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Theory of Hall effect in two-dimensional giant Rashba systems
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The weak-field Hall conductivity of disordered two-dimensional systems with strong Rashba spin-orbit
interaction is studied in a self-consistent Born approximation. Explicit numerical results are obtained for scatterers
with a Gaussian potential and for charged impurities. The singular behavior associated with a conelike crossing
band appears only in the case of scatterers with a long-range Gaussian potential, which do not cause mixing with
the outer band. In the case of more realistic scatterers such as charged impurities, the singularity is completely
removed except the presence of a weak steplike feature. The Hall conductivity associated with the spin-Zeeman
energy is also strongly reduced by interband mixing and generally remains much smaller than the orbital
contribution.
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I. INTRODUCTION

Systems with a giant spin splitting due to a Rashba-type
spin-orbit interaction attract much attention [1], from the
viewpoint of spintronics applications as well as fundamental
physics [2]. In a topological insulator Bi2S3, for example, spin
splitting much larger than in III-V and II-VI semiconductors
was realized and its electrostatic control was demonstrated [3].
More recently, much larger splitting was realized in the bulk
of polar semiconductor BiTeI [4–10], and a two-dimensional
electronic system on its surface is shown to exist [11,12].
In this paper, we theoretically study the weak-field Hall
effect of two-dimensional systems with the Rashba spin-orbit
interaction in the presence of nonzero-range impurities based
on a self-consistent Born approximation.

In a Rashba system, there appears a conelike crossing
point at k = 0, where spin splitting vanishes [13–15]. In this
vicinity, the electron motion is governed by Weyl’s equation
for a neutrino or the Dirac equation in the relativistic limit,
as in monolayer graphene [16–21]. Transport quantities in
the Weyl system of graphene are known to exhibit singular
and intriguing behaviors in the vicinity of the band crossing
point as have been discussed in various reviews [22–26].
Typical examples are a universal minimum conductivity,
predicted theoretically [27] and discussed experimentally [28],
diamagnetic susceptibility given by a δ function [16,29–32],
and the absence of backscattering [33–35].

Effects of disorder on transport in Weyl systems have been
studied for scatterers with potential range smaller than typical
electron wavelength in a self-consistent Born approximation
[27,36–38], and within approximations assuming energy-
independent broadening [39–45]. Recently, the scheme based
on the self-consistent Born approximation was extended to
the case of scatterers with long-range potential [46–54]. In
this paper, we use this new scheme to calculate the Hall
conductivity in a giant Rashba system.

The paper is organized as follows: In Sec. II, following a
brief review on the electronic states, we discuss the method
to calculate the Hall conductivity for long-range scatterers in
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the Boltzmann transport theory and in the self-consistent Born
approximation. In Sec. III some examples of numerical results
are presented for scatterers with a Gaussian potential and for
charged impurities. A brief discussion is given in Sec. IV and
a short summary is given in Sec. V.

II. FORMULATION

A. Effective-mass description

We consider a two-dimensional system, described by the
Hamiltonian

H0 = �
2 k̂

2

2m
+ �

2kso

m
(k̂ × σ ) · n, (1)

with k̂ = −i∇, n being a unit vector perpendicular to the
system, and Pauli spin matrices σ = (σx,σy) and σz, where
m is the effective mass and kso represents the wave number
characterizing the strength of the spin-orbit interaction. As the
corresponding typical energy, we introduce

εso ≡ �
2k2

so

2m
. (2)

For a given energy ε above the band minimum −εso, we
have

k± =
√

2m

�2
[ε + 2εso ± 2

√
εso(ε + εso)], (3)

where k+ and k− denote the wave vector of the outer and
inner band, respectively. The corresponding density of states
becomes

D±(ε) = 1

2π

∣∣∣∣k±∂k±
∂ε

∣∣∣∣ = m

2π�2

∣∣∣∣1 ±
√

εso

ε + εso

∣∣∣∣θ (ε + εso),

(4)

where we have defined a step function

θ (t) =
{

1 (t �0);
0 (t < 0). (5)
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The total density of states becomes

D(ε) =
∑
±

D±(ε) =
⎧⎨
⎩

m

π�2
(ε > 0);

m
π�2

√
εso

ε+εso
(−εso < ε < 0).

(6)

In the region ε > 0, it is exactly the same as that in a two-
dimensional system free from spin-orbit interaction, i.e., kso =
0, becomes larger in the region ε < 0, and diverges at the
band bottom ε = −εso. It has a kinklike structure at ε = 0
corresponding to the linearly vanishing density of states of the
conelike inner band. The electron concentration or the carrier
density is given by

ns(ε) =
⎧⎨
⎩

nso
(

ε
εso

+ 2
)

(ε > 0);

2nso

√
1 + ε

εso
(−ε < ε < 0),

(7)

with

nso = m

π�2εso
= k2

so

2π
, (8)

corresponding to the electron concentration at ε = εso in the
system free from spin-orbit interaction.

The group velocity becomes

vk± = v±(ε)
k±
k±

, (9)

with

v±(ε) = 1

�

(
∂k±
∂ε

)−1

= �k±
m

(
1 ±

√
εso

ε + εso

)−1

. (10)

The cyclotron frequency becomes

ω± = 1

l2

v±
k±

= ωc

(
1 ±

√
εso

ε + εso

)−1

, (11)

where l is the magnetic length and ωc is the cyclotron
frequency, defined by

l2 = c�

eB
, ωc = eB

mc
, (12)

with B = |B|, where B is the magnetic field perpendicular
to the system. For the band corresponding to k−, the velocity
changes its sign at zero energy and the cyclotron frequency is
singular like ∝ ε−1, i.e., it diverges at ε = 0 and changes its
sign. Some of the quantities characterizing the electron motion
are shown in Fig. 1.

In the presence of scatterers, the Hamiltonian becomes

H = H0 + V (r), (13)

with

V (r) =
∑

j

ui(r−rj )

(
1 0
0 1,

)
(14)

where ui(r) is the impurity potential assumed to be indepen-
dent of the electron spin and rj is the position of the j th
impurity. In the following, we shall confine ourselves to the
case of isotropic potential, i.e.,

ui(r) =
∫

dq
(2π )2

ui(q)eiq·r , (15)
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FIG. 1. Wave vectors k±/kso, partial densities of states
D±(ε)(m/π�

2)−1, group velocities v±(�kso/m)−1, and cyclotron
frequencies ω±/ωc as a function of energy.

with real ui(q) = ui(q) (q = |q|). Extension to anisotropic
impurities is straightforward as long as isotropy is recovered
after averaging over impurity configurations.

B. Boltzmann equation

To the lowest order in applied electric field E, the
Boltzmann equation for the distribution function g(ks) with
s = ± is given by

(−e)E ·vks

(
− ∂f

∂εks

)
=

∑
s ′

∫
dks ′

(2π )2

2π

�
ni|〈ks ′ |ui|ks〉|2

× δ[ε(ks)−ε(ks ′ )][g(ks)−g(ks ′ )]

− e

c�

(
vks

× B
) · ∂g(ks)

∂ks

, (16)

where f (ε) is the Fermi distribution function and ni is the con-
centration of scatterers. This can be solved in the way similar
to that in the case of bilayer graphene [51,53], for example,
giving the diagonal conductivity σ ≡ σxx in the absence of a
magnetic field and the off-diagonal Hall conductivity σxy to
the linear order in magnetic-field strength B. In the following,
we shall write the conductivity components as

σμν =
∫

dε

(
− ∂f

∂ε

)
σμν(ε), (17)

with μ = x,y and ν = x,y.
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FIG. 2. Calculated density of states and spin-Zeeman Hall conductivity in an ideal system. (a) The case of relatively large gap. (b) Close
to the small-gap limit.

C. Spin-Zeeman Hall conductivity

In addition to the orbital contribution, in general, we have
to include the spin-Zeeman energy

H → H + 
σz, (18)


 = g

2
μBB, (19)

into the Hamiltonian, where g is the effective g factor and
μB = e�/(2m0c), where m0 is the free-electron mass. This
gives rise to the opening of gap 2|
| at k = 0 and the resulting
off-diagonal conductivity is often called the anomalous Hall
conductivity [55–82].

The Hall conductivity is written as

σxy = −i
�e2

L2

∑
α

f (εα)
∑
β �=α

(vx)αβ(vy)βα−(vy)αβ(vx)βα

(εα−εβ )2
,

(20)

where L2 is the system area, α and β denote eigenstates
with eigenenergies εα and εβ , respectively, and vx and vy

are the velocity in the x and y directions, respectively. In
the ideal system, we can easily calculate the above and
have

σxy(ε) =

⎧⎪⎪⎨
⎪⎪⎩

− e2

2h
[g−(ε) − g+(ε)] (εmin < ε < −|
|);

− e2

2h

[


|
| − g+(ε)

]
(−|
| < ε < +|
|);

− e2

2h
[−g−(ε) − g+(ε)] (ε > +|
|),

(21)

where

g±(ε) ≡ 1

2




εso±
√

εso(ε−εmin)
, (22)

εmin = −εso − 
2

4εso
. (23)

In the limit of 
 → 0, we have

σxy(ε) = − e2

2h



[
2δ(ε) + 1

ε
θ (ε)

− 1

ε

√
1 + ε

εso
θ (−ε)θ (ε + εso)

]
. (24)

In the vicinity of zero energy, this diverges like σxy ∼
−(e2/2h)(
/|ε|) and the δ-function term is less important.
This expression gives the spin-Zeeman Hall conductivity
proportional to B by the replacement 
 → (g/2)μBB.

Figure 2 shows the spin-Zeeman Hall conductivity in ideal
systems without any scatterers with various gaps at k = 0. As
shown in Fig. 2(a), within the opened gap, the Hall conductivity
is close to −e2/2h and its absolute value decreases with the
increase of the gap. In the limit of vanishing gap shown in
Fig. 2(b), the Hall conductivity becomes proportional to 
/|ε|
near ε = 0.

This spin-Zeeman Hall conductivity corresponds with the
intrinsic contribution for the anomalous Hall conductivity in a
system without disorder where the energy gap 2|
| is induced
by a spontaneous magnetization in the absence of the magnetic
field [62,70]. In the following sections, we discuss the weak-
field Hall conductivity proportional to the magnetic field B,
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while the analytical expression of Eq. (21) is valid for 
 of
arbitrary strength.

D. Conductivity formula

According to the Kubo formula [83], the diagonal conduc-
tivity is written as

σxx(ε) = e2

2π�L2
Re Tr[HxG(+)HxG(−) − HxG(+)HxG(+)],

(25)

where we have introduced Green’s operator

G(±) ≡ G(ε ± i0) = 1

ε − H ± i0
, (26)

and have defined

Hx = ∂H
∂kx

, Hy = ∂H
∂ky

. (27)

A theoretical scheme to calculate the weak-field Hall conduc-
tivity due to orbital cyclotron motion proportional to applied
magnetic field, based on the Kubo formula, was developed by
Fukuyama and coworkers [84,85]. The Hall conductivity is
separated into two terms:

σxy(ε) = σ ′
xy(ε) + σ ′′

xy(ε), (28)

with

σ ′
xy(ε) = e2

�
3

πl2
Hxy(ε), (29)

σ ′′
xy(ε) = 2e2

�
3

πl2

∫ ε

−∞
H ′

xy(ε′) dε′, (30)

which are linear in magnetic field strength B. Here, we have

Hxy = − 1

�4L2
Tr ImHxG(+)HyG(+)HxG(+)HyG(−), (31)

H ′
xy = − 1

�4L2
Tr ImHxG(+)2HyG(+)HxG(+)HyG(+), (32)

with

Hxx = Hyy = ∂2H
∂k2

x

= �
2

m
. (33)

The Hall coefficient is defined by

RH = σxy

Bσ 2
xx

. (34)

In the absence of the spin-orbit interaction, RH = −1/(nsec)
within the Boltzmann theory, where ns is the carrier concen-
tration.

For the Hall conductivity due to the spin-Zeeman energy,
it is sufficient to calculate the conductivity in the presence of
nonzero gap 
 and consider the case of sufficiently small 
.
The Hall conductivity is given by Eq. (28) with

σ ′
xy(ε) = e2

2π�L2
Tr ReHxG(+)HyG(−), (35)

σ ′′
xy(ε) = e2

π�L2

∫ ε

−∞
dε′ Tr ReHxG(+)2HyG(+). (36)

These formulas give identically vanishing results for 
 = 0.
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FIG. 3. The Feynman diagrams for (a) the self-energy, (b) the
diagonal conductivity, (c) the current-vertex function, and (d) the
double-vertex function in the self-consistent Born approximation.

E. Self-consistent Born approximation

The Green’s function averaged over impurity configuration
becomes a (2,2) matrix and is given by

G(k,ε) = 1

ε − H0(k) − (k,ε)
, (37)

with a (2,2) matrix self-energy (k,ε). Within a self-consistent
Born approximation, the self-energy is given by

(k,ε) = ni

∫
dk′

(2π )2
ui(k−k′)2G(k′,ε). (38)

It is diagrammatically represented in Fig. 3(a).
The diagonal conductivity is given by the diagram shown

in Fig. 3(b). Actually, we have

σxx(ε) = e2
�

2π

∫
dk

(2π )2
Re Tr[vxG(+)Jx(+−)G(−)

− vxG(+)Jx(++)G(+)], (39)

where vx = Hx/�, and G(±) = G(k,ε±i0) and Jx(+−) =
Jx(k,ε + i0,ε−i0), etc., for simplicity. The current vertex
satisfies a Bethe-Salpeter-type equation shown in Fig. 3(c),
i.e.,

Jx(k,ε,ε′) = vx + ni

∫
dk′

(2π )2
ui(k−k′)2G(k′,ε)

× Jx(k′,ε,ε′)G(k′,ε′). (40)

The weak-field Hall conductivity due to the orbital motion
is given by the diagrams shown in Figs. 4 and 5. For example,
the contribution of the diagram shown in Fig. 4(a) is given by

H (a)
xy (ε) = −

∫
dk

(2π )2
Im Tr G(−)Jx(−+)G(+)Jy(++)

×G(+)Jxy(+ + −), (41)

where we have introduced the double-vertex function Jxy(+ +
−) = Jxy(k,ε + i0,ε + i0,ε−i0). The double-vertex function
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FIG. 4. The Feynman diagrams of the Hall conductivity σ ′
xy due

to the orbital motion in the self-consistent Born approximation. The
term (c) appears for the purpose of removing overcounting problems.

satisfies a Bethe-Salpeter-type equation shown in Fig. 3(d), i.e.,

Jxy(k,ε,ε′,ε′′) = Jx(k,ε)G(k,ε′)Jy(k,ε′′)

+ ni

∫
dk′

(2π )2
ui(k−k′)2G(k′,ε)

× Jxy(k′,ε,ε′,ε′′)G(k′,ε′′). (42)

ε+ ε+

ε+

ε+

ε−

FIG. 6. The Feynman diagrams of the spin-Zeeman Hall con-
ductivity in the self-consistent Born approximation. (a) Eq. (35).
(b) Eq. (36).

All other terms are written down in the similar manner, in
which vertex part J1 and double-vertex functions such as Jyx ,
J1y , etc., are introduced. Bethe-Salpeter-type equations for
these additional vertex functions can be written down in a
similar manner.

The spin-Zeeman Hall conductivity is given by the dia-
grams shown in Fig. 6. Its explicit expressions in the self-
consistent Born approximation can also be written down in
terms of the Green’s function and vertex functions, although
not shown here.

III. NUMERICAL CALCULATIONS

A. Model of dominant scatterers

For the purpose of clarifying the dependence on the
potential range of dominant scatterers, we shall first con-

ε

ε+ ε+

ε+

ε+ε+
+

−

+

+ + −

− − − +

ε

ε+ ε+

ε+

ε+ε+
+

−

+

+ + −

− − − +

′

FIG. 5. The Feynman diagrams of the Hall conductivity σ ′′
xy due to the orbital motion in the self-consistent Born approximation. Terms

(f)–(k) appear for the purpose of removing overcounting problems in (a)–(e).
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sider scatterers with a Gaussian potential with range d and
strength u,

ui(r) = u

πd2
exp

(
− r2

d2

)
. (43)

As a more realistic source of dominant scatterers, we assume
charged impurities having potential

ui(q) = 2πe2

κ

e−q|zi|

q + qs
, (44)

where κ is the static dielectric constant of the environment, zi

is the position of an impurity relative to the two-dimensional
plane, and qs is the Thomas-Fermi screening constant. In the
following, we shall confine ourselves to the case of zi = 0 for
simplicity.

The screening constant is given by qs = (2πe2/κ)D(εF)
with εF being the Fermi energy at low temperature. In the
vicinity of zero energy, the density of states is dominated by
that associated with the outer band, D+, and therefore can
be approximated to be independent of energy. Thus, qs will
be regarded as an energy-independent parameter without any
attempt to its self-consistent determination as was made in
monolayer and bilayer graphene [49–54,86,87].

In the absence of the spin-orbit interaction, the relaxation
time τ0 and transport relaxation time τ1 become

�

τ0(εk)
= 2πni

∫
dk′

(2π )2
ui(k−k′)2δ(εk−εk′ ),

(45)
�

τ1(εk)
= 2πni

∫
dk′

(2π )2
ui(k−k′)2(1−cos θ )δ(εk−εk′ ),

where θ is the angle between k and k′. In the following, the
degree of disorder will be characterized by W defined in the
short-range limit,

W = lim
ksod→0

�

2τ0(εso)

1

εso
= niu

2m

2�2εso
, (46)

for scatterers with a Gaussian potential and

W = nim

2�2εso

(
2πe2

κqs

)2

, (47)

for charged impurities. In the long-range case, actual strength
of the disorder cannot be characterized by the single parameter
W . In fact, effects on the density of states may be characterized
by W0 = �/[2τ0(εso)εso] and the magnitude of the conductiv-
ities may be characterized by

W1 = �

2τ1(εso)

1

εso
. (48)

These parameters for typical values of ksod and qs/kso are
listed in Table I. In the following the diagonal and Hall
conductivity due to orbital motion are plotted in units of
quantities characterized by W1 instead of W .

B. Boltzmann conductivities

Some examples for scatterers with a Gaussian potential
are shown in Fig. 7. The diagonal conductivity shown in
Fig. 7(a) exhibits a kink at ε = 0 when the potential range is
small, i.e., ksod � 1. This structure corresponds to the linearly
vanishing density of states at ε = 0 of the inner band, leading

TABLE I. Some examples of W0/W and W1/W , characterizing
the strength of disorder for (a) scatterers with a Gaussian potential
and (b) charged impurities.

(a)
ksod W0/W W1/W

0.2 0.961 0.942
0.5 0.791 0.693
1.0 0.466 0.258
1.5 0.287 0.076
2.0 0.207 0.028

(b)
qs/kso W0/W W1/W

10.0 0.794 0.7328
2.0 0.424 0.3023
0.5 0.147 0.0586
0.1 0.032 0.0040

to the reduction of scattering of electrons in the outer band
dominantly contributing to the conductivity. In fact, this kink
structure disappears in the case of long-range scatterers, for
which such interband scattering does not take place.

The Hall conductivity shown in Fig. 7(b) exhibits a discrete
jump at ε = 0 and the jump height seems to increase with
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FIG. 7. Some examples of the (a) diagonal conductivity, (b) Hall
conductivity, and (c) inverse Hall coefficient for scatterers with a
Gaussian potential with range d , obtained in the Boltzmann transport
theory.
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the potential range. For sufficiently large potential range such
as ksod = 2, σxy exhibits very singular behavior and even a
sign change. This corresponds to the similar singular behavior
appearing in monolayer graphene having a single Weyl cone
[38,54]. In fact, in the case of long-range scatterers, two bands
with large and small wave vectors, k+ and k−, become almost
independent of each other, making the singular behavior in
the Weyl system apparent. This singularity appears also in the
Hall coefficient shown in Fig. 7(c).

The Hall conductivity shown in Fig. 7(b) rapidly decreases
with decreasing energy below ε = 0 and becomes vanishingly
small when the energy approaches the band bottom −εso. The
reason lies in the cancellation of the contribution of the two
bands with k+ and k−. The latter band, having a negative
cyclotron frequency and behaving as a hole band, tends to
cancel the Hall conductivity of the k+ band. In the vicinity of
the band bottom, the cancellation is expected to become exact.

This cancellation due to the electronlike and holelike bands
manifests itself as the increase of the inverse Hall coefficient,
R−1

H , in the low-energy region ε < −εso/2 in Fig. 7(c). In the
vicinity of the band bottom ε = −εso, R−1

H exhibits singular
and divergent behavior. Near zero energy, R−1

H exhibits a
discrete jump and its amount increases with the potential
range. In the case of long-range scatterers like ksod = 2, R−1

H
exhibits divergence near zero energy corresponding to the
sign change in σxy .

Some examples of the Boltzmann results for charged
impurities with zi = 0 are shown in Fig. 8. The most striking
difference between charged impurities and scatterers with a
Gaussian potential becomes apparent in the long-range case
qs � kso. In fact, no singular behavior at ε = 0 manifests itself
in Fig. 8(b) σxy and Fig. 8(c) R−1

H even in the case of very
small screening constant. This is presumably due to the fact
that interband scattering remains appreciable even in this case
and the real singular behaviors associated with the zero-mass
Dirac bands are washed out. Persistent interband effects also
cause the appearance of a kinklike structure in the diagonal
conductivity shown in Fig. 8(a) even for qs/kso = 0.1. The
reduction of the Hall conductivity due to the cancellation
between the electronlike and holelike bands in the low-energy
region ε < −εso/2 occurs independent of kinds of scatterers
as shown in Figs. 8(b) and 8(c).

C. Self-consistent Born approximation

The dependence of the Green’s function, the self-energy,
and the vertex functions on the direction angle θk of k can
be eliminated as has previously been discussed [49–54]. Then,
the self-consistency equation for the self-energy and the Bethe-
Salpeter-type equations for the vertex functions are all solved
iteratively by discretization of k. For actual calculations, we
introduce cutoff energy εc and wave vector kc through εc =
�

2k2
c /(2m). We choose kso/kc = 0.1 and therefore εso/εc =

0.01, and we discretize the wave vector such that

kj = 1

2

kj +

j−1∑
j ′=1


kj ′ (j = 1, . . . ,jmax),

(49)
jmax∑
j=1


kj = kc.
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FIG. 8. Some examples of the (a) diagonal conductivity, (b)
Hall conductivity, and (c) inverse Hall coefficient for dominant
charged-impurity scattering with screening constant qs, obtained in
the Boltzmann transport theory.

Then, we can make the following replacement:

∫ kc

0
kdk F (k) ⇒

jmax∑
j=1


kj kj F (kj ). (50)

Furthermore, we use 
kj ∝ (j + α)β with α ≈ 0 and β ≈
1. We shall choose jmax = 1000 ∼ 2000 depending on actual
values of the imaginary part of the self-energy.

Some examples of numerical results of the density of states
D(ε) and the electron density ns for scatterers with a Gaussian
potential are shown in Fig. 9. In the case of short-range
scatterers ksod = 0.2 shown in Fig. 9(a), the density of states
has a peak around ε ≈ −εso almost independent of disorder
parameter W . In the long-range case ksod = 2, on the other
hand, the peak energy is shifted to higher-energy side with W .
This is presumably due to the fact that states are pushed toward
the low-energy side due to quantum mechanical repulsion
with higher-energy states in the short-range case, while in the
long-range case, effects of impurity potential rapidly become
weaker with energy and effects of downward level-shift are
weaker than those of upward shift. The resulting enhancement
of the density of states near zero energy tends to reduce the
diagonal and Hall conductivity as will be discussed below.

Figure 10 shows calculated Fig. 10(a) σxx , Fig. 10(b) σxy ,
and Fig. 10(c) R−1

H in the short-range case of ksod = 0.2.
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FIG. 9. Some examples of the density of states and the electron
density for scatterers with a Gaussian potential, calculated in the
self-consistent Born approximation. (a) ksod = 0.2 (short range) and
(b) 2 (long range).
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FIG. 10. Some examples of the (a) diagonal conductivity, (b)
Hall conductivity, and (c) inverse Hall coefficient for scatterers
with a Gaussian potential, calculated in the self-consistent Born
approximation. ksod = 0.2 (short range).
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FIG. 11. Some examples of the (a) diagonal conductivity, (b)
Hall conductivity, and (c) inverse Hall coefficient for scatterers
with a Gaussian potential, calculated in the self-consistent Born
approximation. ksod = 2 (long range).

The diagonal conductivity is close to the Boltzmann result
and does not exhibit singular drop at ε = 0 as in monolayer
graphene [27,49]. This is due to the fact that induced current
is dominated by electrons belonging to the outer band. The
Hall conductivity exhibits a steplike change near ε = 0, giving
rise to a step structure in the inverse Hall coefficient. Such a
structure does not vanish even in the case of large disorder
W = 0.2. This step structure looks close to that in the results
obtained by assuming an energy-independent broadening in
monolayer graphene [41,42]. This may be reasonable because
the presence of the outer band with large density of states
dominantly causes energy-independent broadening of the inner
band.

Figure 11 shows the corresponding results in the long-range
case (ksod = 2). The singular jump at ε = 0 of σxy is very
sensitive to the degree of disorder W . For small disorder
W � 0.5 both σxy and R−1

H exhibit qualitatively the same
behavior as the Boltzmann result, while for large disorder
W � 1, only a small step remains or the jump completely
disappears. For the largest disorder W = 2, both σxx and σxy

are reduced considerably from the corresponding Boltzmann
results near zero energy. This can be understood as results of
considerable mixing of low-energy states contributing less to
the current, corresponding to enhanced density of states shown
in Fig. 9(b).
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FIG. 12. Some examples of the spin-Zeeman Hall conductivity
for scatterers with a Gaussian potential, calculated in the self-
consistent Born approximation. (a) ksod = 0.2 (short range) and (b)
2 (long range).

Figure 12 shows the spin-Zeeman Hall conductivity in the
case of very small gap 
/εso = 0.01. The conductivity is
proportional to the gap for this 
 and can be regarded as the
contribution of the spin-Zeeman effect to the weak-field Hall
conductivity, when we set 
 = 1

2gμBB. In the short-range
case ksod = 0.2 shown in Fig. 12(a), the spin-Zeeman Hall
conductivity is reduced considerably from the ideal result.
This shows clearly that mixing of the inner band with the
outer band tends to destroy the spin-Zeeman effect.

In the long-range case ksod = 2, the conductivity becomes
comparable to or larger than the ideal result. In fact, in
the energy region ε > 0 (kFd � 1 with kF the Fermi wave
vector) where interband mixing may be almost completely
neglected, it is much enhanced from the ideal result. This
enhancement corresponds to the similar behavior in the valley
Hall conductivity in graphene [52,53], as will be discussed
in Sec. IV. In the low-energy region ε < 0, the conductivity
is reduced and even changes the sign with the decrease of ε,
because d becomes smaller than k−1

F there, causing the increase
of interband mixing.

Figures 13 shows some examples of the density of states
and the electron density in the case of dominant charged-
impurity scattering. Its qualitative behavior, in particular, the
dependence on W and qs/kso, is similar to that in the case
of scatterers with a short-range Gaussian potential shown in
Fig. 9. No enhancement of the density of states near zero
energy appears even for qs/kso = 0.1.

The corresponding results for the transport quantities are
given in Figs. 14 and 15. Qualitatively, the behavior of the
diagonal conductivity is almost independent of qs/kso in
contrast to the case of scatterers with a Gaussian potential
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FIG. 13. Some examples of the density of states and the electron
density for charged-impurity scattering, calculated in the self-
consistent Born approximation. (a) qs/kso = 10 (short range) and
(b) 0.1 (long range).
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FIG. 14. Some examples of the (a) diagonal conductivity, (b)
Hall conductivity, and (c) inverse Hall coefficient for dominant
charged-impurity scattering, calculated in the self-consistent Born
approximation. qs/kso = 10 (short range).
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FIG. 15. Some examples of the (a) diagonal conductivity, (b)
Hall conductivity, and (c) inverse Hall coefficient for dominant
charged-impurity scattering, calculated in the self-consistent Born
approximation. qs/kso = 0.1 (long range).

shown in Figs. 10(a) and 11(a), and no significant reduction
occurs near zero energy even for large W .

In the short-range case shown in Figs. 14(b) and 14(c),
the Hall conductivity exhibits a clear steplike feature near
ε = 0, causing an associated feature in the Hall coefficient,
in agreement with the behavior for scatterers with a Gaussian
potential shown in Figs. 10(b) and 10(c). In the long-range case
shown in Fig. 15(b), the Hall conductivity does not exhibit any
singular behavior in contrast to the case of scatterers with
a Gaussian potential and is close to the Boltzmann result.
Correspondingly, the Hall coefficient varies smoothly across
ε = 0 as the Boltzmann result. This shows again that interband
mixing effects remain important for the Coulomb potential
independent of the amount of screening.

Figure 16 shows some examples of the spin-Zeeman
Hall conductivity in the case of charged impurities. In the
short-range case shown in Fig. 16(a), the conductivity is in
semiquantitative agreement with that for scatterers with a
Gaussian potential shown in Fig. 12(a). In the long-range case
shown in Fig. 16(b), however, the conductivity remains much
smaller than the ideal result and the prominent asymmetry in
Fig. 12(b) does not appear. This again shows the presence
of appreciable amount of interband mixing, reducing the
spin-Zeeman Hall conductivity.
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FIG. 16. Some examples of the spin-Zeeman Hall conductivity
for charged-impurity scattering, calculated in the self-consistent Born
approximation. (a) qs/kso = 10 (short range) and (b) 0.1 (long range).

IV. DISCUSSION

When we take the limit of kso → ∞ and m → ∞ for fixed
γ ≡ �

2kso/m and rotate k̂ by π/2, the Hamiltonian becomes
the same as that of electrons in the vicinity of a K point in
the first Brillouin zone of graphene, where a gap is induced by
asymmetry in the energy of two sublattice points. By taking the
limit εso → ∞ in Eq. (21), the spin-Zeeman Hall conductivity
is quantized into ±e2/(2h) in the gap [19,88–91], and its
absolute value monotonically decreases in the band continuum
[92,93]. This is the same as the valley Hall conductivity in
ideal graphene with gap. Because induced current is canceled
by that of a K ′ point, no Hall voltage appears, but the presence
of the valley Hall effect has been experimentally confirmed
using a nonlocal resistance in both monolayer [94] and bilayer
graphene [95,96].

Detailed study of disorder effects on the valley Hall
conductivity in graphene was performed recently [52,53].
The result shows that in the presence of scatterers, the
valley Hall conductivity in the band continuum is strongly
enhanced and that this enhancement depends on the explicit
form of scattering potential even in the clean limit, where the
concentration and strength of scatterers are vanishingly small.
The result for short-range scatterers in the clean limit agrees
with that previously obtained [97]. Furthermore, numerical
calculations in the self-consistent Born approximation shows
that the valley Hall conductivity remains appreciable because
of the enhancement even in the case of large disorder.

Figure 17 shows some examples for this single Weyl
system with scatterers with a Gaussian potential with range
d. In the small-gap limit corresponding to the spin-Zeeman
Hall conductivity, the result becomes universal when the
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FIG. 17. Some examples of the spin-Zeeman Hall conductivity
for scatterers with a Gaussian potential in a single Weyl system.

energy is scaled by γ /d. The disorder parameter is defined
by W = niu

2/(4πγ 2) following the conventions in graphene
[27,36–38,49–54]. The singular behavior ∝ |ε|−1 near zero
energy is considerably reduced and easily smoothed out by
disorder, but the conductivity in the other region is enhanced
over the ideal result and can be even larger than the clean-limit
result away from zero energy.

In the present system, however, a similar enhancement
appears only in the high-energy region of Fig, 12(b), where
the inner and outer bands are regarded as almost independent,
and does not in Fig. 12(a) and in Fig. 16, for which mixing
between the inner and outer bands cannot be neglected. This
clearly shows that the important feature in the Weyl system
is easily destroyed by small mixing with the outer band and
therefore may hardly manifest itself in the Rashba system.

In order to discuss relative importance of the orbital-motion
and the spin-Zeeman contributions to the Hall conductivity, let
us first consider the case of short-range scatterers. The orbital
Hall conductivity σ orb

xy is roughly of the order of (e2/h) ×
(lksoW )−2 and the spin-Zeeman conductivity σ

spin
xy is roughly

(e2/h) × (gμBB)/(2εsoW ), giving σ
spin
xy /σ orb

xy ∼ g̃W , with

g̃ = g

2

m

m0
. (51)

The actual numerical results presented in the previous section
show that the spin-Zeeman conductivity is considerably
reduced from the above due to mixing between the inner and
outer bands. Then, we have σ

spin
xy /σ orb

xy � g̃W .
In conventional III-V and II-VI semiconductors, the bottom

of the conduction band consists of s-like orbitals |s) and the
top of the valence bands p-like orbitals |x), |y), and |z). When

only these bands are considered, the effective mass and the g

factor of the conduction-band bottom are given by [98–100]

m0

m
= 1 + 1

3

εP

εG

3εG + 2
so

εG + 
so
, (52)

g = 2 − 2

3

εP

εG


so

εG + 
so
, (53)

with εG being the band gap, 
so the spin-orbit splitting in
the valence band, and εP = P 2/2m0, where P represents an
interband matrix element of momentum, i.e., P = −i(s|pz|z).
Actually, the presence of other bands should be considered
except in narrow-gap semiconductors, giving corrections to
the above formula [101–105], but the qualitative dependence
on 
so and εG remains essentially unaffected.

This gives

−1

2
< g̃ <

(
1 + εP

εG

)−1

. (54)

Usually, εP ∼ 20 eV and εG � 1 eV, we have g̃ � 1 when
g̃ > 0. Therefore, the spin-Zeeman contribution becomes
observable only in very dirty systems W � 0.5, for which
the peak structure is almost completely smoothed out. In the
case of long-range scatterers, σ orb

xy ∝ (W/W1)2 becomes much
larger than the above estimate because of the renormalization
of the transport relaxation time, i.e., W1 � W , while no
significant enhancement is present for σ

spin
xy . As a result,

σ
spin
xy /σ orb

xy is further reduced. Therefore, the spin-Zeeman Hall
conductivity remains in general much smaller than the orbital
Hall conductivity in the present system.

Finally, we give several comments from the viewpoint
of the anomalous Hall effect. The system with nonzero 


due to magnetization or an exchange field has nonzero Hall
conductivity even in the absence of magnetic field. The
spin-Zeeman contribution σ

spin
xy in this study corresponds to

this anomalous Hall conductivity. There have been a great
number of investigations on several types of contributions,
which are described by the intrinsic contribution, the side-jump
effect, and the skew scattering in the semiclassical transport
theory. The first and second contributions are fully taken into
consideration in the present study, while the third is not [63].

In the self-consistent Born approximation, we consider the
case of high concentrations of weak scatterers where multiple
scattering by a single impurity does not play significant
roles. On the other hand, the skew scattering arises when we
include effects of higher-order scattering processes by a single
impurity. It can give a dominant contribution to the anomalous
Hall conductivity as has been demonstrated by calculations in
a self-consistent T -matrix approximation [62,70]. Evaluation
of such higher-order effects on transport properties in the
present giant Rashba system, including the weak-field Hall
effect, could be an important task in the near future.

Recently, it has been pointed out that diagrams with a
single pair of crossing impurity-scattering lines give additional
contributions to the anomalous Hall conductivity comparable
to those of the intrinsic and side-jump mechanisms [81,82].
Certainly, such effects, not included in the self-consistent Born
approximation, can give some corrections to σ

spin
xy . As shown

in the preceding discussions, however, the Hall effect in the
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present system is dominated by the orbital contribution given
by σ orb

xy except in quite dirty cases.

V. SUMMARY

In summary, we have calculated the weak-field Hall con-
ductivity of a two-dimensional system with a strong Rashba
spin-orbit interaction containing scatterers with long-range
potential such as those with a Gaussian potential and charged
impurities. The Hall conductivity consists of two contributions
due to orbital cyclotron motion and spin-Zeeman splitting
corresponding to the spin-Zeeman Hall conductivity. The
singular behavior of the orbital Hall conductivity associated
with the band crossing at k = 0, which appears only in
the long-range case of scatterers with a Gaussian potential,

disappears in the presence of small interband mixing. The
spin-Zeeman Hall conductivity is considerably reduced due
to interband mixing and its significant enhancement due to
scattering for the single Weyl system as in graphene does not
take place in the present system. Except in very dirty cases,
the spin-Zeeman term does not give appreciable contribution
to the Hall conductivity.
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