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Negative dynamic conductivity of a current-driven array of graphene nanoribbons
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We consider a periodic array of graphene nanoribbons under the action of a strong dc electric field E0 and an
external electromagnetic excitation with the frequency ω and the lateral wave vector q. Solving the quasiclassical
Boltzmann kinetic equation and calculating the surface dynamic conductivity σ2D(q,ω,E0) and the absorption
coefficient of such a system we show that the real part of the conductivity and the absorption coefficient may
become negative under certain conditions. Physically this corresponds to the amplification of the electromagnetic
waves at the expense of the energy of the direct current source. The results are discussed in connection with
experiments on the surface acoustic waves and on the Smith-Purcell-type graphene-based terahertz emitter.
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I. INTRODUCTION

The nonlinear electrodynamic and optical properties of
graphene currently attract much attention and continuously
growing interest. It was theoretically predicted [1] that the
linear energy dispersion of graphene electrons should lead to
a strongly nonlinear electrodynamic response of this material.
This prediction was experimentally confirmed, both at mi-
crowave [2,3] and optical [4–11] frequencies. The nonlinear
effects, such as the harmonics generation [2,8–11], the four-
wave mixing [3,4,6], the Kerr effect [5,7], and others have
been observed. The nonlinear parameters of graphene were
found to be several orders of magnitude larger than in many
nonlinear materials.

Theoretical works (e.g., Refs. [12–27]) predicted interest-
ing physical phenomena, many of which have not yet been
experimentally studied in detail. Among them, for example, a
resonant enhancement of the second harmonic due to plasma
resonances in a graphene layer [12], a giant nonlinear optical
response of graphene in a magnetic field [13], an optical
bistability at terahertz frequencies [16], a nonlinear genera-
tion of two-dimensional (2D) plasmons in graphene [18], a
direct current induced second harmonic generation at optical
frequencies [15], nonlinear plasmonic effects [19,24,26], a
resonant enhancement of the third-order nonlinear effects due
to the interband optical transitions in graphene [14,20,25], a
saturable absorption effect [20,25,27], and other effects. These
theoretical and experimental results suggest that graphene is
a very promising nonlinear medium and pave the way for
graphene-based nonlinear optoelectronics and photonics.

In this paper we develop a quasiclassical theory of the low-
frequency (microwave, terahertz) electrodynamic response of
an array of graphene nanoribbons driven by a strong dc
electric field E0. Within the relaxation time approximation,
we calculate the dc field dependent dynamic conductivity of
a single and of an array of nanoribbons as a function of the
frequency ω, wave vector q ≡ qx of the external radiation
(x is the direction along the ribbons), of the applied dc
electric field E0 (which is not necessarily weak), as well
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as of the chemical potential and temperature. We show that
the real part of the conductivity, as well as the absorption
coefficient of the structure, may become negative under certain
conditions, which means the amplification of waves. The
results are discussed in view of their possible application for
the design of a current-driven tunable graphene-based terahertz
emitter [28,29], as well as in view of the surface acoustic wave
experiments in 2D crystals [30–32].

The effect of the direct current induced negative dynamic
conductivity was studied in the past, both in one-dimensional
(quantum wires, e.g., Ref. [33]) and two-dimensional (GaN
quantum wells, e.g., Ref. [34]) electron systems. In contrast
to our paper, in all these works “conventional” electrons (with
the parabolic energy dispersion) were studied.

The paper is organized as follows. In Sec. II we consider
an array of graphene nanoribbons under the action of only
an inhomogeneous ac electric field (i.e., at E0 = 0). We
introduce the method of solving the problem and analyze the
electromagnetic response of such an unbiased electron system.
Then, in Secs. III and IV we switch on the dc electric field
E0 and study the dc response of such a current-driven electron
system (Sec. III) and its ac response to a weak electromagnetic
excitation (Sec. IV). The influence of the dc electric field E0 is
taken into account nonperturbatively. In Sec. V we summarize
our results and draw conclusions. Some technical details of
calculations are given in the Appendix.

II. ELECTRODYNAMIC RESPONSE
OF A NONDRIVEN SYSTEM

A. Formulation of the problem

We assume that an array of narrow graphene nanoribbons
lies on a substrate with the dielectric constant κs in the plane
z = 0, Fig. 1. The nanoribbons are infinite in the x direction
and have the width Wy in the y direction. The period of the
structure in the y direction is ay . We assume that a sufficiently
strong dc electric field E0 is applied to the structure and a
stationary charge current flows along the ribbons in the x

direction. In addition, a space- and time-dependent electric
field E1(x,t) ∝ exp(iqx − iωt) influences the system, so that
the total external field acting on electrons in the ribbons
amounts to

Ex(x,t) = E0 + E1(x,t). (1)
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FIG. 1. Geometry of the graphene nanoribbon array on a sub-
strate. Arrows show the direction of the electron motion in the ribbons.

Our goal is to calculate the linear response of the system to
the ac electric field E1(x,t) not assuming that the dc field E0

is weak, i.e., the response of the system to the dc field E0 is
aimed to be taken into account nonperturbatively.

The energy spectrum of electrons in two-dimensional
graphene is described by the known linear dispersion rela-
tion E(px,py) = ±vF

√
p2

x + p2
y , where vF ≈ 108 cm/s is the

Fermi velocity in graphene [35], p = (px,py) = �(kx,ky) is
the quasimomentum, and the upper (lower) sign corresponds
to the electron (hole) energy band. We assume that in a single
nanoribbon with the width Wy the momentum py is quantized,
so that the quasi-one-dimensional spectrum of electrons and
holes has the form

Ek,±(px) = ±
√

�2
0k

2 + (vF px)2, (2)

where k is the subband index (k = 1,2, . . . ) and

�0 = π�vF

2Wy

(3)

is the half of the band gap in the ribbon [36].
If the dc and ac electric fields (1) are applied to the system

of nanoribbons, its response can be described by quasiclassical
Boltzmann equations written for the distribution functions of
electrons and holes in all occupied subbands (we consider
the low-frequency range �ω � EF when the interband optical
transitions can be neglected). Our previous studies [28,29,37]
showed that, in order to realize the negative conductivity of the
system, the density of electrons should be sufficiently low (this
conclusion is also confirmed by the present work). Almost
everywhere in this paper we will therefore assume that the
chemical potential lies in the upper half of the forbidden
band, 0 < μ0 � �0, and the temperature is low, T � �0.
Under these conditions one may consider only the response
of electrons of the lowest (k = 1) conduction (+) subband
and ignore the intersubband scattering. Then the Boltzmann
equation for electrons of the (1+) subband assumes the form
(we omit the indexes k,±)

∂f (px,x,t)

∂t
+ vx

∂f (px,x,t)

∂x

− [eE0 + eE1(x,t)]
∂f (px,x,t)

∂px

= St{f }, (4)

where e > 0 is the elementary charge, the dc field is assumed to
be negative, E0 < 0, vx = ∂E/∂px , and St{f } is the scattering
integral. The latter describes the scattering of graphene

electrons by impurities, phonons, grain boundaries, etc., and is,
in general, a complicated functional of the distribution function
f (px,x,t). Since we aim to get a nonperturbative (in |E0|)
solution of the problem we will assume a simple relaxation
time (τ ) model for the scattering integral,

St{f } = −f (px,x,t) − fle(px,x,t)

τ
. (5)

This approximation for St{f } is sufficiently reasonable and
allows us to get an exact analytical solution of the response
problem at a strong driving dc electric field. The function
fle(px,x,t) in Eq. (5) is the Fermi distribution function
describing the local equilibrium [38,39]

fle(px,x,t) = 1

1 + exp
( E(px )−μ(x,t)

T

) ; (6)

it differs from the global equilibrium distribution

feq(E(px)) = 1

1 + e(E(px )−μ0)/T
(7)

by the space and time dependence of the local chemical
potential μ(x,t). The local chemical potential is determined
from the particle conservation condition [38,39]∑

px

[f (px,x,t) − fle(px,x,t)] = 0; (8)

the global chemical potential is denoted as μ0.
In the current section we solve the Boltzmann equations (4)

and (5) and calculate the dynamic conductivity of the graphene
nanoribbons at E0 = 0. Then in Secs. III and IV we analyze
the case of a finite dc field E0 �= 0.

B. Parameters

In this paper we utilize the value of �0, Eq. (3), as the energy
scale and measure the frequency, wave vector, scattering rate,
chemical potential, temperature, and the electric field in the
following dimensionless units:

	 = �ω

�0
, Q = �qvF

�0
≡ 2qWy

π
,


 = �γ

�0
= �

τ�0
= 2

π

Wy

l
, μ̃ = μ0

�0
, T̃ = T

�0
,

F = e(−E0)vF τ

�0
= e|E0|l

�0
, (9)

where l = vF τ is the mean free path and γ = 1/τ is the
scattering rate. Consider an illustrative numerical example.
Assume that the ribbon width is Wy = 400 nm. Then the value
of the energy scale is �0 ≈ 2.45 meV. This is equivalent to
≈28 K and ≈0.62 THz. The temperature parameter T̃ � 0.2
thus corresponds to T � 5 K, and the dimensionless frequency
	 ≈ 2 to about 1.2 THz. The spatial periodicity of the
external ac electric field can be created by placing a grating
(with the period ax in the x direction) in the vicinity of the
nanoribbon array. Then q � 2π/ax and the dimensionless
wave-vector parameter Q � 4Wy/ax can vary from values
small as compared to unity up to Q � 4 and above. The value
of Q � 2 corresponds to the grating period ax � 800 nm.
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FIG. 2. The 1D density of charge carriers (electrons and holes)
as a function of the chemical potential μ̃ = μ/�0 at different
temperatures T/�0.

The scattering parameter 
 depends on the sample quality.
With W = 400 nm and the mean free path about 1.3 μm, the
factor 
 constitutes about 0.2. The field parameter F reaches
1 at |E0| � 19 V/cm in the samples with the indicated value
of the mean free path. At |E0| � 100 V/cm = 10 mV/μm we
have F � 5.

C. Equilibrium density

Now we consider the equilibrium linear density of charge
carriers (electrons ne and holes nh) as a function of the
chemical potential at different temperatures. The result reads
(here in Sec. II C only, we take into account all electron and
hole subbands)

ne + nh = gsgv

2Wy

∞∑
k=1

[Nk(μ̃,T̃ ) + Nk(−μ̃,T̃ )], (10)

where gs = gv = 2 are the spin and valley degeneracies, and

Nk(μ̃,T̃ ) =
∫ ∞

0

dP

1 + exp
(√

k2+P 2−μ̃

T̃

)
= k

∫ 1

0

dV

(1 − V 2)3/2

1

1 + exp k/
√

1−V 2−μ̃

T̃

. (11)

The μ̃ dependence of the total dimensionless charge density
(ne + nh)Wy is shown in Fig. 2. At T̃ � 0.2 and μ̃ ≈ 1 the
parameter nlWy ≡ (ne + nh)Wy � 0.75; under these condi-
tions the main contribution to the density is given by electrons
of the lowest subband. If Wy = 400 nm, the linear charge
density nl is about 1.875 × 104/cm. If the aspect ratio Wy/ay

of the nanoribbon array is about 1/2 the two-dimensional (2D)
average charge carrier density ns is

ns = nl

ay

≈ 2.34 × 108 cm−2. (12)

It will be seen below that the amplification of the waves in
the current-driven system of graphene nanoribbons can be
achieved at low electron densities. The number (12) gives

a typical scale of the charge carrier density needed for the
realization of the amplification.

D. Solution of the Boltzmann equation

In the absence of the dc electric field E0 the Boltzmann
equations (4) and (5) reads

∂f (px,x,t)

∂t
+ vx

∂f (px,x,t)

∂x
− eE1(x,t)

∂f (px,x,t)

∂px

= −f (px,x,t) − fle(px,x,t)

τ
. (13)

Substituting

f (px,x,t) = feq(E) + f1(px,x,t) (14)

and

fle(px,x,t) = feq(E) − ∂feq(E)

∂E μ1(x,t) (15)

into Eq. (13), where μ1(x,t) = μ(x,t) − μ0, we get the
linearized (in E1) version of the Boltzmann equation

∂f1(px,x,t)

∂t
+ vx

∂f1(px,x,t)

∂x
− eE1(x,t)

∂feq(E)

∂px

= −γ

(
f1(px,x,t) + ∂feq(E)

∂E μ1(x,t)

)
. (16)

From the charge-density conservation condition (8) we get

μ1(x,t) = −
∑

p′
x
f1(p′

x,x,t)∑
p′

x

∂feq(E ′)
∂E ′

. (17)

The solution of the linearized Boltzmann equation (16) is
searched for in the form ∝eiqx−iωt . Then we obtain

f1(px) − iγ

ω + iγ − qvx

∂feq(E)
∂E∑

p′
x

∂feq(E ′)
∂E ′

∑
p′

x

f1(p′
x)

= i
eE1vx

ω + iγ − qvx

∂feq(E)

∂E . (18)

The second term in the left-hand side contains an unknown
constant

∑
p′

x
f1(p′

x). To find it we perform summation over
px in both sides of Eq. (18) and get

∑
px

f1(px) = ieE1

(∑
px

∂feq(E)

∂E

)( ∑
px

vx

ω+iγ−qvx

∂feq(E)
∂E

)
( ∑

px

ω−qvx

ω+iγ−qvx

∂feq(E)
∂E

) .

(19)

The solution of the Boltzmann equation then assumes the form

f1(px) = ieE1

ω + iγ − qvx

∂feq(E)

∂E

×
⎛
⎝vx +

iγ
∑

p′
x

v′
x

ω+iγ−qv′
x

∂feq(E ′)
∂E ′∑

p′
x

ω−qv′
x

ω+iγ−qv′
x

∂feq(E ′)
∂E ′

⎞
⎠. (20)
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FIG. 3. The (a) real and (b) imaginary parts of the function S0(	,Q,
,μ̃,T̃ ), Eq. (27), vs frequency 	 at μ/�0 = 1, 
 = 0.2, temperature
T/�0 = 0.2, and several values of the wave vector Q. The dc electric field is zero, the number of 2D layers N = 1.

E. Current density

Calculating the current according to the standard formula

j1 = −e
gsgv

L

∑
px

vxf1(px), (21)

where L is the ribbon length in the x direction, we obtain

j1 = −ie2E1

(
A2(ω,γ,q,μ,T )

+ iγ
A2

1(ω,γ,q,μ,T )

ωA0(ω,γ,q,μ,T ) − qA1(ω,γ,q,μ,T )

)
. (22)

Here we have defined the integrals

An(ω,γ,q,μ,T ) = gsgv

L

∑
px

∂feq(E)

∂E
vn

x

ω + iγ − qvx

. (23)

After some transformations they can be presented in the
following form:

An(ω,γ,q,μ,T ) = i
gsgv

2π

vn−1
F

2�0
In(	,Q,
,μ̃,T̃ ), (24)

with the dimensionless integrals

In(	,Q,
,μ̃,T̃ ) = i

2T̃

∫ 1

−1

dV

	 + i
 − QV

V n

(1 − V 2)3/2

× cosh−2

( 1√
1−V 2 − μ̃

2T̃

)
. (25)

In(	,Q,
,μ̃,T̃ ) can be evaluated numerically as functions of
all their dimensionless arguments.

F. Dynamic conductivity

The current j1 in Eq. (21) is a one-dimensional (1D) current
flowing in a single nanoribbon. The corresponding 1D dynamic
conductivity is σ1D(q,ω) = j1/E1. In an array of nanoribbons
it is reasonable to determine the 2D conductivity as an average
current density flowing in all nanoribbons divided by the

electric field. It is related to the 1D conductivity as

σ2D(q,ω) = σ1D(q,ω)/ay. (26)

Then we get for σ2D(q,ω):

σ2D(q,ω) = e2

π�

gsgv

2π

Wy

ay

S0(	,Q,
,μ̃,T̃ ), (27)

where

S0(	,Q,
,μ̃,T̃ )

= I2(	,Q,
,μ̃,T̃ )

+ i
I2
1 (	,Q,
,μ̃,T̃ )

	I0(	,Q,
,μ̃,T̃ ) − QI1(	,Q,
,μ̃,T̃ )
. (28)

If, instead of one, the system consists of several (N ) parallel
graphene nanoribbon layers, the right-hand side of Eq. (27)
should be multiplied by N .

Figure 3 shows the frequency dependence of the dimension-
less conductivity S0(	,Q,
,μ̃,T̃ ) from Eq. (27) at different
wave vectors. The real [Fig. 3(a)] and imaginary [Fig. 3(b)]
parts of the conductivity are even and odd functions of 	,
respectively. At Q = 0 Eq. (27) is reduced to the Drude
formula (black solid curves in Fig. 3). At a larger Q the
maximum is shifted to larger values of 	 and becomes broader.
The maxima are located at 	 < Q due to the single particle
absorption caused by electrons moving with the velocity
smaller than vF . The imaginary part of the conductivity,
Fig. 3(b), is connected to the real part by the Kramers-Kronig
relations.

G. Dielectric function

If the 2D layer with the conductivity σ2D(q,ω) lies on the
dielectric substrate with the dielectric constant κs , the effective
dielectric function of such a system can be determined as [40]

ε2D(q,ω) = 1 + 2πiσ2D(q,ω)

ωκ
|q|, (29)
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FIG. 4. The (a) real and (b) imaginary parts of the dielectric function ε2D(q,ω) vs frequency at μ/�0 = 1, 
 = 0.2, temperature T/�0 = 0.2,
and several values of the wave vector Q. The dc electric field is zero, the number of 2D layers N = 1, κ = 2.45, Wy/ay = 0.5.

where κ = (κs + 1)/2 is the effective dielectric constant of
the surrounding medium. Substituting the expression for the
conductivity (27) we get

ε2D(q,ω) = 1 + i
gsgv

π

|Q|
	

e2

�vF κ

Wy

ay

S0(	,Q,
,μ̃,T̃ ). (30)

The real and imaginary parts of the dielectric function (30) are
shown in Fig. 4.

H. Absorption

If the potential of the external electric field is φext
qω , the

potential of the total electric field acting on graphene electrons
is φtot

qω = φext
qω/ε(q,ω), and the induced linear-response current

reads

jqω = σ2D(q,ω)

ε(q,ω)
Eext

qω. (31)

The time-averaged Joule heat is then given by
Re σ2D(q,ω)|Eext

qω |2/2|ε(q,ω)|2. If we assume that the
time-averaged magnitude of the Poynting vector of the
incident wave is c|Eext

qω |2/8π , the absorption coefficient can
be found as

A = 4π

c

Re σ2D(q,ω)

|ε2D(q,ω)|2 , (32)

where σ2D(q,ω) and ε2D(q,ω) are given by Eqs. (27)
and (30).

The absorption spectrum of an array of graphene nanorib-
bons is shown in Fig. 5. The maxima of the absorption
coefficientA are shifted with respect to those of ReS0 to higher
frequencies, and the linewidths are a bit narrower. Notice that,
under the chosen conditions (μ̃ = 1, T̃ � 0.2) and at Q � 1
the real part of the dielectric function ε2D(q,ω), Fig. 4(a),
does not vanish at any frequency, i.e., the 2D plasmons whose
spectrum satisfies the equation Re [ε2D(q,ω)] = 0, do not exist.
The absorption maxima in Fig. 5 at Q � 1 thus have the

single-particle origin. At smaller Q these maxima correspond
to the collective (2D plasmon) resonance.

III. dc RESPONSE OF A CURRENT-DRIVEN SYSTEM

Now we consider the case when a strong dc electric field
E0 is applied to the system but the amplitude of the ac field
is zero, E1 = 0. We calculate the stationary nonequilibrium
distribution function which is formed under the action of the
dc field E0, whereas the scattering processes are described
within the τ -approximation (5).

A. Stationary distribution function

Under the action of the uniform and time-independent
electric field E0 the Boltzmann equation for the stationary
distribution function f0(px) reads (we assume e > 0 and
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FIG. 5. The absorption coefficient (32) vs frequency at μ/�0 =
1, 
 = 0.2, temperature T/�0 = 0.2, and different values of Q. The
dc electric field is zero, the number of 2D layers N = 1.
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FIG. 6. The distribution function (34) at μ/�0 = 1 and T/�0 =
0.2 for different values of the electric field parameter F .

E0 < 0)

df0(px)

dpx

= f0(px) − feq(px)

eE0τ
. (33)

It is solved by the separation of variables method; the
solution can be written in the following dimensionless
form:

f0(P,μ̃,T̃ ,F) =
∫ ∞

0

e−x

1 + exp
(√

1+(P−Fx)2−μ̃

T̃

)dx, (34)

where we have used the boundary condition f0(px) → 0 at
px → ±∞ and introduced the normalized momentum P =
vF px/�0. The function (34) satisfies the condition

f0(P,μ̃,T̃ ,−F) = f0(−P,μ̃,T̃ ,F) (35)

and is shown in Fig. 6. At e > 0 and E0 < 0 electrons
move in the positive x direction. One sees that the stationary
distribution function is strongly asymmetric and substantially
differs from the equilibrium distribution function already at
F � 1.

B. Stationary dc current and average drift velocity

Having obtained the stationary distribution function we now
calculate the dc current density (21). It can be reduced to the
dimensionless form

j0 = −gsgv

4

evF

Wy

J (μ̃,T̃ ,F), (36)

where

J (μ̃,T̃ ,F) =
∫ ∞

−∞

PdP√
1 + P 2

f0(P,μ̃,T̃ ,F)

=
∫ 1

−1

V dV

(1 − V 2)3/2
f0

(
V√

1 − V 2
,μ̃,T̃ ,F

)
. (37)

The dc-field dependence of the current for several values of
the chemical potential and temperature is illustrated in Fig. 7.
The current-voltage characteristics is linear only at F � 1.
At larger values of F one sees substantial deviations from the
Ohm’s law.
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FIG. 7. The current (37) vs the dc electric field F at different
values of the chemical potential μ̃ = μ/�0 and the temperature T̃ =
T/�0.

The average drift velocity of electrons in the first electron
subband,

Vdr(μ̃,T̃ ,F) ≡ v̄dr(μ̃,T̃ ,F)

vF

=
∫ ∞
−∞ V (P )f0(P,μ̃,T̃ ,F)dP∫ ∞

−∞ f0(P,μ̃,T̃ ,F)dP

= J (μ̃,T̃ ,F)

2N1(μ̃,T̃ )
, (38)

is shown in Fig. 8; here

V (P ) = P√
1 + P 2

(39)

is the dimensionless velocity of electrons in the first electron
subband. Notice that v̄dr(μ̃,T̃ ,F) weakly depends on the chem-
ical potential but is sensitive to a change of the temperature.

The I -V characteristics similar to the one shown in Fig. 7
have been experimentally observed in graphene, see, e.g.,
Fig. 2(b) in Ref. [41]. The average drift velocity which was
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FIG. 8. The average drift velocity of electrons (38) vs the dc
electric fieldF at different values of the chemical potential μ̃ = μ/�0

and the temperature T̃ = T/�0.
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achieved in that paper (at much higher electron density and
temperature than we assume here) was about 0.36vF which
confirms the feasibility of our model.

IV. ac RESPONSE OF A CURRENT-DRIVEN SYSTEM

A. Dynamic distribution function in a driven system

Now we consider the system response to the ac electric
field E1(x,t) = E1e

iqx−iωt in the presence of the strong dc

driving field E0. It is described by the Boltzmann equations (4)
and (5). We search for a solution in the form

f (px,x,t) = f0(px) + f1(px,x,t), (40)

where f0(px) is the stationary distribution function found in
Sec. III, Eq. (33), and f1(px,x,t) is the correction propor-
tional to the perturbation E1(x,t). Linearizing the Boltzmann
equation we get the following equation for f1(px,x,t):

(
∂

∂t
+ vx

∂

∂x
− eE0

∂

∂px

)
f1(px,x,t) + γ

⎛
⎝f1(px,x,t) −

∂feq(E)
∂E∑

p′
x

∂feq(E ′)
∂E ′

∑
p′

x

f1(p′
x,x,t)

⎞
⎠ = eE1(x,t)

∂f0(px)

∂px

. (41)

Since the perturbation is proportional to eiqx−iωt , we search for a solution with the same spatiotemporal form f1(px,x,t) =
f1(px)eiqx−iωt and obtain the integrodifferential equation for f1(px):

df1(px)

dpx

+ i(ω + iγ − qvx)

eE0
f1(px) = − γ

eE0

∂feq(E(px ))
∂E∑

p′
x

∂feq(E(p′
x ))

∂E ′

∑
p′

x

f1(p′
x) − E1

E0

df0(px)

dpx

. (42)

Its general solution reads

f1(px) = E1

|E0|
∫ px

−∞

(
df0(p′

x)

dp′
x

+ C ∂feq(E(p′
x))

∂E ′

)
exp

(
− 1 − iωτ

e|E0|τ (px − p′
x) − iq

e|E0| (E(px) − E(p′
x))

)
dp′

x, (43)

where

C = γ

eE1

1∑
px

∂feq(E(px ))
∂E

∑
px

f1(px) (44)

is, again, an unknown constant proportional to
∑

px
f1(px), cf. Eq. (18). It can be found by taking a sum over px in Eq. (43):

C =
γ

e|E0|
∫ ∞
−∞ dpx

∫ px

−∞
df0(p′

x )
dp′

x
exp

(− 1−iωτ
e|E0|τ (px − p′

x) − iq

e|E0| (E(px) − E(p′
x))

)
dp′

x∫ ∞
−∞ dpx

∂feq(E(px ))
∂E − γ

e|E0|
∫ ∞
−∞ dpx

∫ px

−∞
∂feq(E(p′

x ))
∂E ′ exp

(− 1−iωτ
e|E0|τ (px − p′

x) − iq

e|E0| (E(px) − E(p′
x))

)
dp′

x

. (45)

Formulas (43) and (45) give the closed-form analytical expression for the electron distribution function in a direct current-driven
system of graphene nanoribbons.

B. Current density, field-dependent conductivity, and absorption coefficient: Analytic formulas

In order to calculate the current density j1 in a dc-driven graphene nanoribbon we substitute the distribution functions (43)
and (45) into the definition (21). The dc-field dependent 1D conductivity of a single nanoribbon is then given by the relation
σ1D(q,ω,E0) = j1/E1, and the effective 2D conductivity of an array of nanoribbons is determined by Eq. (26). Introducing
dimensionless variables P = vF px/�0, P ′ = vF p′

x/�0, and (9) we get the following expression for the 2D conductivity:

σ2D = e2

π�

gsgv

2π

Wy

ay

NS(	,Q,
,μ̃,T̃ ,F), (46)

where the formula is written for N parallel graphene nanoribbon layers and the dimensionless function S(	,Q,
,μ̃,T̃ ,F) is
determined by the formula

S(	,Q,
,μ̃,T̃ ,F) = 2

F


[
K1(	,Q,
,μ̃,T̃ ,F) − K0(	,Q,
,μ̃,T̃ ,F)L1(	,Q,
,μ̃,T̃ ,F)

FM(μ̃,T̃ ) + L0(	,Q,
,μ̃,T̃ ,F)

]
. (47)

Here we have defined the following functions:

Kn(	,Q,
,μ̃,T̃ ,F) = −
∫ ∞

−∞
V n(P )dP

∫ P

−∞

df0(P ′,μ̃,T̃ ,F)

dP ′ D(P,P ′; 	,Q,
,F)dP ′, (48)

Ln(	,Q,
,μ̃,T̃ ,F) = −
∫ ∞

−∞
V n(P )dP

∫ P

−∞

1

cosh2
√

1+P ′2−μ̃

2T̃

D(P,P ′; 	,Q,
,F)dP ′, (49)

M(μ̃,T̃ ) =
∫ ∞

−∞

dP

cosh2
√

1+P 2−μ̃

2T̃

, (50)
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where

D(P,P ′; 	,Q,
,F) = exp

(
i
(	 + i
)(P − P ′) − Q(

√
1 + P 2 − √

1 + P ′2)

F


)
. (51)

Equations (47)–(51) determine the current-driven nonlocal
frequency-dependent conductivity of an array of graphene
nanoribbons as a function of the frequency 	, wave-vector
Q, scattering rate 
, chemical potential μ̃, temperature T̃ ,
and the driving dc electric field F . Without the driving field,
F = 0, the function S is reduced to S0,

S(	,Q,
,μ̃,T̃ ,F = 0) = S0(	,Q,
,μ̃,T̃ ) (52)

defined in Eq. (28).
The effective dielectric function is introduced like in

Sec. II G; it is now related to the function S:

ε2D(q,ω) = 1 + i
gsgv

π

|Q|
	

e2

�vF κ

Wy

ay

NS(	,Q,
,μ̃,T̃ ,F).

(53)

The formula for the absorption coefficient A in the current-
driven system of graphene nanoribbons is given by Eq. (32),
in which the function σ2D(q,ω) and ε2D(q,ω) should be taken
from Eqs. (46) and (53), respectively.

The formulas (46), (53), and (32) determine the electrody-
namic response of the system of graphene nanoribbons driven
by a strong dc current. In order to proceed further and plot the
corresponding figures we have to numerically calculate the
integrals Kn, Ln, and M in Eqs. (48)–(50). The integral (50)
can be easily calculated since the integrand of this function
is a localized function of P . The integrals Ln and, especially,
Kn require a careful treatment since they are, in fact, a double
(Ln) and triple (Kn) integrals with strongly oscillating (due to
the exponential function D) integrands. The method utilized
for numerical evaluation of such integrals is briefly described
in the Appendix.

C. Dynamic conductivity and absorption: Results

Using the numerical integration technique described in the
Appendix we now calculate the dynamic conductivity and the
absorption coefficient of a current-driven system of graphene
nanoribbons at different values of the input parameters.
Figure 9 shows typical spectra of the real and imaginary
parts of the dimensionless conductivity (47). The parameters
μ/�0 = 1, 
 = 0.2, and T/�0 = 0.2 are the same as in Fig. 3,
the wave vector Q = 1. In Fig. 9 we show the spectra both at
negative and positive frequencies. Since we have searched
for a solution in the form ∝eiqx−iωt , the positive (negative)
frequencies correspond to the wave running in the positive
(negative) direction of the x axis. Since the drift velocity of
electrons is positive at E0 < 0, at positive frequencies the wave
and electrons move in the same direction, while at negative
frequencies they move in the opposite directions.

As seen from Fig. 9, at F = 0 (black solid curves) the real
(imaginary) part of the dynamic conductivity is an even (odd)
function of the frequency 	. The real part has two symmetric
maxima at |	| � 0.62 which means that the waves running in
opposite directions are absorbed equally and that the maximum

absorption is the case for the wave running with the phase
velocity ω/q � 0.62vF . Similar features can be seen in the
absorption spectra, Fig. 10, but the maxima are the case at
|	|/Q � 1 and the absorption lines are a bit narrower, which
is due to the influence of the dielectric function (53) in the
denominator of Eq. (32).

When the dc field is switched on, F > 0, the position and
the linewidth of the conductivity and absorption resonances
are modified. If 	 < 0 (the wave and the electron beam
propagate in opposite directions) the resonance is shifted to
the lower frequencies and gets broader. At positive frequencies
(the wave and the electron beam propagate in the same
direction) the resonance is first shifted to a larger 	 and
gets slightly narrower (at F � 2); at stronger dc fields (at
F � 2) it broadens again. The most interesting feature of the
conductivity and absorption spectra is the appearance of a
finite frequency interval where the real part of the conductivity
and of the absorption coefficient becomes negative, see details
in Fig. 10(b). The negative absorption means that the wave
is amplified taking the energy from the electron beam. This
effect is the case only if the wave and electrons run in the
same direction (	 > 0) and if the frequency satisfies a critical
condition 	 < 	cr, where 	cr(F) depends on the driving dc
electric field and other system parameters. Another interesting
point M (−)(F) = (	(−)

max,A(−)
max) characterizes the position of

the maximum negative absorption, see Fig. 10(b).
At Q = 1 and F = 4 the critical frequency 	cr(F = 4)

is about 0.78 and the maximum negative absorption is about
A(−)

max(F = 4) ≈ 0.2% at 	(−)
max(F = 4) ≈ 0.58. At the physical

parameters outlined in Sec. II B the values of 	 = 0.78
and 0.58 correspond to 480 and 360 GHz, respectively. The
amplification coefficient 0.2% does not seem to be small if to
remember that we are dealing with only a monolayer of atoms
with the very low areal density of electrons �2.3 × 108 cm−2

[at parameters from Sec. II B, see the estimate in Eq. (12)].
If the wave-vector Q is two times larger, Fig. 11(a), the crit-

ical frequency 	cr(F = 4) increases up to 	cr(F = 4) ≈ 1.54
(corresponds to ≈0.95 THz) but the maximum amplification
(negative absorption) decreases,A(−)

max(F = 4) ≈ 0.11%. If the
wave vector gets smaller, see Fig. 11(b) for Q = 0.2, the
value of A(−)

max(F = 4) ≈ 0.41% increases, but the critical
frequency 	cr(F = 4) ≈ 0.156 (corresponds to ≈97 GHz)
decreases.

Figure 12 illustrates the influence of the scattering rate γ

on the absorption spectra. Here we show the spectra for the
F = 4 curves from Figs. 10(b) (Q = 1) and 11(b) (Q = 0.2)
together with two other curves corresponding to two times
smaller and two times larger values of the scattering rate γ .
We notice that the scattering rate γ enters two dimensionless
quantities 
 and F , see Eq. (9). Therefore reducing γ by a
factor of 2 leads to the reduction of 
 by the factor of 2 and to
the increase of F by the same factor. One sees that increasing
γ reduces both the negative absorption region (	cr decreases)
and the maximum amplification value A(−)

max.
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FIG. 9. (a) The real and (b) imaginary parts of the dimensionless dynamic conductivity (47) of an array of graphene nanoribbons at
μ/�0 = 1, 
 = 0.2, temperature T/�0 = 0.2, Q = 1, and several values of the dimensionless driving dc electric field F .

For numerical parameters used in this paper (see Sec. II B)
the value of 
 � 0.2 corresponds to the mean free path
l � 1.3 μm. The l values of this (and larger) scale have been
observed in graphene sandwiched between two h-BN crystals,
e.g., Ref. [42]. It should be noticed that the scattering rate γ

should be considered as a phenomenological parameter which
may depend, for example, on the electron density, temperature,
or dc electric field. For example, at F � 1 electrons may get
enough energy to emit optical phonons or to be scattered
to higher electron subbands. The first process is however
unlikely since the typical energy of the optical phonons in the
considered systems (∼50–100 meV) is 20–40 times larger than
the energy scale in our problem (�0 � 2.5 meV, Sec. II B).
The scattering to the higher subbands is more likely but we
believe that such a scattering should not dramatically influence
our results: the probability of the elastic (e.g., impurity)
scattering from |1,p+〉 to |k,p+〉 states is much higher than to
the |k,p−〉 states (due to the smaller momentum transfer) but

the processes |1,p+〉 → |k,p+〉 lead to small current changes
since after the scattering electrons continue to move in the
same direction (here the first number in the ket states denotes
the subband index, k > 1, and the |k,p±〉 states are the states
with the same energy but different, positive and negative,
momentum).

The influence of the temperature and the chemical potential
on the maximum value of the negative absorption is illustrated
in Fig. 13. One sees that the critical point 	cr slightly
grows with decreasing temperature and the chemical potential
(i.e., with decreasing the electron density). The maximum
amplification value A(−)

max has an optimum as a function of
both T̃ and μ̃. At the parameters of Fig. 13 this optimum
lies at approximately 0.24% and is achieved at μ̃ ≈ 1 and
T̃ ≈ 0.05–0.2.

The rather small value of the parameter T̃ � 0.2 cor-
responds, in the chosen numerical example with Wy =
400 nm and �0 ≈ 28 K (Sec. II A), to cryogenic temperatures
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FIG. 10. (a) The absorption coefficient A of an array of graphene nanoribbons at μ/�0 = 1, 
 = 0.2, temperature T/�0 = 0.2, Q = 1,
and several values of the dimensionless driving dc electric field F . Other parameters are κ = 2.45, Wy/ay = 0.5, the number of layers is 1.
(b) An enlarged area of (a) in the range of small and negative values of the absorption coefficient A. The points M (+) = (	(+)

max,A(+)
max) and

M (−) = (	(−)
max,A(−)

max) mark the positions of the maximum positive (at 	 < 0) and maximum negative (at 	 > 0) absorption.
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FIG. 11. The influence of the wave vector Q: The absorption coefficient A of an array of graphene nanoribbons at μ/�0 = 1, 
 = 0.2,
temperature T/�0 = 0.2, several values of the dimensionless driving dc electric field F , and (a) Q = 2 and (b) Q = 0.2. Other parameters are
κ = 2.45, Wy/ay = 0.5, the number of layers is 1.

T � 5.6 K. The operation temperature of devices based on
the discussed effect (e.g., of the Smith-Purcell-type emitter of
terahertz radiation, see discussion in Sec. V) can be increased
if the nanoribbons could be made substantially narrower. For
example, at Wy = 10 nm the gap corresponds to �0 � 1120 K,
so that the room-temperature operation becomes feasible.

Analyzing all of the so far presented results one can notice
that the critical frequency 	cr, which restricts the negative
absorption region from above, is related to the average velocity
of electrons in our system of graphene nanoribbons, Fig. 8.
Comparing the absorption plots with Fig. 8 one can observe
that 	cr ≈ QVdr. The amplification of the electromagnetic
wave is thus the case when the drift velocity of electrons
exceeds the phase velocity of the wave,

ω/q � v̄dr. (54)

Under this condition the electron flow transmits its energy
to the wave and amplifies it; under the opposite condition
the wave transmits its energy to the electron system which
leads to an additional damping of the wave and to the electron
drag effect (not studied here). Notice that being written in

the form (54) the amplification condition does not depend
on details of the considered structure and its parameters and
has therefore a larger range of applicability than the initial
model.

The studied phenomenon is closely related to the acousto-
electric effect, in which the running electric-field excitation
is created by a surface acoustic wave propagating in a
piezoelectric material underlying the 2D electron system. The
acoustoelectric interaction has been widely used and studied
in semiconductor structures with the 2D electron gas, see,
e.g., [43,44], as well as recently in graphene and other (e.g.,
MoS2) two-dimensional crystals [30–32]. It should be noticed
however that the discussed effect in graphene offers sub-
stantially more opportunities as compared to semiconductors:
while in semiconductors the drift velocity cannot be made
very high so that one can only study the interaction of the
drifting electrons with the (relatively slow) acoustic waves
(ω/q � 105 cm/s), in graphene the drift velocity can approach
the Fermi velocity �108 cm/s, which makes it possible to study
the interaction of drifting electrons with faster electromagnetic
excitations, e.g., with 2D plasma waves. This work thus also
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FIG. 12. The influence of the scattering rate γ : The absorption coefficient A of an array of graphene nanoribbons at (a) Q = 1 and (b)
Q = 0.2; other parameters are μ/�0 = 1, T/�0 = 0.2, κ = 2.45, and Wy/ay = 0.5.
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FIG. 13. The influence of the temperature and the chemical potential: The absorption coefficient A of an array of graphene nanoribbons at

 = 0.2, Q = 1, F = 4, and (a) different temperatures at μ/�0 = 1 and (b) different chemical potentials μ̃ at T̃ = 0.2. Other parameters are
κ = 2.45, Wy/ay = 0.5, the number of layers is 1.

contributes to the theory of graphene-based voltage-tunable
terahertz emitter proposed and discussed in Refs. [28,29].

Finally, we would like to discuss the following point. The
absolute value of the amplification factor A(−)

max was found
to be rather small, below ∼0.5%, which is mainly due to
the low density of electrons in a system which has only one
(structured) monolayer of carbon atoms. Naturally the question
arises, whether the factor A(−)

max can be increased by forming a
many-layered system of parallel graphene-nanoribbon arrays.
Figure 14 answers this question. It shows the absorption
spectra of an array of the current-driven graphene nanoribbons
for different numbers of layers N . At N = 1 the maximum
negative absorption A(−)

max is about 0.24%. When N increases,
the absolute value of A(−)

max first grows with N , indeed, but
at N � 3 it reaches a maximum (�0.3%) and then decreases
again. Such a behavior becomes clear from Eqs. (32), (46),
and (53): The number of layers N enters both the nominator
(∼N ) and the denominator (which grows as ∼N2 at N → ∞).
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FIG. 14. The influence of the number of layers: The absorption
coefficient A of an array of graphene nanoribbons at μ/�0 = 1,

 = 0.2, T/�0 = 0.2, Q = 1, κ = 2.45, Wy/ay = 0.5 at different
numbers N of the graphene-nanoribbons layers.

The suppression of the factor A(−)
max at large N is thus due to the

dielectric function (53). This suppression is unavoidable but
may depend on (and be controlled by) the specific dielectric
environment. By a special design of the environment one can
probably increase the absolute value of the amplification factor
A(−)

max but this problem is not considered in the present work.

V. CONCLUSIONS

To summarize, we have studied the wave vector, frequency,
dc electric field, scattering rate, electron density, temperature,
and the number-of-layers dependence of the dynamic con-
ductivity, dielectric function, and the absorption coefficient
in a direct current-driven array of graphene nanoribbons.
The influence of the dc electric field is taken into account
nonperturbatively, the influence of the ac field—within the
linear response theory, the scattering processes—within the
simple relaxation time approximation. We have shown that,
at frequencies satisfying the condition (54), the propagating
electromagnetic wave can be amplified at the expense of the
energy of the direct current source. We have analyzed the
optimal conditions for the wave amplification depending on
all system parameters.

We have assumed that the external electric field acting on
the system is given by the formula (1) but did not discuss
how the ac part of this field is created. This can be done by
different means. For example, the running electric-field wave
can be produced by the surface acoustic waves propagating
along the surface of a piezoelectric material covered by
graphene [30,31], a semiconductor 2D crystal [32], or by a
graphene nanostructure as considered in this paper. In this case
the phase velocity of the wave is about ω/q � 6 × 105 cm/s
(ω/qvF � 6 × 10−3) and the required drift velocity and the dc
electric field are very low (v̄dr/vF � 1, F � 1), see Fig. 8.

Another opportunity to create the running electric-field
wave (1) is to irradiate the graphene-nanoribbon array
with an adjacent grating structure by electromagnetic radi-
ation [28]. The grating transforms the incident wave to the
electromagnetic excitation running along the 2D layer with
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the phase velocity ω/q � c (with c being the speed of light),
thus realizing a Smith-Purcell-type emitter of radiation [45].
In this case the phase velocity of the wave can be comparable
with the Fermi velocity of electrons in graphene, ω/q � v̄dr �
vF ≈ 108 cm/s, which make it feasible to extend the operation
frequency range up to terahertz. Attempts to realize such
emitters of terahertz radiation have been made in the past
on the basis of semiconductor structures [46,47], for reviews
see, e.g., [37,48,49]. Recently it has been proposed to use
graphene for this purpose [28,29]. This work thus contributes
to the realization of graphene-based voltage-tunable emitters
of subterahertz and terahertz radiation.
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APPENDIX: METHOD OF CALCULATING
THE INTEGRALS

We aim to develop an efficient method of a numerical
evaluation of the following integrals:

Zn(	,Q,
,μ̃,T̃ ,F) = −
∫ ∞

−∞
V n(P )dP

∫ P

−∞
U(P ′,μ̃,T̃ ,F)

×D(P,P ′; 	,Q,
,F)dP ′, (A1)

where n = 0,1, D(P,P ′; 	,Q,
,F) is the exponential func-
tion (51) and V (P ) is the dimensionless velocity (39). The
functions Kn and Ln in Eqs. (48) and (49) are special cases
of (A1) if

U(P,μ̃,T̃ ,F) = df0(P,μ̃,T̃ ,F)

dP

= f0(P,μ̃,T̃ ,F) − feq(P,μ̃,T̃ )

F (A2)

and

U(P,μ̃,T̃ ,F) =
(

cosh

√
1 + P 2 − μ̃

2T̃

)−2

, (A3)

FIG. 15. (a) The real (solid black curve) and imaginary (red dashed curve) parts of the integrand (A7) if the complex variable Z varies
along the real axis [path 1: Z = X, X := (A → ∞)]; (b) the real and (c) imaginary parts of the integrand (A7) if Z varies along the path 2:
Z = X + iY (X), X := (A → ∞), where Y (X) is chosen so that the oscillations are minimized. Inset in (b) shows both paths. The parameters
used in these plots are n = 0, 	 = 3, Q = 1, 
 = 0.2, F = 1, A = 0.
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respectively; here

feq(P,μ̃,T̃ ) = 1

1 + exp
(√

1+P 2−μ̃

T̃

) (A4)

is the equilibrium Fermi distribution function expressed in the dimensionless variables. A direct numerical integration in Eq. (A1)
runs into problems: the function D(P,P ′) strongly oscillates, which leads to a very long integration time as well as to error
messages like “the required accuracy was not achieved.” To solve this problem we had to find a more elegant way to calculate
the integral (A1).

First, let us change the order of integration over dP and dP ′ and make the substitution P ′ = sinh A, P = sinh X. This gives

Zn(	,Q,
,μ̃,T̃ ,F) =
∫ ∞

−∞
U(sinh A,μ̃,T̃ ,F)Vn(	,Q,
,F ,A) cosh AdA, (A5)

where the new function Vn is defined as

Vn(	,Q,
,F ,A) = −
∫ ∞

A

tanhn X cosh XdX exp

(
i
(	 + i
)(sinh X − sinh A) − Q(cosh X − cosh A)

F


)
. (A6)

The function U(sinh A,μ̃,T̃ ,F) in Eq. (A5) is smooth and localized, therefore the problem is only in the functions
Vn(	,Q,
,F ,A), Eq. (A6). The integrand in (A6) is a strongly oscillating function of X. But, considering it as a function
of a complex variable Z,

tanhn Z cosh Z exp

(
i
(	 + i
)(sinh Z − sinh A) − Q(cosh Z − cosh A)

F


)
(A7)

(here n = 0 and 1), we see that it is an analytical function in the whole complex plane Z. Therefore we can choose another
integration path from the point Z = A to the complex infinity without changing the value of the integral. Choosing the integration
path so that the integrand oscillations are substantially suppressed we can calculate the integrals Vn(	,Q,
,F ,A) much faster
and without error messages.

Figure 15 illustrates this approach. In Fig. 15(a) we show the real and imaginary parts of the integrand (A7) if Z varies along
the integration path 1 (the real axis Z = X); the path 1 is shown by the black line in the inset to Fig. 15(b). One sees that both
the real and imaginary parts weakly decay and strongly oscillate when X increases. In Figs. 15(b) and 15(c) we choose another
path, Z(X) = X + iY (X), A < X < ∞, shown by the blue curve in the inset to Fig. 15(b). The real and imaginary parts of the
integrand (A7) [shown in Figs. 15(b) and 15(c), respectively] tend to zero much faster and without oscillations. The path 2 may
depend on parameters 	, Q, 
, and A but a suitable path can always be found.
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