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Impurity scattering and Friedel oscillations in monolayer black phosphorus
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We study the impurity scattering effect in black phosphorene (BP) in this work. For a single impurity, we
calculate the impurity-induced local density of states (LDOS) in momentum space numerically based on a
tight-binding Hamiltonian. In real space, we calculate the LDOS and Friedel oscillation analytically. The LDOS
shows strong anisotropy in BP. Many impurities in BP are investigated using the T -matrix approximation when
the density is low. Midgap states appear in the band gap with peaks in the DOS. The peaks of midgap states
are dependent on the impurity potential. For finite positive potential, the impurity tends to bind negative charge
carriers and vice versa. The infinite-impurity-potential problem is related to chiral symmetry in BP.
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I. INTRODUCTION

Graphene has remarkable electronic, optical, and mechani-
cal properties and shows promising applications in electronic
devices [1]. Since the successful production of graphene in
2004 [2], there have been many studies on graphene both
experimentally and theoretically [1]. However, due to its
gapless spectrum, graphene is not a good candidate for on-off
devices. It is desirable to find two-dimensional materials with
a tunable gap which can be utilized as on-off devices. A
promising candidate reported in recent years is monolayer
black phosphorene (BP), which has a direct band gap [3].

Monolayer BP has been fabricated in the laboratory using
the exfoliation method [3]. Since then, more and more works
have focused on single-layer and few-layer BP [4–10]. Bulk
BP has a band gap of 0.31–0.35 eV, and single-layer BP has
a band gap of about 1.5 eV [3]. Monolayer BP has large
mobility as well as a band gap which makes it a promising
material in electronic devices. It has different masses along
the armchair and zigzag directions. This anisotropy has a great
impact on its transport and optical properties. For example,
Low et al. [6] studied the plasmons in BP and found that the
plasmon excitations have different dispersions along different
directions.

Impurity is introduced in the process of fabricating mate-
rials. Because an impurity can affect the properties of devices
remarkably, it is important to understand the impurity effects in
monolayer BP. Impurities could be introduced in many ways.
Substrates provide a source of impurities, and the adsorbed
atoms on BP or missing atoms in BP can induce vacancies and
so on [11]. Impurities provide scattering centers to carriers
and are the main contribution to the lifetime of carriers in
the low-temperature limit. We mainly focus on short-range
impurities in this paper [11]. Understanding impurity effects
in BP will provide useful information about this new fabricated
material.

To understand how an impurity affects carriers in BP, it is
necessary to study the density of states (DOS) of carriers.
The electronic DOS has many characteristics showing the
presence of impurities. There are many physical properties
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closely related to the DOS of carriers, such as electrical
conductivity, optical conductivity, and scanning-tunneling
microscope (STM) images. The DOS of carriers is also related
to the polarization of the system, which modifies the electronic
screening.

For a single impurity, the Fourier transform scanning
tunneling spectroscopy (FT-STS), which is Fourier trans-
formation of local density of states (FT-LDOS), can reveal
much information about carriers [12–16]. The FT-STS shows
interference patterns which originate from interference of
incoming waves and outgoing waves scattered by the impurity.
The scattering occurs on contours of constant energy, and
momentum is transferred from the impurity to carriers, so the
amplitudes in FT-STS can reveal what kind of scattering can
happen and also the properties of the impurity. For example,
the FT-STSs in monolayer graphene and bilayer graphene
show different signatures which can be used to distinguish
monolayer and bilayer graphene [14]. For surface states of a
three-dimensional topological insulator, the backscattering is
forbidden. Thus, when the FT-STS amplitude in experiment
is weak for the backscattering, it can be viewed as strong
evidence for the topological insulator [16]. Therefore, FT-STS
is a useful method to investigate material properties.

In real space, the disturbance of the impurity relocates
electrons, and the amplitude of the LDOS oscillates and decays
away from the position of the impurity. So the electron density
at position r which is obtained by summing the LDOS at r
up to Fermi energy will oscillate and decay in real space.
This is called Friedel oscillation (FO). In graphene, FO has
been studied in a series of papers [17,18]. FO decays as r−3

in graphene, and the oscillation wave vector is 2kF , with kF

being the Fermi surface wave vector.
For a finite but small density of impurities, peaks can show

up in the DOS. The states associated with these peaks are called
midgap states because they appear inside the band gap [7]. In
graphene, the midgap states appear at Dirac points where the
DOS is zero [19]. These midgap states can be viewed as bound
states attracted by the impurity potential.

In this work, we first study FT-STS in BP which is
caused by a single impurity; the numerical results are based
on a four-band tight-binding Hamiltonian in BP using the
T matrix [19–25]. This problem has been investigated in
graphene and in topological insulators [13,16]. However, the
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strong anisotropy in BP has a strong influence on FT-STS,
and it is useful to study these anisotropy-related effects in BP.
For a single impurity, FO in real space is also investigated
based on a two-band model of BP [5]. For the case of
many impurities, we focus on short-range and low-density
impurities. We present calculations of DOS in BP using both
a T -matrix approximation (full Born approximation) and a
self-consistent T -matrix approximation (full self-consistent
Born approximation) [24,25]. The T matrix is exact for a
single impurity and also a good approximation for many
impurities as long as the density is low and impurity is short
range [25].

The rest of the paper is organized as follows: In Sec. II we
introduce the T -matrix method and also the self-consistent
T -matrix method. In Sec. III we calculate FT-STS in BP
induced by a single impurity. Section IV gives the Friedel
oscillation in BP, and Sec. V deals with the low density
of impurities using both the T -matrix and self-consistent
T -matrix methods. Finally, we conclude in Sec. VI.

II. HAMILTONIAN OF BP AND THE T MATRIX

We start with our calculation using the tight-binding model
of monolayer BP. BP has the same structure as graphene but
with the atoms puckered. There are four phosphorus atoms in
the unit cell of BP, as shown in Fig. 1(a), and the four-band

FIG. 1. Lattice structure of monolayer black phosphorene. (a)
Red (blue) atoms represent the upper (lower) layer; there are four
atoms in a unit cell, which are labeled A, B, C, and D. The unit-
cell size along the x direction is ax = 4.43 Å, and that along the y

direction is ay = 3.27 Å. (b) The first Brillouin zone (BZ) of BP.
(c) Energy dispersion of monolayer BP along the x (solid) and y

(dashed) directions. (d) Momentum transferred by impurity scattering
at the energy contour.

Hamiltonian is

H (k) =

⎛
⎜⎜⎝

0 fAB fAC fAD

f ∗
AB 0 fBC fBD

f ∗
AC f ∗

BC 0 fCD

f ∗
AD f ∗

BD f ∗
CD 0

⎞
⎟⎟⎠, (1)

where

fAB = t1(1 + e−ikyay ) + t3(e−ikxax + e−ikxax−ikyay ),

fAC = t4(1 + e−ikyay + e−ikxax + e−ikxax−ikyay ),

fAD = t2e
−ikxax + t5,

fBC = t2 + t5e
−ikxax ,

fBD = t4(1 + eikyay + e−ikxax + e−ikxax+ikyay ),

fCD = t1(1 + eikyay ) + t3(e−ikxax + e−ikxax+ikyay ), (2)

with ax , ay given in Fig. 1(a). A, B, C, and D denote the four
atoms in the unit cell. The tight-binding parameters read t1 =
−1.220 eV, t2 = 3.665 eV, t3 = −0.205 eV, t4 = −0.105 eV,
t5 = −0.055 eV [26].

In this work we assume the impurity is short range and
can be modeled as a δ function potential. In the vicinity of
the Dirac point in graphene, long-range Coulomb impurity
is the main source of scattering [11], while in BP the
Coulomb impurity can be treated as short range because
of screening. As a result, we mainly focus on short-range
impurity. The impurity potential written in k space is assumed
to be

U = u

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, (3)

where u is constant in k space. The only nonzero element
of U in the first row and first column means the impurity is
near or resides on the single A atom. This kind of impurity
can be used to model hydrogen adsorbed on BP or dopants
such as carbon, silicon, sulfur, and oxygen [27]. We take
u → ∞ for vacancies. In the single-impurity problem, we
fix the position of the impurity in the first unit cell and take
the impurity site as the origin in real space. In the case of
a low-density concentration of impurities, we fix the number
of impurities, and their positions are randomly distributed in
the system. The final results take the average over all possible
configurations of impurities. The Born approximation is often
introduced in the calculation if u is small and the impurity
is short range, but when a bound state is formed near the
impurity, the Born approximation is not justified. Instead, the
T matrix should be introduced in the calculation when bound
states are formed [23]. The T matrix is exact for a single
impurity for any value of u. For a low-density concentration
of impurities or vacancies, the T -matrix approximation is also
a good approximation [24]. We also calculate the DOS using
the self-consistent T -matrix approximation and find that they
do not make big differences.

For a single impurity, the LDOS is obtained by taking the
imaginary part of the full Green’s function. The full Green’s
function is carried out using the T matrix and Matsubara
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frequency [24]. Written in momentum space, it is

G(k1,k2,iωn) = G0(k1 − k2,iωn)

+G0(k1,iωn)Timp(k1,k2,iωn)G0(k2,iωn),

(4)

where the Timp matrix satisfies the self-consistent equation

Timp(k1,k2,iωn) = U (k1,k2)

+
∑

k′
U (k1,k′)G0(k′,iωn)Timp(k′,k2,iωn)

(5)

and the zeroth Green’s function in momentum space is

G0(k,iωn) = [iωn − H (k)]−1 iωn→ω+iη= [ω + iη − H (k)]−1,

(6)

where η is set to 0.01 eV in our numerical calculation.
Since BP has four atoms in a unit cell, the above equations

are a 4 × 4 matrix equation. Then the T matrix can be obtained
as

Timp(iωn) = V

I − V/N
∑

k∈BZ G0(k,iωn)
, (7)

where the summation is over the first Brillouin zone (BZ), I

is a 4 × 4 identity matrix, and N is the number of unit cells of
BP. In the unitary limit (u → ∞) the T matrix reduces to

Timp(iω) = −[
G

0
AA(iω)

]−1

⎛
⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠, (8)

where

G
0
AA(iωn) = 1

N

∑
k∈BZ

G0
AA(k,iωn). (9)

Here and throughout the paper, the subscripts A, B, C, and D

are used to denote the corresponding matrix element of lattices
in the unit cell as shown in Fig. 1(a).

The LDOS induced by a single impurity located at the
origin is

δρ(q,iωn) = − 1

Nπ

∑
k∈BZ

[δG(k,k + q) − δG∗(k,k + q)],

(10)
where

δG(k,k + q) = G(k,k + q) − G0(k,k + q). (11)

For many impurities, we take the low density into account,
i.e., small ni = Ni/N , where Ni is the number of impurities.
We average over all possible positions of impurities and
approximate the Green’s function of carriers to first order in
ni using the T -matrix approximation. The Green’s function is

G(k,iωn) = G0(k,iωn) + G0(k,iωn)T (iωn)G(k,iωn), (12)

which can be solved as

G(k,iωn) = {[G0(k,iωn)]−1 − T (iωn)}−1. (13)

In the above equations, the T matrix is T (iωn) = Uni[1 −
UG

0
(iωn)]−1. If we use the self-consistent T -matrix approach,

the T matrix becomes T (iωn) = Uni[1 − UG(iωn)]−1, where
G(iωn) = 1/N

∑
k G(k,iωn). The difference between the

T -matrix approximation and the self-consistent T -matrix
approximation is that T matrix uses the the zeroth-order
Green’s function, while the latter uses the full Green’s function
in calculating T (iωn).

III. FT-STS FOR A SINGLE IMPURITY

It is necessary at the beginning to clarify some issues related
to experiments and the conditions under which our approach
is appropriate. FT-STS is related to the Fourier-transformed
LDOS ρ(ri ,iωn), with ri being the position of the unit cell.
The experimental situation is complicated. If the tip of the
STM has high resolution, then the LDOS related to each of
the four atoms can be detected. If the resolution is low, the
LDOS detected may be

∑
X=A,B,C,D ρXX(ri). In our work we

calculate ρAA(ri) for simplicity. In the zero-temperature limit,
it is assumed that for all other interactions, inelastic scattering
can be incorporated into the broadening for simplicity. The
reason is that in the low-temperature limit, inelastic scattering
is suppressed, the electron-electron interaction is screened, and
Landau’s Fermi-liquid picture is valid.

The FT-LDOS is calculated using Eq. (10), which is a
convolution integral essentially. The steps in the numerical
calculation based on the tight-binding model are as follows:
The zeroth-order Green function in k space on the right-hand
side of Eq. (4) is Fourier transformed to real space, and we
obtain G0(E + iη,ri) and G0(E + iη,−ri), respectively, and
then Fourier transform their products back to k space including
appropriate coefficients.

Before the presentation of numerical results, we discuss
how the scattering process influences the interference pattern
in FT-STS and do some analytical calculations. First, the
energy is conserved because the impurity is time independent;
namely, scattering between states occurs on the same energy
contour. Second, from Eq. (4), it is easily seen that the
dominant contribution to FT-STS is where energy ω is close to
the two poles of the two Green’s functions simultaneously. The
associated quantity is also called joint DOS [12]. Following
Pereg-Barnea and MacDonald [15], we use the k · p Hamil-
tonian and consider E located in the conduction band, taken
into account in the interband coupling as the renormalization
of conduction effective masses. The Green’s function to first
order in u has the form

δG(q,iω) = 1

N

∑
k

[
G0

AA(iω,k)uG0
AA(iω,k + q)

]
. (14)

Transforming the sum into an integral, using Feynman’s
parameter, changing variables kx → √

η′
ckx , ky → √

νcky , and
defining px = √

η′
cqx , py = √

νcqy , it becomes

δG(q,iω) = Ac

(2π )2

u√
η′

cνc

∫
d2k

1

iω − k2

1

iω − (k + p)2

= Ac

4π2

u√
η′

cνc

∫ 1

0
dx
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×
∫

d2k
1

[iω − k2 − x(1 − x)p2]2

= − 1

π

uAc√
η′

cνcp2

1√
4ω/p2 − 1

arctan
1√

4ω/p2 − 1
,

(15)

where Ac = axay is the area of a unit cell. Finally, the FT-
LDOS is

δρ(q,E) = 1

π2

uAc√
η′

cνcp2
ImF

(
4E

p2

)
, (16)

with

F(z) = 1√
z − 1

arctan
1√

z − 1
. (17)

The parameters η′
c and νc related to effective masses are given

in the next section.
According to Eq. (16), the FT-STS is zero outside the

contour p2 = 4E, i.e., η′
cq

2
x + νcq

2
y = 4E. This contour be-

comes a branch cut for F( 4E
p2 ). In numerical calculations, the

broadening of levels causes the FT-LDOS in regions outside
this contour to be nonzero. It is clear that the largest part lies
on this contour.

The numerical result is shown in Figs. 2(a)–2(d) with E =
0.3 eV, E = 0.7 eV, E = 1.5 eV, and E = 2.5 eV, respectively.
The scattering occurs on the contours of constant energy, and
the results show that the large amplitude of the FT-LDOS

FIG. 2. FT-LDOS in BP with (a) E = 0.3 eV, (b) E = 0.7 eV, (c)
E = 1.5 eV, and (d) E = 2.5 eV. The red dashed rectangle denotes
the first BZ. In the calculation of FT-LDOS, we set u = 2 eV. The
largest part in the LDOS is shown by the elliptic contours.

comes from scattering exchanging momentum q = 2kF with
kF , corresponding to the Fermi wave vector. There is only
intraband scattering in BP, while in graphene scattering can
happen between two nonequivalent K points. However, BP
shows strong anisotropy in FT-STS. The prominent feature is
that the constructive interference occurs on elliptic contours,
which is consistent with Eq. (16). The largest part of the
FT-LDOS in BP is backscattering, where momentum transfer
is two times the Fermi wave vector; that is, the scattering
just reversed the wave vector. It is reasonable to consider
other kinds of impurities. For example, the bridge-adsorbed,
top-adsorbed impurity [27,28]. The FT-STS shows similar
behavior for all these impurities. The FT-STS is mainly due to
the truncation of the electron sea at the Fermi surface, and the
oscillation period is 2kF .

Note there are also small interference patterns inside
the elliptic contours in Fig. 2. These small parts of the
FT-LDOS are due to terms proportional to the product
Re 1

E+iη−ε(k) Im
1

E+iη−ε(k+q) , with k fixed around a point on the
energy contour and q being variable. This small contribution
also exists in the FT-LDOS in graphene, but the isotropy in the
energy dispersion makes this part the same in all directions,
and it will not emerge. In BP, this small part has different
values in different directions, and the smallest part emerges.
The incoming waves interfere with the outgoing waves after
scattering, which is called FO in real space. We study it in
detail in the next section. The strong anisotropy in FT-STS of
BP makes the pattern easier to identify in STM experiments.

Finally, it is worth comparing FT-STS in BP to that
in graphene [13]. In graphene, the FT-STS has one circle
around the 	 point and six circles around six corners of
the BZ for each one. The circle around the 	 point is due
to intravalley scattering, while the other circles are due to
intervalley scattering. The intravalley-scattering-induced FT-
STS has a long oscillation wavelength and is easily detectable
in experiments. The intervalley-scattering-induced FT-STS
has a wavelength of oscillation comparable to the lattice.
For BP, the situation is different. There is only scattering
around the 	 point, and the FT-STS pattern has only one circle
around the center of the BZ when the Fermi energy is near
the bottom of the conduction band or the top of the valence
band. When the Fermi energy increases, the wave vector of
the oscillation increases and finally meets the BZ. The large
wave-vector oscillation mode appears when the Fermi energy
increases while in the graphene large wave-vector oscillation
mode appears no matter where the Fermi energy lies. In
conclusion, intervalley scattering and intravalley scattering
occur in graphene, while only intravalley scattering occurs
in BP. So the commensurate effect for FT-STS occurs at any
Fermi energy in graphene due to intervalley scattering, while
in BP the effect only occurs when the Fermi energy is large
enough.

IV. THE k · p HAMILTONIAN AND FO IN BP

To investigate FO in BP, we use the 2 × 2 k · p Hamiltonian
of BP. The Hamiltonian can be described as [4,5]

Hkp =
(

Ec + ηck
2
x + νck

2
y γ kx

γ kx Ev − ηvk
2
x − νvk

2
y

)
, (18)
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where the subscript c (v) labels the conduction (valence) band,
ηc,v and νc,v are related to the effective masses by η(c,v) =
�

2/2m(c,v)x and ν(c,v) = �
2/2m(c,v)y , and the mass parameters

are mcx = 0.151me, mcy = 1.062me, mvx = 0.122me, mvy =
0.708me, with me being the free-electron mass. Ec = 0.34 eV
(Ev = −1.018 eV) is the conduction (valence) band edge,
and γ = −5.231 eV Å is the interband coupling coefficient.
The corresponding Green’s function in this section has matrix
components in conduction bands and valence bands, and the
subscripts c and v are used to denote the corresponding matrix
element. This Hamiltonian can be obtained from the tight-
binding Hamiltonian by low-energy expansion to second order
of k near the 	 point based on D2h symmetry of BP [5]. The
k · p Hamiltonian has strong anisotropic masses along the x

and y directions, and we will use it to calculate FO in BP.
Here we briefly describe how to obtain Eq. (18) from

tight-binding Hamiltonian (1). The details can be found in
Refs. [5,26]. The eigenvector of tight-binding Hamiltonian (1)
is given by [φAφBφCφD]. Using unitary transformation

1√
2

⎛
⎜⎝

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞
⎟⎠, (19)

the tight-binding Hamiltonian can be reduced to a block-
diagonal Hamiltonian with each block being a 2 × 2 Hamilto-
nian, of which the eigenvector is

� = 1√
2

(
φA + φC

φB + φD

)
. (20)

So BP can be described by a 2 × 2 Hamiltonian. After a
rotation of the Pauli matrices τx �→ τz followed by τy �→ τx

[5], this 2 × 2 Hamiltonian is transformed into Eq. (18). Under
this rotation, the impurity potential U is transformed into

U = u/
√

2

(
1 −i

i 1

)
. (21)

In this section, we use the Born approximation, which is
enough to calculate FO. To first order in U , the modified
Green’s function in real space is

G(r,iωn) = G0(r,iωn)UG0(−r,iωn)

=
(

G0
cc(r,iωn) G0

cv(r,iωn)

G0
vc(r,iωn) G0

vv(r,iωn)

)
u√
2

(
1 −i

i 1

)

×
(

G0
cc(−r,iωn) G0

cv(−r,iωn)

G0
vc(−r,iωn) G0

vv(−r,iωn)

)
. (22)

The Green’s function in k space is

G0(k,iωn) =
(

G0
cc(k,iωn) G0

cv(k,iωn)

G0
vc(k,iωn) G0

vv(k,iωn)

)

= 1

iωn − Hkp

. (23)

For convenience, we denote

g ≡
[
iωn −

(
Hcc 0

0 Hvv

)]−1

(24)

and take the nondiagonal part ( 0 γ kx

γ kx 0 ) as a perturbation to

get G0(k,iωn). We will see the Hamiltonian can be reduced to
a single-band problem if we study FO with E > Ec.

Let the Fermi energy EF lie in the conduction band
such that kF 
 min(1/ax,1/ay) and we study the Friedel
oscillation in BP. The k-space Green’s function Gcc = (g−1

cc +
HcvgvvHvc)−1, Gcv = gccHcvGvv . Since ηvk

2
xF

+ νvk
2
yF



(Ec − Ev), we expand HcvgvvHvc in 1/(EF − Ev), keeping
terms up to quadratic in k, and obtain G0

cc(iω → E + iη) =
1

E+iη−ηck2
x−νck2

y−Ec− γ 2k2
x

Ec−Ev

. The nondiagonal part Gcv is ne-

glected in our calculation since γ kxF
/(EF − Ev) 
 1. Written

in real space,

G0
cc(r,E) = 1

N

∑
k

exp ik · r
E − η′

ck
2
x − νk2

y − Ec

= −i
Ac

2
√

η′
cνc

H
(1)
0

(
r ′

√
E − Ec√

η′
cνc

)
,

(25)

where η′
c ≡ ηc + γ 2/(Ec − Ev), r ′2 ≡ (

√
νc

η′
c
x2 +

√
η′

c

νc
y2), and

H
(1)
0 (z) is the first-kind Hankel function. In this section, we

denote z = r ′
√

E−Ec√
η′

cνc

for convenience.

The impurity-induced LDOS in real space is obtained from
Eq. (22),

δρ(E,r) = − 1

π
Im[G(E,r)UG(E,−r)]cc

= Gcc(E,r)
u√
2
Gcc(E,−r)

=
√

2u

16π
A2

cJ0(z)Y0(z). (26)

For a large distance away from the impurity position, i.e.,
z � 1, keeping the leading terms in J0(z)Y0(z) =
− cos(2z)/πz and integrating δρ(E,k) from the edge of the
conduction band to the Fermi energy, the leading part in FO
induced by impurity over the large distance is

δn(r) =
√

2u

16π

A2
c

η′
cνc

sin
(
2
√

EF

η′
c
x2 + EF

νc
y2

)
x2

η′
c
+ y2

νc

, (27)

which is our main result in this section.
From Eq. (27), it is seen that FO is anisotropic in BP. The

oscillating part in the numerator is due to the discontinuity at
the Fermi surface. The anisotropy is related to different masses
along different directions. As shown in Fig. 1(d), the curvature
of the energy contour is different along the x and y directions.
The energy contour in the BZ can be approximately written as
E = η′

ck
2
x + νck

2
y with the same parameters as in Eq. (27) when

the Fermi energy lies in the conduction band. We conclude
this section by comparing FO in BP to that in graphene. In
graphene, the FO decays as r−3 due to the cancellation of
modes on neighboring sites which decay as r−2 [18]. However,
there is no such cancellation happening in BP because of the
large gap. In BP, the FO shows behavior similar to that of an
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ordinary two-dimensional electron gas (2DEG) which shows
r−2 behavior. Due to different masses of carriers in the x and
y directions, FO in BP oscillates anisotropically in the x and
y directions.

V. LOW DENSITY OF IMPURITIES

After the investigation of the single-impurity problem,
we turn to the many-impurity problem in this section. For
low-density impurities which are short range and have finite
amplitude, Born approximation is often sufficient. However,
to study midgap states in a band gap induced by impurities,
Born approximation is not appropriate, and we use the T

matrix instead. Impurity is the main source of lifetime for
carriers in the low-temperature limit; therefore it is useful
to calculate the impurity-induced DOS. We first study the
problem of impurities with u → ∞, and then the t4 = 0
problem is considered. Next, the finite-v case is investigated.
Finally, we study impurities which have amplitude on all four
sites for completeness.

Before going into a detailed analysis of numerical results,
it is worth understanding the origin of midgap states. For a
single impurity, it is seen from Eq. (4) that impurity-induced
bound states comes from poles of Timp(E). For many impurities
with a small density, it will be seen that midgap states are
related to the poles of T (iω) in Eq. (12). Remember that for a
low-density impurity, the T -matrix approximation is justified

and T (E) = Uni[1 − UG
0
(E + iη)]−1. The DOS is

ρX(E) = −1/Nπ Im

[ ∑
k

GXX(k,E + iη)

]
, (28)

where X denotes A, B, C, or D and G(k,E + iη) is given in
Eq. (13). If there is no impurity, BP has crystal symmetry D2h,
and DOS on A (B) is equal to that on C (D) [5].

The DOS is related to poles of Green’s function. Midgap
states come from new poles associated with impurity. Expand-
ing the right-hand side of Eq. (13) to first order in ni , i.e.,
G = G0 + G0T (iω)G0, it is seen that new poles come from
T (iω). To first order in ni , the midgap states appear at E,
satisfying

det

[
I − V

∑
k

G0(k,E + iη)

]
= 0; (29)

because bound states appear for a single impurity, we denote
the solution of this equation as Eimp. It is worth noting that
our analysis is not suitable for long-range or high-density
impurities where the interference effect is important.

We compute numerically the DOS in BP in the presence of
impurities. The site-dependent DOS is obtained from Eq. (28).
We first consider impurities of the form of Eq. (5) and take
the limit u → ∞. As shown in Fig. 3, we plot DOS on sites
A, B, C, and D in BP separately. It can be seen in Fig. 3
that the DOS on atom A [Fig. 3(a)] shows little evidence of
bound states, while the DOS on atom B [Fig. 3(b)] has midgap
states. The limit u → ∞ means atom A decouples from the
system; the states belonging to the missing A atoms now have
zero amplitude on site A, and bound states may emerge. The
DOS on atoms C and D shows similar behavior to the DOS on
atoms A and B, respectively, because atom A (B) is connected

FIG. 3. DOS on lattices (a) A, (b) B, (c) C, and (d) D in the case
of u → ∞. The DOS of midgap states on sites A and C is very low.
DOS on sites B and D shows peaks in the band gap which indicate
midgap states. The impurity density n is proportional to height of
peaks.

to atom C (D) through small next-nearest-neighbor t4, so the
midgap state tends to stay on atoms B and D.

To get a deeper understanding of midgap states in BP, we
note that the midgap states in BP are similar to midgap sates in
graphene in the presence of vacancies. In graphene, the midgap
states in the presence of vacancies appear near E = 0 eV
because of chiral symmetry of the graphene Hamiltonian.
Chiral symmetry in graphene is defined as σ3Hσ3 = −H ,
where σ are Pauli matrices acting on pseudospin [20]. Due
to chiral symmetry, if there is a state at energy ε, then there
is also another state at energy −ε. For every k, there are two
eigenstates for the graphene Hamiltonian H (k), with ε and −ε,
respectively. If one atom is decoupled from this Hamiltonian,
then only one state is allowed to exist, and this state must
appear at ε = 0 eV.

Midgap states in BP can also be explained in this way
because BP regains chiral symmetry if we set t4 = 0 eV. To
see this more clearly, we start from the 2 × 2 Hamiltonian in
Ref. [5], which reads

H2×2 =
(

fAC h

h∗ fAC

)
, (30)

where h is given in Ref. [5], the detailed expression of which is
not relevant here. The Hamiltonian (30) has chiral symmetry
if we set t4 = 0 eV. So the midgap states should appear near
E = 0 eV if t4 = 0 eV, and we verify this by plotting DOS
on sites A, B, C, and D, respectively, in BP where we have
omitted t4. The DOS is shown in Fig. 4. As expected, midgap
states appear near E = 0 eV, which is similar to graphene. So
midgap states in BP with nonzero t4 should also exist, except
they are shifted by an energy interval due to the nonzero t4.

For finite u, the position Eimp of midgap states shows
different behaviors for positive u and negative u. We plot
u = 10 eV and −10 eV in Figs. 5 and 6, respectively. As
already discussed, impurity density does not affect the position
of midgap states, although it may introduce new energy scales
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FIG. 4. DOS on sites (a) A, (b) B, (c) C, and (d) D with t4 = 0 and
u → ∞. With t4 = 0, BP preserves chiral symmetry, due to which
vacancies have bound states exactly at E = 0 eV

nu and nW , with W being the width of the band. Impurity
density only affects the heights of peaks. Position Eimp is
determined by u. Positive u tends to bind negative electrons
or positive holes, while negative u attracts positive electrons.
Note that there is a little difference between DOSs on sites A
and on C (also between sites B and D). The reason is that the
presence of impurity at site A breaks D2h symmetry and site
A is not equivalent to site C in the presence of impurity which
resides on site A.

For completeness we study the DOS in the presence of
impurities which reside on all four sites, that is to say, impurity
of the following kind:

U = u

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠, (31)

FIG. 5. DOS on sites (a) A, (b) B, (c) C, and (d) D at u =
10 eV. For finite u, DOS on sites A and C have finite amplitudes.
The positions of the peaks move towards valence bands compared
to u → ∞.

FIG. 6. DOS on sites (a) A, (b) B, (c) C, and (d) D at u = −10 eV.
For finite u, the DOS on sites A and C has a finite amplitude. The
positions of the peaks move towards conduction bands compared
to u → ∞.

which has the same amplitude on all four sites. As shown in
Fig. 7, there is no midgap states in the gap if we take u → ∞.
The DOSs on the four sites are the same, so we present DOS
on only site A. The impurity resides on all four sites in a unit
cell, so there is no site left to host a bound state with finite
energy. For finite u, there is a solution Eimp to equation (29). If
Eimp lies within the gap, midgap states will appear [21]. On the
other hand, if the solution Eimp lies in the bands, the impurity
will modify the DOS in the bands, and no midgap states are
induced [7].

Finally, the self-consistent T matrix is used to calculate
DOS. The self-consistent T matrix is also called the full
self-consistent Born approximation; it replaces the full Green’s
function with the zeroth-order Green’s function in the calcula-
tion of the T matrix. The same impurity problem as in Fig. 5
is calculated again using the self-consistent T matrix here.
The numerical result is shown in Fig. 8. There is no essential
difference from the T -matrix approximation which is shown in
Fig. 5; the self-consistent T -matrix method shows the position

FIG. 7. DOS on site A for impurity potential u → ∞ with the
form of Eq. (31), which has amplitudes on all four sites in BP. The
DOS on sites B, C, and D are the same as that on site A, which we
have not shown here. This kind of impurity does not bind states in
the band gap.
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FIG. 8. Self-consistent T -matrix calculation of impurity of the
form in Eq. (5). We set u = 10 eV as in Fig. 5. Self-consistent
calculation takes the finite lifetime of carriers into account, so the
width of the peaks is larger than results using the zeroth Green’s
function.

of Eimp is not changed and the amplitude is also proportional to
the height of the peaks. But there are some differences indeed.
The height and width of the peaks have changed. This can
be explained as follows: self-consistent calculation treats the
imaginary parts of self-energy more exactly, so the width of
the peaks in this approach is more reliable.

VI. DISCUSSION AND CONCLUSIONS

We have discussed the impurity problem in BP. For a single
impurity we calculated FT-STS in momentum space and FO
in real space. Numerical results of FT-STS are based on a
four-band tight-binding Hamiltonian, while FO is analytically
calculated based on a 2 × 2 k · p Hamiltonian. The scattering
is elastic, so the wave function will get phase shifted after
scattering. Due to the phase shift, the interference between
incoming and outgoing waves forms patterns in FT-STS.

The largest part of the interference amplitude comes from
backscattering in FT-STS. Because of the anisotropy in BP,
there are two features: one is that contours in FT-STS are
elliptic; the other is that small contours appear inside large
contours. FO also shows anisotropy in oscillation and decaying
directions. FO in BP is different from that in graphene in that
it decays as 1

x2/η′
c+y2/νc

in BP but as r−3 in graphene.
For the many-impurity problem, we calculated DOS in BP

and found that midgap states appear in the band gap. The
position Eimp of midgap states is related to the amplitude of
the impurity potential u. The density determines the height
of the peaks. The midgap states appear at E = 0 for u → ∞
when t4 is set to zero, which is due to chiral symmetry of the BP
Hamiltonian in the absence of t4. For finite u, the impurity site
tends to bind negative (positive) charge carriers for positive
(negative) v. We also calculated DOS using the self-consistent
T -matrix approximation and found the width of the peaks is
larger than the DOS using the T -matrix approximation.

In this work we have assumed the zero-temperature limit.
We have omitted inelastic scattering due to phonons and
electron-electron interactions. Indeed, at finite temperature,
phonon-mediated scattering is no longer energy conserved,
and it may have a large effect on FT-STS. The states over a
wide range of energy may take part in the scattering process,
and the phase space for scattering is enlarged compared to
the zero-temperature limit. So the phonon scattering may
not be ignored in FT-STS at finite temperature. For electron-
electron interaction, it has been shown that electron-electron
interactions have a strong influence on carriers near the Dirac
point in graphene [29]. The Fermi velocity will be reshaped,
and even the gap is opened at the Dirac point due to exciton
condensation [29]. So it is expected that electron-electron
interactions may have a great influence on the DOS in BP.
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