
PHYSICAL REVIEW B 94, 035418 (2016)

Smith-Purcell radiation emission in aperiodic arrays
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We study the Smith-Purcell light emission produced by electrons moving parallel to linear aperiodic particle
arrays. This constitutes a generalization of this type of phenomenon from periodic to aperiodic structures. As in the
periodic case, the emission is found to exhibit intense features in its angular and frequency distributions, associated
with the condition of constructive interference between the contributions arising from different particles in the
array. This condition can also be expressed in terms of momentum conservation involving reciprocal wave-vector
transfers from the array. We consider two examples of quasiperiodic and hyperuniform aperiodic arrays that
allow us to illustrate this idea. Our study provides insight into the interaction of fast electrons with aperiodic
arrays characterized by strong features in reciprocal space, which dominate the electron-array coupling.
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I. INTRODUCTION

The interaction of an electron with an inhomogeneous
dielectric environment gives rise to transient induced charges
and currents that result in the emission of radiation. In
particular, the Smith-Purcell (SP) effect [1] refers to the light
emission produced by an electron moving parallel to a periodic
grating. As the electron passes close to each successive
element along the grating, its evanescent electromagnetic field
induces light emission at selected frequencies and directions
resulting from a simple condition of constructive interference.
This condition is analogous to the Huygens construction,
but now also involving the time delay used by the electron
to interact with consecutive grating periods. Following the
initial demonstration and explanation of the SP effect [1],
subsequent studies have further corroborated the dependence
of the emission on electron energy and grating period [2,3],
confirming that it occurs over a wide spectral range, including
x rays [4], UV [2] and visible [1,5] light, near IR (NIR) [6],
far IR (FIR) [7], and THz [8,9]. The SP effect is the
basis of free-electron lasers [10,11], whereby the emission
intensity produced by a large number of electrons (bunched
within a small spatial region compared with the emitted light
wavelength) is proportional to the square of the number of
electrons [8,12–14]. Experimental realizations of the SP effect
have focused on periodic structures of varied nature, including
metallic gratings [1,15], where an interesting interplay takes
place between the emitted light and the plasmons supported
by the metal surface, as well as dielectric structures [16] and
photonic crystals [17–19].

Strong resonances in reciprocal space lie at the core of SP
emission: The emission angles and frequencies are determined
by the reciprocal lattice vectors of the periodic lattice with
which the electron interacts. One expects that similarly intense
emission patterns would result from the interaction with other
types of structures, not necessarily periodic, in which strong
features are also present in reciprocal space. We explore this
extension of the SP effect in this work by first studying
the reciprocal-space properties of quasiperiodic [20] and
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hyperuniform [21] one-dimensional arrangements of particles.
We find the resulting emission to also display intense features,
which we further compare with those of periodic arrays.

II. THEORETICAL MODEL

A. Smith-Purcell emission in linear arrays

We consider a linear array of N identical particles placed
along the z axis at positions zn and an electron moving with
constant velocity v parallel to this axis at a distance b from
the array, as illustrated by Fig. 1. The electron generates an
external evanescent field Eext(z,t) = ∫

Eext(z,ω)e−iωtdω/2π

acting on the particles, whose component of frequency ω

reduces to [22] Eext(z,ω) = eiωz/vg(ω), where

g(ω) = 2eω

v2γ

[
i

γ
K0

(
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vγ

)
ẑ − K1

(
ωb

vγ

)
x̂
]
, (1)

γ = 1/
√

1 − v2/c2 is the Lorentz factor, and Kν are modified
Bessel functions [23]. In what follows, we describe each ω

component independently, as it generates radiation at that
frequency when scattered by the array.

For simplicity, we assume spherical particles described
through their dipolar polarizability α(ω), which is related to
the electric Mie coefficient tE

1 through [22] α(ω) = 3tE
1 /2k3,

where k = ω/c and k′ = √
ε k. In particular, we present

results for homogeneous spheres of radius a and permittivity
ε, so that tE

1 = i/(1 + i�1), where �1 = [y1(ka)J (k′a) −
εY (ka)j1(k′a)]/[j1(ka)J (k′a) − εJ (ka)j1(k′a)], j1 and y1 are
spherical Bessel functions [23], J (ρ) = ρj0(ρ) − j1(ρ), and
Y (ρ) = ρy0(ρ) − y1(ρ). The use of the Mie coefficient instead
of an electrostatic expression for α allows us to account for
retardation effects in the dipolar response, such as particle
resonance redshifts and radiative broadenings.

The electron field produces a direct induced dipole on each
particle n given by αEext(zn,ω) = αeiωzn/vg(ω). Interaction
among the particles then leads to self-consistent dipoles

pn = α

⎛
⎝eiωzn/vg +

∑
n′ �=n

Gnn′pn′

⎞
⎠, (2)

2469-9950/2016/94(3)/035418(5) 035418-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.035418


J. R. M. SAAVEDRA et al. PHYSICAL REVIEW B 94, 035418 (2016)

FIG. 1. Schematic representation of the system under considera-
tion. A linear array of spherical particles aligned along the z axis is
characterized by the positions of the sphere centers zn. An electron
moves parallel to the array with constant velocity v at a distance
b from the z axis. The array contains N particles with the same
diameter D.

where the sum yields the electric field produced on particle n

by the rest of the particles, mediated by the 3 × 3 dipole-dipole
interaction matrix

Gnn′ = eiθnn′

|zn − zn′ |3
[(

θ2
nn′ + iθnn′ − 1

)
I

− (
θ2
nn′ + 3iθnn′ − 3

)
(ẑ ⊗ ẑ)

]
,

where θnn′ = k|zn − zn′ |, I is the 3 × 3 identity matrix, and ⊗
denotes the dyadic product.

Now, these dipoles give rise to a scattered electric far field
Escat = f(r̂) eikr/r , where

f(r̂) = k2
∑

n

[pn − (pn · r̂)r̂]e−ikzn cos θ (3)

is the field amplitude for a direction of emission r̂ that forms
an angle θ with the array. Calculating the far-field Poynting
vector and dividing by the photon energy �ω, we finally obtain
the emission probability [22] � = ∫ ∞

0 dω
∫

d2r̂�(ω,r̂), where

�(ω,r̂) = 1

4π2�k
|f(ω,r̂)|2 (4)

is the doubly differential probability of emitting one photon
per electron and per unit of frequency and solid-angle ranges.

B. Lattice structures

We consider three types of lattices: periodic, quasiperi-
odic, and hyperuniform, all of them with the same average
distance between particles d. The set of lattices belonging
to each of these sets is a subset of the preceding one, but
here we focus on three specific realizations. Despite their
very different short-range structure, they exhibit long-range
correlations that translate into resonances in reciprocal space,
and, consequently, also into different angular SP emission
patterns (see below).

The main property of hyperuniform lattices is the ab-
sence of long-wavelength fluctuations: This is mathematically
equivalent to the vanishing of their structure factor for large
distances [i.e., low wave vector, see Eq. (6) below] [21,24].
We study tessellated arrays as an example of one-dimensional
hyperuniform arrangements [21]. A tessellated array of N

particles is constructed by considering N contiguous segments
of length d along the z axis, and then placing one particle in
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FIG. 2. Periodic and aperiodic arrays in real and reciprocal
space. We consider three different types of arrays: (a) periodic, (b)
tessellated, and (c) Fibonacci, all of them with N = 100 particles.
The average distance between sites is d in all cases. For each type of
array, we show examples of the particle distributions (black dots), as
well as dispersion diagrams of the interparticle interaction [contour
plots, | det {G(k‖,ω)}/ω2|, Eq. (7)], and the lattice structure factors
[lower plots, |SN (k‖)/N |2, Eq. (6)]. The light cone (black and red
lines), the electron line (blue lines), and their replicas, associated with
displacements by wave vectors corresponding to the divergences of
SN , are shown in the dispersion diagrams.

each segment with a uniform random distribution along its
length.

We also study Fibonacci arrays as a special case of
one-dimensional quasicrystals [20]. In these arrays there are
two possible distances between contiguous particles, which
we denote long (L) and short (S) ones. The N -particle array
is constructed by starting with two particles separated by a
distance L. Then, we iteratively apply the following pair of
substitutions: Every distance L is substituted by a pair of
distances LS (i.e., with a new particle inserted), and every
distance S is transformed into L. This procedure is repeated
until a number of particles � N is obtained, and we then retain
only the first N particles. By construction, the ratio between
L and S intervals contained in the array is the golden ratio
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FIG. 3. Cathodoluminescence probability and angular emission profiles. (a)–(c) We show the SP emission probability as a function of
photon wave vector k and parallel wave vector k‖ for the three different arrays considered in Fig. 2. The probability is calculated from Eq. (4)
and represented in color scale for arrays consisting of N = 100 particles. (d) Angle-integrated emission probability for the three types of
arrays, as compared with the emission from a single particle. (e)–(g) Angular distribution of the emission for fixed frequency, as indicated
by corresponding horizontal cuts shown in (a)–(c). We compare results for N = 20 and N = 100. The electron beam is passing at a distance
b = 75 nm from the particle centers with energy E ∼ 200 keV (i.e., v ∼ 0.7c). The average spacing is d = 120 nm. The spheres have a
diameter of 50 nm and a permittivity ε = 12.

φ = (1 + √
5)/2 [20], so that the average nearest-neighbor

distance is d = (φL + S)/(φ + 1). In this study, we take
L = φS.

C. Simple analytical model based on momentum conservation

Interestingly, the z dependence of Eext(z,ω) [see Eq. (1)]
comes only through a phase factor eiωz/v . For a large periodic
array of period d, this allows us to write

pn ≈ eiωzn/vp, (5)

where p is shared by all particles. Additionally, the far field
produced by these dipoles is proportional to

∑
n ei(ω/v−k‖)dn,

where k‖ is the projection of the light wave vector along z.
In the limit of a large number of particles (N 
 1), this sum
becomes ≈ (2π/d)

∑
m δ(k‖ − ω/v − 2πm/d), leading to the

well-known condition mλ/d = cos θ − c/v for SP emission
of order m with wavelength λ along an angle θ relative to the
array direction [1]. Momentum conservation can thus involve
transfers to the particle lattice associated with wave vectors
2πm/d.

The linear aperiodic arrays under consideration can also
absorb momentum with certain preferential wave vectors that
should correspond to lattice singularities in Fourier space.
In order to determine those wave vectors, we analyze the

structure-factor sum

SN (k‖) =
∑

n

eik‖zn . (6)

Obviously, SN (k‖) diverges for periodic arrays when the
parallel wave vector k‖ is a multiple of 2π/d, as shown
in the lower part of Fig. 2(a), which represents |SN/N |2
for two different values of N (5 and 100). Understandably,
the tessellated lattice produces divergences at the same k‖
positions as in the periodic array [see Fig. 2(b), lower part],
although their strength diminishes with increasing order,
essentially as a result of hyperuniformity [21]. In contrast,
the Fibonacci lattice gives rise to sharp resonances associated
with its two different characteristic lengths [see Fig. 2(c), lower
part, where we observe peaks at multiples of 2π/S and 2π/L].

A similar analysis can be performed to study the optical
modes supported by the arrays. Inspired again by periodic
structures, in which such modes are controlled by lattice
resonances associated with the in-phase interaction between
distant sites, as revealed by divergences in the Fourier
transform of G [25], we consider the sum

G(k‖,ω) = 1

N

∑
n

∑
n′ �=n

Gnn′eik‖(zn−zn′ ). (7)

The color plots of Fig. 2 represent | det {G(k‖,ω)}/ω2| for
the three types of lattices under consideration (with N = 100
elements each). We observe that a central resonance occurs at
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FIG. 4. Analytical description of SP emission in finite aperiodic
arrays. We show the emission intensity for electrons moving parallel
to finite arrays consisting of N = 5 and N = 100 particles with (a)
periodic and (b), (c) aperiodic arrangements. The emission energy
and angle correspond to the AB segments indicated in Fig. 2.

the line cone (k‖ = k), which is flanked by replicas that are
displaced by wave vectors corresponding to the divergences
of SN .

We are now prepared to extend the kinematical condition
of SP radiation to aperiodic arrays,

k‖,j λ/2π = cos θ − c/v, (8)

where j runs over the divergences of SN (k‖). This condition
is represented by the blue lines in Fig. 2. We thus expect
to find emission maxima at directions roughly determined
by the crossings of those lines with the divergences of G.
This picture must be however corrected by dynamical effects
in the interaction between particles, which render maximum
polarization at frequencies that are slightly shifted with respect
to the noted condition. For a qualitative analysis of this effect,

0
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90%
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40%
20%

% of original array

Light line

FIG. 5. Robustness of the SP emission features. We show the
emission from an initially periodic array consisting of N = 1000
particles in which a fraction of them have been randomly removed.
The emission is shown for different percentages of particles remain-
ing. The spectral range covers the dominant right feature of Fig. 4(a).

which turns out to be rigorous in periodic arrays, we can adopt
Eq. (5) as an approximate relation also for aperiodic lattices.
Upon insertion of this expression into Eq. (2), we find

p ≈ 1

α−1 − G(k‖,ω)
· g(ω). (9)

Obviously, the condition for maximum polarization is
det{α−1 − G} = 0. Notice that G receives individual dipole-
dipole interaction contributions that scale as 1/(min{d,λ})3

with particle separation d and emission wavelength λ, whereas
α is typically of the order of the particle volume, unless strong
particle resonances are excited. Therefore, α−1 can only be
compensated by G when the latter diverges as a result of
coherent lattice interactions, as described in Fig. 2. The actual
resonances of the array thus depend on the type and size of the
particles [25]: They are generally closer to the divergences of
G when the particles are smaller, and they are redshifted with
respect to that condition when the real part of α is positive.

An approximate expression for the SP emission probability
in the large N limit is obtained by inserting Eq. (9) into Eq. (3),
and this in turn into Eq. (4) to yield

�(ω,r̂) ≈ k3

4π�
|p − (r̂ · p)r̂|2|SN (ω/v − k‖)|2, (10)

where SN is the structure factor defined in Eq. (6).

III. RESULTS AND DISCUSSION

Figure 3 shows the emission probability for finite periodic
and aperiodic arrays as a function of photon energy and
angle of emission. The emission intensity is peaked around
a frequency region in which each individual particle shows
a prominent response [see Fig. 3(d)], which is associated
with the first Mie mode for the 50 nm diameter silicon
spheres (ε = 12) under consideration. For reference, the
average spacing between sphere centers is d = 120 nm. As
expected, the fine structure within this region is dominated
by the crossings with the electron dispersion line and its
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replicas [Figs. 3(a)–3(c), orange curves]. Additionally, the
intensity is enhanced near the crossings of the line cone and
its replicas. This is more clearly emphasized in the angular
distribution patterns shown in Figs. 3(e)–3(g). Remarkably, the
angular patterns are still clearly identifiable when a relatively
small number of particles (N = 20) is considered in all three
types of lattices. Incidentally, the periodic and the tessellated
lattices both lead to the same angles of emission, although
the former displays stronger features, in agreement with the
results of Fig. 2. In contrast, the Fibonacci lattice produces a
more involved angular pattern, which reveals a denser set of
resonances in reciprocal space.

We put the analytical model described above to the test
in Fig. 4, where we compare it with the full calculation of
Eq. (4) for periodic and aperiodic arrays consisting of either
N = 5 or N = 100 particles. Interestingly, both the periodic
and the tessellated arrays are well reproduced by the analytical
model, thus corroborating that the approximate phase relation
of Eq. (5) constitutes a good ansatz. In contrast, the Fibonacci
lattice is only qualitatively described by this approximation,
which is an indication that the complex behavior of this type
of lattice in reciprocal space cannot be well captured by such
a simple phase relation.

A class of aperiodic structures is formed by randomly
removing particles from an originally periodic array. This
is explored in Fig. 5, which in this way also addresses the
robustness of the SP emission features against imperfections

of the array. Remarkably, the dominant emission feature is
clearly resolvable even after removing 40% of the particles.

IV. CONCLUSION

In summary, we have shown that sharp SP emission patterns
are produced by an electron moving parallel to different types
of one-dimensional particle arrays, including periodic and
aperiodic arrangements. The condition for the existence of
such intense patterns is that the lattice displays strong features
in reciprocal space. We have shown examples of strong
features in the Fourier transforms of periodic, quasiperiodic,
and hyperuniform lattices, which lead to SP emission peaks
associated with a generalized condition that relates the angle
and frequency of the emission to the peak wave vectors in
reciprocal space [see Eq. (8)]. A simple analytical model for
the emission produces results in very good agreement with a
more exact analysis, taking into account the interaction among
particles and its dominant reciprocal-space features.
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