition:

�(b) = 4t

[
u − cosh(b) +

∫ ∞

−∞

dω

2π

J1(ω)eω sinh(b)

ω(1 + 22u|ω|)

]
, (7)

where u ≡ U/4t , J1 is the Bessel function of order 1,
and b � bc is the parameter controlling the integration
contour for the spin distribution function in the complex
plane (see Ref. [21]), such that bc ≡ arcsinh(u) defines
the point of Mott transition, �(bc) = 0. We find that as
χ → χc, χc − χ ≈ C1(b − bc)2, which in turn leads to
�(χ ) ≈ C2

√
χc − χ , where C1,2 are constants. Assuming that

F (χ ) is a well-behaved function at the threshold, we have
�(F ) ∼ √

Fc − F , and we get

γ ∼ (Fc − F )3/2 (8)

for the scaling of the LZS tunneling parameter.
Now we consider a 2D Hubbard model, a half-filled square

lattice with the nearest-neighbor hopping and nonequilibrium

FIG. 2. Universal scaling of the Mott gap, �, as a function of the
drive, λ, near thePT symmetry breaking points λc for different values
of the Coulomb repulsion U . The upper inset shows the evolutions of
the Mott gaps with increasing λ for various U , and the solid lines are
fits to power laws of the form � = C(λc − λ)0.78. The main figure
shows the same data plotted as function of (λc − λ)0.78 (the legends
for the inset and the main panel are the same). One sees a remarkable
linear collapse of the data persisting over large region of λ. The
lower inset shows the λ dependence of the spectral function A(ω) for
single-particle excitations for U = 30. As λ increases, the spectral
gap gradually narrows, and for λ = 1.1 a quasiparticle band is evident
signifying a (bad) metallic phase.

drive along the x direction:

H =
∑
k,σ

{−t[2(cos(kx) + cos(ky)) − iλ sin(kx)] − μ}c†kσ ckσ

+ U
∑

i

ni↑ni↓, (9)

where λ ∈ [0,2] is the real-valued Lagrange multiplier intro-
ducing the current constraint. In what follows we calculate the
spectral functions by employing a second-order perturbation
theory approximation, namely the IPT within the DMFT
framework [25] [see Supplemental Material (SM) [33] for
details]. For a sufficiently small driving field λ and large
interaction strength U, a Mott gap is formed at the Fermi level
(ω = 0), as seen from the spectral function in the lower inset of
Fig. 2. Gradual increase of λ diminishes the gap and eventually,
for λ � λc, a quasiparticle peak appears at the Fermi level by
closing the gap and, hence, signifying an insulator-to-metal
transition. In the upper inset of Fig. 2, we present the Mott
gap � (extracted from the calculated spectral function) for
different values of U as a function of λ. Plotting the same
data as function of (λ − λc(U ))α we find them to collapse to
a straight line for α = 0.78; see the main panel. From such
collapse of the data we infer a universal (i.e., independent of
U ) power-law behavior � ∼ (λ − λc)α with α = 0.78 ± 0.03.
This value is larger than α = 0.5 that we obtained above for the
1D case and lies closer to α = 1 reported in mean-field studies
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of the equilibrium 2D Mott transition [34,35]. Approaching the
transition from the metallic side, we also find that the effective
electron mass diverges at λc, as is the case in the equilibrium
Mott transition (see SM [33]).

Bosonic dynamic Mott transition. Let us now consider
a bosonic system described by the nonrelativistic Landau-
Ginzburg-Wilson (LGW) field theory. As an example, we take
vortices in an array of traps in magnetic fields corresponding
to integer fillings fc. Vortex Mott insulator state has been
predicted in [36] and observed in numerous experiments;
see Refs. [37,38] and references therein. Moreover, we can
now justly believe that the vortex Mott insulator has been
seen, albeit not recognized, in numerous studies of vortex
matching effects in nanopatterned superconductors [39,40].
The critical scaling behavior as a function of the driving
current, temperature, and departure from commensuration
|f − fc| at the dynamic vortex Mott transition has been
observed in square proximity superconducting arrays [16].

Near fc = 1, the vortex Mott transition is mean-field like,
and its dynamics can be described by a nonrelativistic LGW
effective action in Euclidean time,

S =
∫

d2x dτ

[
ψ† ∂

∂τ
ψ + D|∇ψ |2 + m2|ψ |2 + u|ψ |4

]
.

(10)

Here ψ is the vortex field, D is the vortex stiffness, and m and
u are, respectively, the mass and the interaction parameter that
govern the mean-field transition, where the “superfluid” phase
of vortices corresponds to m2 < 0. The applied electric current,
I , exerts Magnus force on magnetic vortices. We incorporate
the current into the vector potential: Ax = I t, Ay = 0. We
consider vortex motion in a dissipative region surrounded by
a superconducting shell. This enables us to impose the simple
boundary condition ψ = 0 outside the dissipative region. The
motion in the dissipative environment is overdamped; thus the
time evolution is governed entirely by Brownian processes and
we can neglect Berry phase effects [first term in Eq. (10)]. In
real time, the equation of motion is

∂ψ

∂t
+ ν

δH

δψ∗ = 0, (11)

where H = ∫
d2x [D|∇ψ |2 + m2|ψ |2 + u|ψ |4] is the Hamil-

tonian corresponding to Eq. (10), and ν represents viscous
damping of the vortex motion and is proportional to the normal
resistance of the superconductor just above superconducting
transition temperature Tc. Following Refs. [2,9], we ignore
the nonlinear term in the vicinity of the transition and after a
straightforward calculation arrive at the following expression
for the distance between the two lowest-energy levels on the
vortex Mott-insulating side (I � Ic):

E1 − E0 ≈ 2ET

√
η
(
1 − I 2/I 2

c

)
, (12)

where for a size L of the normal region where the
vortex is confined, ET = D/L2 is the Thouless energy,
η ≈ (π2/

√
2)(IcL/ET ρ).

Interpreting the vortex excitation gap as the Mott gap, we
obtain the square-root scaling behavior near the transition, and
from the Landau-Dykhne formula find the barrier for vortex

thermal activation to scale as

γ ∼ (Ic − I )3/2. (13)

This result is in an excellent agreement with the experimental
findings of Ref. [16] demonstrating scaling of the dynamic
resistance near the vortex Mott transition as a function of
|Ic − I |3/2/|f − fc|.

Discussion. To summarize, we investigated Mott transitions
in fermionic half-filled Hubbard models in one and two dimen-
sions and in bosonic vortex lattice system near integer fillings.
We showed that nonequilibrium steady states of such systems
are described as eigenstates of non-Hermitian Hamiltonians
endowed with PT symmetry. The field-driven Mott transition
is identified as a PT symmetry-breaking phenomenon. We
related the driving electric field and the dissipation param-
eter to the non-Hermitian gauge fields governing the PT
symmetry-breaking phase transition. While the mechanism of
Mott transitions in these dissipative systems, Landau-Zener-
Schwinger tunneling, is also shared with nondissipative and
even noninteracting quantum systems, the key qualitative
difference in the dissipative case lies in the field-induced
renormalization of the excitation gap. For the 1D Hubbard
chain and the bosonic 2D system, we find that the spectral
gap � and the LZS tunneling factor γ respectively scale
as � ∼ (Fc − F )1/2 and γ ∼ (Fc − F )3/2 as a function of
the driving field F . This behavior is in an accord with the
current vs magnetic field scaling recently observed in the
vortex Mott transition in nanopatterned superconductors [16].
For the 2D Hubbard model, we perform a DMFT analysis
based on an IPT approximation scheme and obtain scaling
� ∼ (Fc − F )0.78. The exact solvability of our 1D even time-
dependent models opens a route for quantitative investigations
dynamic phenomena, in particular, the Bloch oscillations in the
non-Hermitian systems. An important open problem to address
is the microscopic derivation of the effective non-Hermitian
Hubbard models starting from the driven Hermitian system
coupled to a bath. A limitation of our Bethe ansatz approach is
that it is restricted to local, nonretarded Coulomb interactions.
It remains to be seen how our conclusions would change if such
a general Coulomb interaction is considered. Note, finally, that
vortex insulator-metal transitions have also been suggested
in quantum Hall systems [41], which could provide a new
platform for exploring dynamic Mott transitions. Furthermore,
we hypothesize that, in general, in out-of-equilibrium open
quantum systems that exhibit a dynamic phase transition
(from stationary equilibriumlike to strictly nonconservative
dynamics), the concurrent effects of the driving field and
inherent dissipation generate imaginary parts of the systems’
Hamiltonians in such a way that the resulting non-Hermitian
Hamiltonians retainPT symmetry at drives smaller than some
threshold value.

Another direction to take is the study into the role of
disorder in the PT symmetry-breaking transitions. Past
research of effects of disorder, such as vortex delocalization
driven by an imaginary vector potential [22] and level statistics
of zero-dimensional fermionic systems [42], are restricted
to noninteracting systems. The incoherent hopping transport
in disordered insulators in moderately strong electric fields,
which is known to be of the directed-percolation type driven by
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an imaginary field [43,44], will be the subject of forthcoming
publication. Our work thus paves the way for the application
of PT symmetry concepts as a general mechanism of the
dynamic phase transitions in strongly correlated quantum
systems.
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