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We study the four-terminal junction of spinless Luttinger liquid wires, which describes either a corner junction
of two helical edge states of topological insulators or the tunneling from the spinful wire into the helical edge state.
We use the fermionic representation and the scattering state formalism, in order to compute the renormalization
group (RG) equations for the linear response conductances. We establish our approach by considering a junction
between two possibly nonequivalent helical edge states and find an agreement with the earlier analysis of
this situation. Tunneling from the tip of the spinful wire to the edge state is further analyzed which requires
some modification of our formalism. In the latter case we demonstrate (i) the existence of both fixed lines and
conventional fixed points of RG equations, and (ii) certain proportionality relations holding for conductances
during renormalization. The scaling exponents and phase portraits are obtained in all cases.
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I. INTRODUCTION

The advances in technology stimulate a renewed theoretical
interest in the properties of one-dimensional (1D) quantum
wires. The practical implementations of such systems include
carbon nanotubes, chains of metal atoms, or weakly side-
coupled molecular chains in solids. A new class of materials is
given by two-dimensional topological insulators (TIs), whose
edge states are ideal quantum wires [1,2]. This paper discusses
the transport via the junction between these edge states and its
renormalization by interactions.

The transport properties of 1D wires has been theoretically
studied since early 1990s in terms of Luttinger liquids
and within bosonization formalism [3–5]. It was found that
the interaction between fermions renormalizes the impurity
scattering, so that for repulsive interaction the conductivity of
the wire tends to zero in the limit of low temperatures, even
for one impurity. The bosonization approach considers the
interaction in the bulk of the wire exactly, while the impurity
is regarded as perturbation. In more sophisticated theories the
impurity is considered as certain boundary conditions for the
bulk fields, and the approach is generalized for the case of
junctions between several wires [6].

An alternative description using a more traditional
fermionic approach and S-matrix formalism was developed
in [7,8] for the case of one impurity; this approach was later
generalized to the case of junctions of several wires [9,10].
It was found that the renormalization of the S matrix by
interaction is described in terms of renormalization group
equations, which eventually defined the scaling exponents
of the conductance behavior. The initial formulation of the
fermionic S-matrix approach assumed that the bulk interaction
was considered only in the lowest order, and this might be re-
garded as some disadvantage in comparison with bosonization.
In certain cases the lowest-order calculation was insufficient,
and the calculation of next-order corrections to S matrix was
required [11,12].

It was found, however, that the S-matrix approach could be
essentially improved by summation of simple diagrammatic
series in perturbation theory [13,14]. The result of this sum-
mation was the modification of the renormalization group (RG)

equations for the S matrix, so that the scaling exponents found
in limiting fixed points (FPs) of these equations coincided
with those established by bosonization. At the same time
the S-matrix approach has an advantage over bosonizaton in
providing full scaling curves for the conductances. The method
was tested for junctions of two leads [13], three-lead junctions
[12,14,15], and also for nonequilibrium [16]. Generalization
of this approach for the case of infinite Luttinger liquid wires
was undertaken in [17].

It was recently shown that the case of a junction connecting
four quantum wires, which is generally characterized by the
S matrix belonging to the U (4) group, might be principally
different in the form of RG equation, even in the lowest order
of interaction [18]. This difference from the simpler cases of
junctions of two and three wires shows itself in the discrete
Z2 ambiguity in the parametrization of the S matrix, which is
unobservable in terms of conductances of the junction. This
“hidden phase” is known to happen in U (N ) groups at N � 4,
and it may indicate that the bosonization description becomes
inadequate already for four wires.

In this paper we continue our studies of junctions of
four quantum wires. First we analyze the renormalization of
the corner junction between the 1D helical edge states of
topological insulators, earlier discussed in [11,19–21]. The
work by Teo and Kane [11] allows the direct comparison with
our analysis here, as they provide the second-order RG analysis
for the S matrix, in addition to the bosonization treatment. It
was argued in [11] that the time-reversal symmetry determines
the specific structure of the S matrix, in particular the absence
of backscattering in the same edge state. We extend the analysis
of Ref. [11] by summing the perturbation series in the bulk
interaction and arrive at nonperturbative RG equations for
conductances, whose FPs and scaling exponents are in exact
correspondence with bosonization results, where available.
The above problem of a “hidden” phase in U (4) is absent
in the case of helical edge states due to the symmetry of the S
matrix, reducible to the symplectic form.

Next we analyze the generalization of the above setup by
considering different interaction strength in the helical edge
states, whereas the form of the S matrix remains the same due
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to symmetry. The phase portrait in this case is characterized
by two phases; the new phase as compared to the previous
case appears for interaction strength of different signs, when
some FPs disappear or change their character. We show that if
the X junction is characterized by the “bare” S matrix close to
one of the FPs of the saddle-point type, then the temperature
evolution reveals the nonmonotonic behavior of conductances,
similarly to the case of the Y junction considered in [12].

We further notice that the case of electron tunneling from
a spinful Luttinger liquid wire tip to the helical edge state
can be described by the same S matrix, but a different matrix
of bulk interactions. This physically important setup was not
considered previously and it is different from the tunneling
from fully spin-polarized tip to the helical edge state [22], the
latter situation described in terms of a three-lead Y junction.
The different form of the interaction matrix leads to slightly
modified derivation of the RG equation, but otherwise our
approach remains the same. As a result, we obtain the phase
portrait describing the tunneling from the spinful wire to the
helical edge state. We find only one fixed point, corresponding
to the absence of tunneling. In addition, we demonstrate one or
two fixed lines of conductances, depending on the interaction.
The RG fixed lines in the plane of conductances was found
earlier for chiral Y junctions at certain values of the interaction
strength [23]. The scaling exponents are in exact agreement
with those expected from bosonization arguments.

The rest of the paper is organized as follows. We describe
our method in the Sec. II. The setup of our model, the particular
form of the S matrix, and the relevant set of conductances
are introduced, and the renormalization equations are briefly
discussed here. In Sec. III we discuss tunneling between helical
edge states, first in a simpler case of symmetric junction,
and then introducing asymmetry in interaction strength. In
Sec. IV we discuss tunneling from a spinful wire to the edge
state. This case requires some modification of our method
and we sketch the corresponding derivation. We present the
concluding remarks in Sec. V.

II. THE MODEL AND RENORMALIZATION OF
CONDUCTANCES

A. The model

We consider the two-channel Tomonaga-Luttinger liquid
(TLL) model with a local scatterer of arbitrary strength in the
middle of the wire. In particular, such model incorporates a
model of spinful electrons, scattering on a local potential, and
a model of corner junction between the helical edge states of
topological insulators.

As in our previous papers, we assume that the short-range
interaction between the fermions is of the forward scattering
type and takes place in wires of finite length L, contacted
by reservoirs. The adiabatic transition from wire to reservoir
produces no additional potential scattering. The junction is
assumed to have microscopic extension l of the order of the
Fermi wavelength. Inside the junction interaction effects are
neglected. This is expressed below by the window function
�(x) = 1, if l < x < L, and zero otherwise. The regions x >

L are thus regarded as reservoirs or leads labeled j = 1,2,3,4.

FIG. 1. (a) Schematically shown X junction, (b) X junction of the
helical edge states, with spin projections explicitly indicated; see also
Table I.

For the linearized spectrum near the Fermi energy we
may write the TLL Hamiltonian in the representation of
incoming and outgoing waves in channel j (fermion operators
ψj,in,ψj,out) as

H =
∫ ∞

0
dx[H 0 + H int�(� < x < L)],

H 0 = vF �†
ini∇�in − vF �

†
outi∇�out,

H int = 2πvF

4∑
j,k=1

gjkρ̂j
̂̃ρk. (1)

Here �in = (ψ1,in,ψ2,in,ψ3,in,ψ4,in) denotes a vector op-
erator of incoming fermions and the corresponding vector
of outgoing fermions is expressed through the S matrix as
�out(x) = S · �in(x) at x → 0. We put the Fermi velocity
vF = 1 below. The interaction term of the Hamiltonian is
expressed in terms of density operators ρ̂j,in = �+ρj� = ρ̂j ,
and ρ̂j,out = �+ρ̃j� = ̂̃ρj , where ρ̃j = S+ · ρj · S and the
density matrices are given by (ρj )αβ = δαβδαj and (ρ̃j )αβ =
S+

αjSjβ . The 4 × 4 unitary S matrix characterizes the scattering
at the junction and belongs to the U (4) group. Depending on
the physics of the problem, the form of the S matrix and the
interaction matrix, gjk , varies.

Specifically, we consider below the corner junction between
the helical edge states in symmetric and asymmetric setup
with respect to interaction. We also consider the tunneling of
electrons from the spinful wire tip into the helical edge state.
A general geometry of the X junction is shown in Fig. 1(a). It
turns out that all the above cases with spinful fermions can be
described by Fig. 1(b), and the difference between these cases
is encoded in the form of gjk . For further convenience, we
explicitly give the correspondence between the channel and
the spin index in Table I.

B. Reduced conductances

In the linear response regime our system is characterized
by the matrix of conductances defined by Ii = CijVj , with

TABLE I. Correspondence between the helical edge states with
projections of spin and the numbering of our channels.

1 2 3 4

in ↑, left ↓, right ↑, right ↓, left
out ↓, left ↑, right ↓, right ↑, left
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the current Ii flowing in channel i and the voltage Vj applied
to the channel j . The current conservation,

∑
Ii = 0, and

the absence of response to the equal change in voltages lead
to Kirchhoff’s rules,

∑
i Cij = ∑

j Cij = 0. This means that
we can choose more convenient linear combinations of Ii,Vj

reducing the number of independent components in Cij . Using
the Kubo formula, one has in the dc limit Cij = 1

2 (δij − Yij ),
with Yij = |Sij |2; one can also write Yij = Tr(ρ̃iρj ) [15].

The appropriate representation for the reduced conductance
matrix may be constructed by using generators of U (4) Cartan
subalgebra, which are three traceless diagonal matrices and
one unit matrix. We define

μ1 = 1/
√

2diag(1, − 1, − 1,1),

μ2 = 1/
√

2 diag(1,1, − 1, − 1),

μ3 = 1/
√

2diag(1, − 1,1, − 1),

μ4 = 1/
√

2 diag(1,1,1,1), (2)

with the property Tr(μjμk) = 2δjk,j = 1, . . . ,4. The densi-
ties may be expressed now as ρj = 1/

√
2

∑
k Rjkμk , where

the 4 × 4 matrix R is given by

R = 1

2

⎛
⎜⎝

1 1 1 1
−1 1 −1 1
−1 −1 1 1
1 −1 −1 1

⎞
⎟⎠ (3)

and has the properties R−1 = RT ,det R = 1. The outgoing
amplitudes are expressed in similar form with μj replaced
by μ̃j = S+μjS. This also means [24] that we work now
with the combinations of currents and voltages of the form
Ii = ∑

k RikI
new
k ,Vi = ∑

k RikV
new
k , or

I new
1 = (I1 − I2 − I3 + I4)/2,

V new
1 = (V1 − V2 − V3 + V4)/2,

I new
2 = (I1 + I2 − I3 − I4)/2,

V new
2 = (V1 + V2 − V3 − V4)/2,

I new
3 = (I1 − I2 + I3 − I4)/2,

V new
3 = (V1 − V2 + V3 − V4)/2,

I new
4 =

∑
j

Ij /2, V new
4 =

∑
j

Vj/2. (4)

Our notation is slightly different from Ref. [11], where
Kirchhoff’s law, I new

4 = 0, was explicitly used. The meaning
of the currents I new

j , linked to Fig. 1, is as follows: I new
1 is the

charge current moving to the right, I new
1 the charge current

moving down, and I new
3 is the spin current. The resulting

reduced conductance matrix in our new basis is determined
by G = RT C R = 1

2 (1 − YR) with YR
ij = 1

2 Tr(μ̃iμj ) and has
a general structure

G =
(

3 × 3 0
0 0

)
. (5)

For our choice of S matrix below in Eq. (8), G attains even
simpler diagonal form.

C. S matrix for helical edge states

It was noted in [11] that in addition to unitarity, S†S = 1, the
time-reversal symmetry leads to the additional condition on the
S matrix. Namely, under the time reversal, T , one has T �in =
E�out and T �out = −E�in with E = diag[1, − 1,1, − 1]. It
results in the relation S = −EST E, i.e., the matrix ES is
antisymmetric. Additionally assumed constraints on the form
of S refer to the symmetry with respect to interchange of
the wires: 1 ↔ 2 and 3 ↔ 4, which should not change the
observable conductivities. In terms of the matrix Yij = |Sij |2
below it reads as Y = XYX with

X =

⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠. (6)

These constraints define the S matrix in the form

S =

⎛
⎜⎝

0 t f r

t 0 −r∗ f ∗
−f −r∗ 0 t∗
r −f ∗ t∗ 0

⎞
⎟⎠, (7)

with complex-valued t,f,r and |t |2 + |f |2 + |r|2 = 1. Our
analysis below is invariant with respect to “rephasing” opera-
tions, S → U 1SU 2, with U 1,2 arbitrary matrices of the form
Ukl = δkle

iαk . Using such rephasing we can represent the S
matrix for our purposes as

S =

⎛
⎜⎜⎝

0 t f r

t 0 reiu −f eiu

−f reiu 0 −teiu

r f eiu −teiu 0

⎞
⎟⎟⎠, (8)

now with real-valued t,f,r subject to the condition t2 + f 2 +
r2 = 1 and arbitrary u. We notice here that the operation
XSX corresponds to a change u → π − u in (8), up to some
rephasing.

We also note that it is always possible to make a partial
rephasing of S in (7) so that f is real-valued; in this case S

becomes a symplectic matrix from the Sp(2) group. This latter
property of the S matrix for the helical edge states is principally
different from the previously studied case of the X junction
between usual wires [18], where the mentioned symplectic
property is achieved in a very special case, α1 = −α2, in the
notation of Ref. [18].

We may parametrize (8) by two angles as

t = cos β, r = cos γ sin β, f = sin γ sin β, (9)

which leads to the matrix of conductances in the form

G = 1
2 (1 − YR) = 1

2 diag[1 − a,1 − b,2 + a + b]

≡ diag[GR,GD,GS], (10)

where a = 2 sin2 β cos2 γ − 1,b = cos 2β. The region of the
allowed values of conductance in the (a,b) plane is given by
a triangle defined by vertices (−1, − 1),(1, − 1),(−1,1), as
shown in Fig. 3 below. This statement is initially made for
noninteracting fermions, but we also verify below that the
interaction-induced RG flows of the parameters never drive
the system beyond this triangle, and the conductances are
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defined in terms of a,b. This means that we have a
relation

GS = 2 − GR − GD.

In the absence of spin-flip processes, f = 0, one has a = −b;
i.e., the region of allowed conductances is reduced to a segment
in the (a,b) plane.

In the presence of interactions, the structure of (8) is
unchanged, but the elements vary. The main effect in the dc
limit can be described by the renormalization of the S matrix
[15], which translates to the renormalized quantities a,b in
Eq. (10).

D. Renormalization group equations

The renormalization of the conductances by the interaction
is determined by first calculating the correction terms in each
order of perturbation theory. We are in particular interested
in the scale-dependent contributions proportional to � =
ln(L/�), where L and � are two lengths, characterizing the
interaction region in the wires.

The first logarithmic correction for the S matrix leads to
the renormalization group (RG) equation which was obtained
in general form in [9]. Second-order subleading corrections
which might be important in certain cases were analyzed in the
language of the S matrix in [12]. It was shown, however [15],
that RG flow may appear in some of the phases of the S matrix,
which are irrelevant for the observable conductances. It is thus
reasonable to reformulate the RG procedure entirely in terms
of conductances, which allows one-to-one correspondence for
the Y junction [15]. This unique correspondence between the
RG equation for the S matrix and the RG equation for the
matrix of conductances C is valid for the Y junction and
may be explicitly lost for the X junction, as shown in [18].
This ambiguity stems from the impossibility of recovering the
phases of the unitary S matrix, belonging to the U (N ) group,
from the absolute values of its elements, for N � 4. In our case
here we also have this ambiguity in the form of appearance
of the phase factor eiu in (8) mixing left and right isoclinic S

matrices. However, in contrast with [18] we do not have the
ambiguity in RG flows for the considered model of interactions
gij .

In lowest order in the interaction the scale-dependent
contribution to the conductances is given by [23]

Cjk = Cjk

∣∣
g=0 + 1

2

∑
l,m

Tr[ŴjkŴlm]gml�, (11)

where Cjk|g=0 = 1
2 (δjk − Yjk), the Ŵjk = [ρj ,ρ̃k] are a set of

sixteen 4 × 4 matrices (products of Ŵ ’s are matrix products),
gml is the matrix of interaction constants appearing in (1),
and the trace operation Tr is defined with respect to the 4 × 4
matrix space of Ŵ ’s.

If we multiply Cij with RT from the left and R from the
right then we get the components of YR in the form

YR
jk = YR

jk

∣∣
g=0 − 1

2

∑
l,m

Tr
[
ŴR

jkŴ
R
lm

]
gR

ml�. (12)

Here ŴR
jk = [μj ,μ̃k] = {RT · Ŵ · R}jk are again a set of 4 × 4

matrices, but now we have ŴR
jk = 0 for j = 4 or k = 4, so

only nine matrices ŴR
jk are nonzero. We also defined gR

ml =
{RT · g · R}ml . The nine nonzero matrices ŴR

jk are evaluated
with the aid of computer algebra. Differentiating these results
with respect to � (and then putting � = 0) we find the RG
equations

d

d�
YR

jk = −1

2

∑
l,m

Tr
[
ŴR

jkŴ
R
lm

]
gR

ml. (13)

In higher orders of perturbation theory in gml we find sub-
leading contributions of two types [15]. One type, appearing
first in the third order, provides a three-loop contribution to RG
equations and does not influence the scaling exponents around
the RG fixed points (FPs). The second type of contribution
is more important; it is given by the ladder sequence of
diagrams, and defines the scaling exponents around FPs. Due
to the peculiarities of the 1D model with linear dispersion,
each diagram in this ladder sequence is formally a one-loop
contribution, providing subleading linear-in-� corrections.
After the summation of the ladder series [14,25] (for diagonal
gij = giδij ) one obtains the renormalized interaction matrix
ḡ replacing the bare interaction matrix g in Eq. (11). The
components of ḡ are obtained from the following matrix
equation:

ḡ = 2(Q − Y)−1. (14)

The matrix Q characterizes the interaction strength and
depends on the Luttinger parameters Kj = [(1 − gj )/(1 +
gj )]1/2 as

Qjk = qj δjk, qj = (1 + Kj )/(1 − Kj ). (15)

III. TUNNELING BETWEEN EDGE STATES

A. Symmetric corner junction

For quantum spin Hall insulator the channels correspond
to four helical edge states, with possible tunneling contact
between them. The interaction between the different edge
states is absent. In other words, the wires 1 and 4, 2 and 3
do not interact, and we have the simple interaction matrix:

g = g 1. (16)

The first-order RG equations for the S matrix of the form
(8) are trivial:

dYR

d�
= 0, (17)

which is the result of the diagonal form of the interaction (16)
and the absence of backscattering [9].

To advance further we take into account the higher orders
of interaction as explained above; i.e., we replace g by ḡ (14).
In such a way we obtain nontrivial RG equations:

da

d�
=

(
b + 1

b(K − 1) + K + 1
+ a − 1

a(K − 1) + K + 1

+ a + b

(a + b)(K − 1) − 2

)
(a + 1)(K − 1),

db

d�
= da

d�

∣∣∣
a↔b

. (18)
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TABLE II. Fixed points for symmetric corner junction. The
positions of FPs are given by the coordinates (a,b) in the plane of
conductances; the stability of the FPs is also shown.

a −1 −1 −1 −1/3 0 0 1
b −1 0 1 −1/3 0 −1 −1
Stability s u s u u u s

Expanding these RG equations to the lowest nonvanishing
order ∼ g2 we recover Eq. (3.40) in Ref. [11]. The second-
order diagrams in Fig. 9 there correspond exactly to the
truncation of the series leading to our Eq. (18). It is worth
noting that the phase u is absent in (18), it is present in Ŵjk in
Eq. (11), but disappears in the quantity Tr[ŴjkŴlm].

The RG equations (18) reveal seven fixed points: three of
them are stable for any value of Luttinger parameter; the others
are unstable (see Table II). This result is in agreement with
the second-order calculation in [11] and the correspondence
between our notation and Ref. [11] is R = (1 + a)/2,T =
(1 + b)/2,F = −(a + b)/2.

Each of these FPs is characterized by generally two scaling
indices in the plane (a,b), depending on the direction of RG
flow with respect to the given FP. We found that three stable
FPs (vertices of the triangle) have the same exponent in both
directions, equal to

α1 = 2 − 1/K − K < 0, (19)

which corresponds to the weak tunneling process between the
TLL wires and agrees with the result in [11].

One unstable FP at the triangle’s center is characterized
by rather unusual exponents, equal to 3 + 27/(2 + K)2 −
18/(2 + K) > 0, in both directions. Three other FPs residing
at the middle of the triangle’s edges show the scaling exponents
2 + 8/(1 + K)2 − 8/(1 + K) > 0 and 3 − K − 4/(1 + K) <

0 in the direction along and perpendicular to the edge. The
latter FPs are of the saddle-point type.

It was shown in [12] that the full scaling curves for
conductances in the case of the Y junction may reveal
nonmonotonic behavior with the scaling parameter �. We
note here that such behavior should generally happen if the
RG trajectories pass near the saddle-point FP. To demonstrate
this we plot the full scaling curves for the present case of the X
junction in Fig. 2, choosing reasonable values for the Luttinger
parameter and the appropriate values of bare conductances.

B. Asymmetric corner junction

In this subsection we consider a more general setup,
allowing different strength of interaction in the upper (1–2)
and lower (3–4) edge states in Fig. 1(b). It is interesting to
observe that when the edge states are nonequal, one could
expect a more complicated expression for the S matrix instead
of Eq. (8). However the above general arguments leading to
Eq. (8) involve only a few discrete symmetries which are not
broken by the nonequivalence of the upper and lower edge
states. This means that the system remains at a fixed surface
in the space of conductances, which is protected with respect
to asymmetric perturbations of the S matrix. In other words,
only consistent changes in the transmission coefficients within

0 2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 2 4 6 8 10 12 14
0.4

0.5

0.6

0.7

0.8

0.9

1.0

GR
GD

GR
GD

(a)

(b)

FIG. 2. Full scaling curves for conductances GR = I new
1 /V new

1

and GD = I new
2 /V new

2 , defined in Eq. (4), and the Luttinger parameter
K = 0.4. Slight difference in the initial conductances results in
the opposite qualitative behavior. Panels (a) and (b) show RG
flows tending to the FP of the perfect transmission in the vertical
and horizontal directions, respectively, in terms of Fig. 1. The
nonmonotonic behavior stems from the RG flow passing near the
FP of the saddle-point type at a = b = 0 in Fig. 3.

the wires 1–2 and 3–4 are allowed, so that |S12| = |S34| = t .
This may be contrasted with interaction-induced asymmetric
perturbations in the case of the Y junction, which can drive the
system from the symmetrical point, as discussed in Sec. VI of
Ref. [14].

We take the matrix of the dimensionless interaction con-
stants in the form

g = diag[g1,g1,g2,g2], (20)

and use the previous S matrix (8). The result of the ladder
summation, Eqs. (13) and (14), leads to rather complicated
RG equations. In order to illustrate the qualitative picture, we
first expand the coupled RG equations to the second order of
interaction and write

da

d�
= −1

8
(1 + a)

[
(1 + b)2g2

1

+ 2(−1 + 2a2 + 2ab + b2)g1g2 + (1 + b)2g2
2

]
,

db

d�
= −1

8
(1 + b)

{
(−1 + b2)g2

1

+ 2[1 + 2a(1 + a) + 2ab + b2]g1g2

+ (−1 + b2)g2
2

}
. (21)
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TABLE III. The position of nonuniversal fixed points for the case
of nonequal interaction in the wires.

Edge Edge Median

a −1 (g1−g2)2

(g1+g2)2 − 1
3 + 1

3
(g1−g2)2

g2
1+g1g2+g2

2

b − (g1−g2)2

(g1+g2)2 −a −1 − 2a

We observe that these equations formally have seven FPs,
but these FPs do not always lie in the physical region. Three
FPs with −1 < b < 1 are now nonuniversal and their position
depends on the ratio of the interactions g1/g2 as shown in
Table III. We also show the tendency of these intermediate
FPs to change their position in Fig. 3(a). The two previously
stable FPs at a = ±1,b = −1 keep their position but their
stability now also depends on g1/g2. As can be seen from
Table III, if g1/g2 > 0 and in particular g1 = g2 then all three
nonuniversal points lie either within or on the border of the
triangle of physically allowed conductances. If g1/g2 < 0 then
nonuniversal points disappear in the physical region and this
is accompanied by the change in the character of some of the
remaining FPs.

This qualitative picture obtained in the second order of
perturbation is confirmed by the analysis of the full form of
the RG equations. Summarizing here, we have two different
regions in the plane of Luttinger parameters K1,K2 (see Fig. 4).
The blue region is characterized by the existence of seven FPs,
and three of these points are stable, whereas the other three
FPs are nonuniversal in their position. This region remains in
qualitative correspondence with the case of equal interactions
discussed in the previous subsection. The new region marked
white is characterized by the existence of four FPs; one of
them is stable, two (previously stable) FPs are unstable, and
the fourth point remains of the saddle-point character. The
only stable point in this white region corresponds to fully
disconnected upper and lower wires, which are perfectly
transmitting within themselves. On the lines dividing white
and blue regions in Fig. 4 three nonuniversal FPs coincide
with the three lowest FPs in Fig. 3, i.e., a = −1,0,1,b = −1.
The largest value of b for nonuniversal FPs is achieved when
the interactions are equal, g1 = g2.

The yellow FP in Fig. 3, a = −b = −1, is always stable
and corresponds to disconnected lower and upper wires; it is a
CC point in the notation of the work [11]. The right red FP in
Fig. 3, a = −b = 1, corresponds to the perfect transmission
in the vertical direction of Fig. 1; it is a II point in in notation
of [11]. The left red FP in Fig. 3, a = b = −1, corresponds
to spin current conductance GS = 0 and was called a perfect
spin-flip transmission point in [11].

Summarizing here, we list the scaling exponents of the
conductances near the corresponding FPs of Eq. (21). Near the
points (a,b) = (±1, − 1) we have the same exponent equal
to −2(K2 − 1)(K1 − 1)/(K1 + K2); near (a,b) = (−1,1) we
have the exponent − 1

2 [(K1 − 1)2/K1 + (K2 − 1)2/K2]. Near
the unstable (universal) FP, (a,b) = (0, − 1), we find two
different exponents, 2(K1 − 1)(K2 − 1)/[(K1 + 1)(K2 + 1)]
and − (K1−1)(K2−1)(2K2K1+K1+K2)

(K1+1)(K2+1)(K1+K2) along a and b,
respectively.

FIG. 3. RG flows (red lines, the direction of flow shown by
arrows) and fixed points are shown for different values of interaction
in the edges states. Panel (a) corresponds to Luttinger parameters
K1 = 0.3,K2 = 0.5 and panel (b) is for K1 = 1.2,K2 = 0.5. The
disappearance of three nonuniversal unstable FPs is visible in panel
(b), which is accompanied by the change of the character of the lower
red FPs.

IV. TUNNELING TO HELICAL EDGE STATE FROM
SPINFUL WIRE

As was argued above, the form of the S matrix (8) does not
imply the equivalence between the upper and lower wires. In
particular, we may view the lower wire 3–4 as the tip of the
spinful wire, whereas the channels 1 and 2 remain associated
with the helical edge states. In the absence of the tunneling
between this tip and the edge state we have f = r = 0,t = 1,
which in the usual sense corresponds to a perfect reflection of
the electrons at the end of the spinful tip.
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FIG. 4. Phase portrait for conductances in a setup with different
values of interaction in the edges states, characterized by Luttinger
parameters, K1,2. Depending on the sign of (1 − K1)(1 − K2) one has
either one or three stable fixed points, as described in text.

The main difference of this setup is a new form of
interaction matrix:

g =

⎛
⎜⎝

g1, 0, 0, 0
0, g1, 0, 0
0, 0, g2/2, g2/2
0, 0, g2/2, g2/2

⎞
⎟⎠, (22)

which describes the charge-charge interaction in the spinful
wire. The nondiagonal form of g requires certain adjustment
of our analysis. The first-order RG equation (13) is unchanged
and the result of summation of higher order terms (14) should
be revised. The appropriate way of doing it can be found
in the idea of the spin-charge separation in the spinful wire
tip and the details of our derivation of (14) in [14,25]. We
notice that dressing of interaction gj → Kj happens in the
bulk of the wire away from the contact, and does not involve
the S matrix. The whole procedure of such dressing for
nondiagonal g can be then performed by first diagonalizing
the interaction by appropriate orthogonal transformation, thus
passing to a description in terms of charge and spin density
in the spinful wire. The second step involves the dressing of
the bulk interaction effects, by summing the ladder diagrams;
it is encoded in matrix quantity C in [14,25]. The third step
consists of the inverse orthogonal transformation and proper
consideration of the contact, described by the above matrix Y.
Introducing the orthogonal matrix V = (E + X)/

√
2 = V T =

V −1, with E,X defined in Eq. (6) and before, this sequence of
steps is shown schematically as

g → V gV → 2Q̄−1

→ 2Q̄−1(1 + YQ̄−1 + YQ̄−1YQ̄−1 + · · · )

→ 2V Q̄−1V (1 − YV Q̄−1V )−1 (23)

now with Q̄−1 = diag[q−1
1 ,q−1

1 ,q−1
2 ,0] and qj defined in (15).

Overall, instead of (14) we write

ḡ = 2(V Q̄V − Y)−1, (24)

with the singularity in Q̄ resolved according to the last line in
(23).

Using the reduced conductances, Eq. (10), we find the RG
equations in the form

da

d�
= (a + 1)F (b),

db

d�
= (b − 1)F (b),

F (b) = 2(b + 1)
[
b(q1 + q2 − 2) + q2

1 − q1 + q2 − 1
]

(b + 2q1 + 1)[b(q1 + q2 − 2) − 2q1q2 + q1 + q2]
.

(25)

It follows then that the set (25) is in fact reduced to the second
equation, and

d

d�

a + 1

b − 1
= d

d�

1 − GR

GD

= 0. (26)

This means that the RG flows in the plane (a,b) lie on straight
lines passing through the point (−1,1) and implies the ratio
a+1
b−1 defined for bare quantities; see Fig. 6 below. In terms
of conductances (10) we see that the ratio (1 − GR)/GD is
unchanged under renormalization, i.e., the “up-to-down” con-
ductance remains proportional to the value of “left-to-right”
conductance complementary to the conductance quantum.

The dependence of F (b) on the interaction is not transparent
and we show the few first terms in powers of gj . The expansion
of (25) begins with the second order in g1, and with the first
order in g2. Keeping these lowest order terms, we have

da

d�
= −1

4
(a + 1)(b + 1)

[
g2 + 1

2
g2

1(b + 1)

]
,

db

d�
= 1

4
(1 − b2)

[
g2 + 1

2
g2

1(b + 1)

]
. (27)

These equations are rather unusual, because of the existence
of one FP and one or two fixed lines. The fixed point is defined
by a = −1,b = 1, corresponds to the absence of tunneling
to the edge state, and is stable everywhere except for the
region g2 < −g2

1. The analysis of the full expression shows
that this FP becomes unstable at K2 > K1/(3K1 − K2

1 − 1);
this is depicted by the white region in Fig. 5. The poles of the
latter expression determine a finite range of interaction K1 in
the edge state when the stability of the FP may be lost, namely
1
2 (3 − √

5) < K1 < 1
2 (

√
5 + 3).

In addition, we have two fixed lines, one at b = −1, which
is unstable for g2 > 0 (i.e., at K2 < 1, shown as the brown
region in Fig. 5) and is stable otherwise. The second fixed
line at b = b0 is determined by the condition F (b0) = 0 which
gives b0 = −(q2

1 − q1 + q2 − 1)/(q1 + q2 − 2), revealing its
nonuniversal character. It is unstable and is indicated as the
black line in Fig. 6(b). The domain of existence of this fixed
line correspond to a blue region in Fig. 5.
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FIG. 5. RG phase portrait for tunneling between the spinful wire
and helical edge state. The brown region at K2 < 1 is the stability
region for the FP corresponding to the absence of tunneling. In the
blue region the situation is characterized by one stable FP and a stable
fixed line, as shown in Fig. 6(b). In the white region only the fixed
line b = −1 is stable.

We find the scaling exponent around the FP (a,b) = (−1,1)
given by

αFP = 1

2

(
−K1 − 1

K1
− 1

K2
+ 3

)
, (28)

and the scaling exponent near the fixed line at b = −1 is

αFL = −2
K2

1 (K2 − 1)

(K1 + 1)(K1 + K2)
. (29)

The border between the blue and white region in Fig. 5
corresponds to a condition b0 = 1 which translates to αFP = 0.
Similarly, the border between the brown and blue region in
Fig. 5 is given by the condition b0 = −1 and αFL = 0, i.e.,
K2 = 1.

Two examples of RG flows are shown in Fig. 6, where
the upper panel corresponds to the brown region in Fig. 5
and the lower panel, Fig. 6(b), to the blue region in Fig. 5.
If we fix K1 and increase K2, then at smallest K2 we see
the qualitative picture of RG flows shown in Fig. 6(a). Then at
K2 = 1 the second fixed line appears in the triangle of physical
conductances in the (a,b) plane. Upon further increase of K2

this line moves upwards where the RG flows follow the pattern
of Fig. 6(b). Finally, the nonuniversal fixed line crosses the FP
with a = −1,b = 1, and disappears; this corresponds to the
white region in Fig. 5, where only the line b = −1 is stable.

We compare our findings (28) with the bosonization
approach, particularly with Ref. [11], where the the scaling
exponent (19) of the conductance in the weak-backscattering
limit was found. The exponent in this case can be regarded
as twice the scaling dimension of the tunneling operator at

FIG. 6. Two examples of RG flows are shown. Typical behavior in
the brown region of Fig. 5 is shown in panel (a) for K1 = 1.55,K2 =
0.51. The situation in the blue region of Fig. 5 is qualitatively
reproduced in panel (b) at K1 = 1.38,K2 = 1.03.

the edge state, (K − 1)2/2K . In the considered setup one TI
is substituted by the semi-infinite spinful wire. The contact
between a semi-infinite quantum wire and a 3D metal was
analyzed in [26], with the conductance scaling exponent
found as 1

2 (K−1
ρ + K−1

σ ) − 1. For spin isotropic interaction in
our case we should put Kσ = 1 and Kρ = K2. Combining
both cases we obtain the overall scaling exponent in the
form (K1 + 1/K1)/2 + (1 + 1/K2)/2 − 2, which expression
exactly corresponds to Eq. (28).

Summarizing here, we obtained the phase portrait for
the case of the tunneling from the spinful wire tip to the
helical edge state; we find the scaling exponents which are
in agreement with bosonization approach when available. We
note that the appearance of the RG fixed lines in the plane
of available conductances is a rather unusual phenomenon,
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discussed previously in the case of the chiral Y junction for
certain relations between the interaction parameters [23].

V. CONCLUSIONS

In this paper we consider four-terminal junctions, involving
helical edge states of topological insulators. The time-reversal
symmetry arguments for such junctions define the general
structure of the single-particle S matrix, describing the tunnel-
ing processes between the edges. In the presence of interactions
the conductances characterizing the junction are renormalized,
which effect is described in the proposed formalism by a
set of nonperturbative RG equations. In order to validate our
approach we first analyze the setup with two helical edge states
and show that our results agree with the bosonization studies,
when available. The fixed-point structure, scaling exponents,
and the overall phase portrait of this setup are obtained.

We further observe that the same symmetry arguments can
be applied to the S matrix for the tunneling from the tip of
spinful wire to the helical edge state. This important physical
setup was not previously considered. The difference of this
setup from the contact between two helical edge states is in

the form of interaction, which requires certain modification of
our formalism. The phase portrait is now more involved and,
depending on the interaction, we find the possibility of RG
fixed points and fixed lines of conductances. We show that
the calculated scaling exponents coincide with those expected
from bosonization. We predict that in the discussed setup the
scaling is defined by one equation, and certain proportionality
relations between three different conductances are obeyed
during renormalization. This prediction may hopefully be
checked in future experiments.

The advantage of the employed S-matrix approach is the
possibility of obtaining both the full scaling curves for the
conductances and exact scaling exponents at the fixed points.
We demonstrate that if the RG flow drives the system nearby
unstable fixed points then nonmonotonic scaling behavior of
the conductances is observed.
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