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Two prevailing formalisms are currently used to model charge transport in organic semiconductor devices.
Drift-diffusion calculations, on the one hand, are time effective but assume local thermodynamic equilibrium,
which is not always realistic. Kinetic Monte Carlo models, on the other hand, do not require this assumption
but are computationally expensive. Here, we present a nonequilibrium drift-diffusion model that bridges this gap
by fusing the established multiple trap and release formalism with the drift-diffusion transport equation. For a
prototypical photovoltaic system the model is shown to quantitatively describe, with a single set of parameters,
experiments probing (1) temperature-dependent steady-state charge transport—space-charge limited currents,
and (2) time-resolved charge transport and relaxation of nonequilibrated photocreated charges. Moreover, the
outputs of the developed kinetic drift-diffusion model are an order of magnitude, or more, faster to compute and
in good agreement with kinetic Monte Carlo calculations.

DOI: 10.1103/PhysRevB.94.035205

I. INTRODUCTION

As is characteristic of science, the field of organic electron-
ics has benefited tremendously from quantitative modeling
of material properties and device performance. Roughly
speaking, two formalisms can cope with the length scale
set by the typical active layer thickness in organic thin film
devices of ∼100 nm: drift-diffusion (DD) and kinetic Monte
Carlo (MC). For realistic devices that, e.g., include contacts,
neither of the two models allows for analytical solutions
and one has to rely on numerical techniques. Kinetic MC
has been extremely successful in describing the effects of
static energetic disorder on the charge transport in disordered
organic semiconductors [1–5]. As MC typically puts high
demands on computation power, a common and successful
approach has been to incorporate the molecular detail into
the simpler DD formalism by means of a mobility functional
[6–9]. A range of parameterizations of the temperature and
electric field dependence of the mobility stemming from
numerical simulations that are typically performed on regular
lattices has been reported [1–3,10,11]. In addition, various
analytical expressions on basis of, typically, variable range
hopping models exist [3,12–14]. An alternative approach is
the inclusion of (a distribution of) trap states residing below
the band considered in DD [15–17]. These approaches allow
capture, in a DD model, of a significant part of the phenomena
brought about by the conduction mechanism of charge carrier
hopping in an energetically disordered density of states
(DOS).

The DD model is inherently based on the (assumed)
presence of well-defined (quasi-)Fermi energies, and hence on
the existence of (local) thermodynamic equilibrium through
the underlying transport equation j = qnμ∇EF . Here, j and
n are the current and charge density, µ is the mobility, and
EF is the quasi-Fermi level. This implies that phenomena
related to the slow process of charges seeking their way to
thermodynamic equilibrium in the DOS cannot be accounted
for. It is well known that such long-range relaxation processes
can be significantly slow in a strongly energy-dependent
DOS, such as an exponential or a Gaussian [1,18–20]. In

recent papers, we have shown that in typical organic solar
cells, these relaxation processes may take longer than the
extraction of photocreated charge carriers from an operating
device [21,22]. This observation makes widespread use of
equilibrium charge carrier mobilities and quasi-Fermi levels
of questionable value when interpreting the characteristics
of organic solar cells and related devices such as photode-
tectors; the impact of associated errors is, however, largely
unknown.

In view of the above, we think there is a need for a
formalism that combines the ability of kinetic MC models
to naturally deal with nonequilibrium phenomena with the
computational ease of DD modeling. Here, we develop such a
hybrid kinetic drift-diffusion (kDD) device model. The model
produces a consistent description of measured space-charge
limited currents and ultrafast charge extraction experiments.
Moreover, it is validated by direct comparison with transient
and steady-state kinetic MC calculations.

II. THEORY

The model is based on the multiple trapping and release
(MTR) formalism that was originally used to describe re-
laxation phenomena in amorphous inorganic semiconductors
having a deep low-energy tail in their DOS [19,23–25].
Recently, Germs et al. adapted the MTR formalism to describe
impedance spectroscopy performed on hole-only diodes based
on organic semiconductors with a Gaussian DOS [26]. We
have extended their single-site model to deal with situations
in which the finite thickness of the device cannot be ignored,
e.g., space-charge limited diodes and time-resolved charge
extraction experiments. In the following, we outline the basic
equations of our one-dimensional (1D) transport model.

A. Basic equations

In the MTR formalism, a mobility edge is defined at an
energy Ec above which the charge carriers are mobile. Below
the mobility edge, there is a distribution of localized states (in
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FIG. 1. Schematic band diagram under near-equilibrium condi-
tions, indicating the electron mobility edge Ec and the quasi-Fermi
level EF in the disordered semiconductor that is sandwiched between
two metallic contacts (blue areas). The arrows indicate a single
release-transport-trapping cycle characterized by rates ν1,0 and free
mobility μ*. The blue curve indicates the Gaussian DOS g0(E).

our case, a Gaussian) (see also Fig. 1):

g0(E) = βNi√
2πσDOS

exp

(
− (E − EH/L − qV (z))2

2σ 2
DOS

)
(1)

In Eq. (1), βNi is the total site density, σDOS is the width of
the Gaussian, V (z) is the electrostatic potential at position
z in the device, and EH/L is the highest/lowest occupied
molecular orbital energy. The factor β is on the order of 2
and accounts for the fact that in the MTR formalism, only
the fraction of the DOS below Ec, corresponding to a site
density Ni , is considered. In fact, β is easily calculated from
β = ∫ ∞

−∞ g0(E)/
∫ EC

−∞ g0(E).
Transport takes place by charges that have been thermally

excited from the localized states to the mobility edge at a rate

v1 = v0 exp

(
−Ec − Etrap

kBT

)
(2)

where Etrap is the energy of the trap site from which detrapping
takes place and ν0 is the attempt frequency. Trapping into an
empty site occurs at the rate ν0. Between the detrapping and
the retrapping events, the charge carrier moves with a free
mobility, given by the following [2,26]:

μ∗ = ν0a
2
NN

/
σDOS (3)

The nearest-neighbor distance aNN is related to the total
DOS as aNN = (βNi)−1/3. The parameter β enables compari-
son between the present formalism and the MC calculations in
which the full DOS is commonly used at a constant aNN. The
free mobility is related to the near-equilibrium mobility at low
field and low charge carrier concentration μ0 [2,26,27]

μ0 = μ∗ exp(−χσ̂ 2) (4)

with σ̂ = σ/kBT and χ ≈ 0.44.
In order to capture the enhancement of the mobility by an

electric field F , we make the following ansatz for the position

of the mobility edge:

Ec = Ec,0

(
1 + α

(
qaNNF

σ

)2
) 1

2

(5)

In Eq. (5), α is a scaling constant of order of unity. In the
comparison with kinetic MC simulations discussed below, we
find good correspondence between MC and kDD for α = 2.2.
This value is used for all calculations shown in this paper. Ec,0

is the zero-field mobility edge, for which we use the critical
energy, as found by Cottaar et al. [27]. For Miller-Abrahams
hopping on a simple cubic lattice, Ec,0 = −0.491σ .

The particular form of the ansatz Eq. (5) is inspired by
the fact that the lowering of the final site energy of the
characteristic hop must be linear in F at high fields and
symmetric at low fields to avoid unphysical discontinuities
at F = 0. The scaling of the field energy term qaNNF by
the disorder strength σDOS is in the spirit of Eq. (3), in
which the free mobility is obtained by dividing the diffusion
constant ν0a

2
NN by σDOS, not by kBT . We verified that

temperature-dependent scaling factors (such as kBT ) in Eq. (5)
failed to reproduce both the kinetic MC simulations and the
experiments discussed below, whereas the scaling introduced
in Eq. (5) successfully reproduces both. Finally, it should be
kept in mind that while the lowering of the mobility edge with
field is temperature independent, its effect on the mobility
increases strongly at lower T due to the thermal activation of
the detrapping process described in Eq. (2).

During its time tfree at the transport energy (above the mo-
bility edge), the charge carrier travels the following distance:

�z = μ∗F tfree ±
√

2D∗tfree (6)

The first term accounts for drift motion and gets a minus
sign for electron motion. The second term accounts for
1D diffusion. Note that �z is a continuous variable and
not restricted to discrete values corresponding to a lattice.
The direction of the diffusion is randomly chosen for each
event. The diffusion constant is related to the mobility as
D∗ = μ∗kBT . Even though the use of the Einstein relation
to connect μ∗ and D∗ does not imply that the same relation
holds for the mobility μ and diffusion constant D of the system
as a whole, its use is not evident upfront, because it implicitly
assumes thermodynamic equilibrium in the transport level. We
have tested the alternative expression D∗ = μ∗σDOS = ν0a

2
NN,

which was inspired by Eq. (3) and the ansatz in Eq. (5).
This failed to reproduce both the kinetic MC simulations
and the experiments discussed below. In particular, it led to
an overestimation of the diffusion at lower T , giving rise
to an overly weak temperature dependence of space-charge
limited currents in devices. In the present formalism, we
therefore interpret the transport level as a phenomenological,
disorder-free band sitting at the mobility edge; apparently,
complications associated with the Gaussian disorder can
to a large degree be mapped on trapping in the localized
states below it. In the limit of equilibrium transport, this
interpretation is (implicit) common practice in modeling
of organic field-effect transistors (see, e.g., Ref. [28] and
references therein). Finally, in Ref. [27], the zero-field mobility
edge Ec,0 was shown to have the physical meaning of being

035205-2



NONEQUILIBRIUM DRIFT-DIFFUSION MODEL FOR . . . PHYSICAL REVIEW B 94, 035205 (2016)

the highest energy of sites participating in the critical bonds
of the percolating network formed on a regular lattice with
nearest-neighbor hopping.

In the spirit of DD calculations, interactions between
charges are treated through the mean carrier distributions.
The Coulomb interaction can thus be treated through the 1D
Poisson equation

d2V

dz2
= −ρ(z)

ε0εr

(7)

where V is the electrostatic potential, ρ is the total charge
density, and ε0εr is the dielectric constant of the semi-
conductor. Metallic contacts at z = 0 and z = L set the
boundary conditions required to determine V . The image force
interaction with the contacts is included through the Simmons
approximation [29]:

Vim(z) = −1.15q2L ln 2

8πε0εr

1

z(L − z)
(8)

A practicality associated with the divergences of this
equation is discussed in the Appendix.

Recombination of charges of one polarity with charges of
the other polarity consists of two contributions. When free,
a hole can recombine with free or trapped electrons with the
following rate [9,30]:

νh,f = q

ε0εr

μ∗
h(ne,t + ne,f ) (9a)

The subscripts e and h refer to electrons and holes, and
t and f refer to trapped and free, respectively. The rate for
recombination of a trapped hole with free electrons is as
follows:

νh,t = q

ε0εr

μ∗
ene,f (9b)

Similar expressions for electron recombination are easily
written. It was checked that for steady-state transport under
near-equilibrium conditions, the combined effect of Eqs. (9a)
and 9(b) corresponds to the conventional Langevin recombina-
tion rate R = νr,Lnp, with n and p indicating the total electron
and hole densities and νr,L = q

ε0εr
(μ0,e + μ0,h). When needed,

sub-Langevin recombination is readily introduced by adding
a Langevin reduction prefactor smaller than unity in Eqs. (9a)
and 9(b); in the following, this option is not further pursued.

B. Numerical implementation

The practical implementation of the model outlined above
consists of an iterative procedure searching for a steady-state
solution, as shown in Fig. 2.

The stochastic aspects of charge carrier motion in disor-
dered semiconductors are accounted for through the multiple
trapping and release process of individual particles. For any
process—trapping, release, recombination, photocreation—
occurring at a rate ν, the time needed for a particular instance
is calculated as

ti = − ln Xi

ν
(10)

where X is a random number between 0 and 1. For example,
tfree is calculated by using the trapping rate ν0 in Eq. (10).

no

guess ini�al solu�on 
for V, n, p

track NoP par�cles 
for NoT �me steps

calculate n, p, j, V
and DOOS vs. z, E

converged?
yes

weighted average of 
old & new solu�ons

done

FIG. 2. Flow diagram of the numerical implementation of the
kDD model. Typical values for both the number of particles (NoP) and
the number of time steps (NoT) are 103. When a particle annihilates
by recombination or extraction at one of the contacts within NoT, it is
recreated by injection or photogeneration. The weight factor for the
new solution when averaging with the old one is typically 0.2–0.05.

Recombination while the carrier is free (trapped) happens
when the corresponding random recombination time is shorter
than the random time spent at the transport level (trap).
Likewise, trap energies are selected randomly for each trapping
event from the DOS in Eq. (1), under the conditions that
(i) the site is below the mobility edge at energy Ec and (ii) the
site is empty, i.e., a term 1 − f (E,z), with f (E,z), the relative
occupation, is used as weight factor. This means that there is no
memory of trap energies, and a particle revisiting the same po-
sition will in all likelihood get trapped at a different energy than
before. It is therefore not needed to perform explicit averaging
over multiple ensembles of random trap energy configurations,
as is commonly done in kinetic MC calculations.

Injection is assumed to occur from the Fermi level of the
metal contact EF,c to trap states at zc = 0 or zc = L at the
following rate:

νinj = ν0

βNi

∫ Ec

−∞
(1 − f (E,zc))g0(E) exp

(
−E − EF,c

kBT

)
dE

(11)

As for trapping from the transport energy, the final site
energy for a particular injection event is randomly selected
using criteria (i) and (ii) above. In addition, the probability for
thermal activation—second term in the integral of Eq. (11)—is
used as weight factor for injection; cf. Eq. (2).

The density of occupied states (DOOS)(E,z) is calculated
on a two-dimensional grid, with aNN as a spatial lattice
constant. Along the energy dimension, typically kBT /20 is
used as grid spacing. In particular,

DOOS(E,z) = min

(
βNi√

2πσDOS

∑
�ti(E,z)

t total
inj

,g0(E)

)
(12)
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where the sum runs over all events i at which a time
�ti is spent at (the grid point at) E and z and t total

inj is
the total time associated with all injection events, i.e., the
summed injection time of all charges considered in the
iteration (Fig. 2). For photocreated charges, the sum of all
generation times is used. The min() function assures numerical
noise does not lead to unphysical occupations; i.e., for the
relative occupation, f (E,z) = DOOS(E,z)/g0(E) � 1 must
hold. From the DOOS, the local charge density is obtained as
follows:

n(z) =
∫ ∞

−∞
DOOS(E,z)dE (13)

In a similar fashion, the current density is calculated as

j = ± q

a2
NN

N total
trans

t total
inj

(14)

where the plus and minus signs are for holes and electrons,
respectively and N total

trans is the total net number of transported
charges in the iteration.

We noticed that significantly faster convergence can often
be achieved by artificially enhancing the number of charges
that are present in and pass through the device. This is done
by dividing the charge density (Eq. (13)) by a factor in the
range 10–20, which has a roughly proportional effect on
calculation time. To compensate, the current density (Eq. (14))
and the relative occupation f are divided by the same
factor. The induced error in the key observables can be quite
small, allowing significant speed-ups after this error has been
checked. Even without this trick, the model is computationally
inexpensive, making it possible to extract parameters from
experiments by least-square fitting.

Although the procedure outlined above leads to steady-state
solutions, it should be stressed that it is straightforward to
extract transient information from the traces of the individual
charges in the converged solution. Below, the energetic
relaxation of photocreated charges will be compared to the
experiment as a relevant example.

C. Kinetic MC

The kinetic MC model to which we will compare our
results has been described in detail in a number of previous
publications [21,22]. In brief, it accounts for nearest-neighbor
hopping in a Gaussian DOS of width σDOS according to Miller-
Abrahams rates with attempt frequency ν0 on a simple cubic
lattice with an intersite distance aNN. Coulomb interactions
between all charges and their images in the metal electrodes
are exactly accounted for.

III. EXPERIMENTS

Bulk heterojunction hole-only devices were fabricated on
precleaned Indium-tin-oxide (ITO) substrates with 40 nm of
poly-(3,4-ethylenedioxythiophene) polystyrene sulfonate (PE-
DOT:PSS) spin-coated in air prior to active layer deposition.
The active layer was spin-coated inside a N2-filled glovebox
from a TQ1 : PC60BM solution (1:2 ratio by weight) with
a concentration of 20 g l−1 in 1,2-dichlorobenzene (ODCB)
yielding a film thickness of 105–110 nm. The MoO3/Al

top contact (10/90 nm) was evaporated on the active layer
at a vacuum below 4 × 10−6 mbar. Temperature-dependent
current-voltage (jV ) curves on hole-only devices were mea-
sured in the dark in a high-vacuum probe station (∼10−5 mbar)
cooled by liquid nitrogen. Fabrication of organic photovoltaic
devices used in this paper is described in an earlier paper [21].

Time-resolved charge extraction measurements were per-
formed on encapsulated organic photovoltaic devices. Briefly,
we utilize the electric-field-induced second-harmonic (EFISH)
generation effect to monitor the temporal evolution of the
electric field strength in the active layer of the organic
photovoltaic device. The motion of photocreated charges
partially screens the electric field in the bulk of the active layer,
thereby reducing the second-harmonic intensity and allowing
for charge transport to be evaluated with sub-picosecond time
resolution. The time delay between the 400 nm pump pulse
and the 800 nm probe was varied by a mechanical delay
stage, allowing for time delays up to ∼3 ns. The later part
of the transient >3 ns was simultaneously recorded (same
pump pulse) by a transient photocurrent measurement utilizing
an oscilloscope with a 10 k� load (integrated photocurrent).
The outlined method and the time-resolved EFISH technique
(TREFISH) in particular have been described in detail else-
where; see Refs. [31] and [21].

IV. RESULTS

The open symbols in Fig. 3(a) show the temperature-
dependent jV curves measured for hole-only TQ1:PCBM
diodes. In order to not have to deal with ambiguities related to
leakage and background doping, we focus our analysis on the
space-charge limited regime above ∼1 V. The connected solid
symbols are the results from the MC model after an elaborate
manual optimization of the hole transport parameters. The
agreement is excellent.

In Fig. 3(b), we compare the MC calculations with the
predictions of the kDD model using the same input parameters.
Over the largest part of the parameter space, especially around
room temperature, i.e., the experimentally most relevant range
σ̂ = 3−4, the correspondence is good. This implies that
under the near-equilibrium conditions of space-charge limited
conduction, the kDD model gives an accurate representation of
the extended Gaussian disorder model (EGDM) [3]. At larger
σ̂ , the temperature and especially the field dependence start
to deviate, which we tentatively attribute to the somewhat ad
hoc implementation of the Ohmic contacts and possibly the
ansatz Eq. (5). However, we should stress that Eq. (5), and the
particular scaling of the field-energy qaNNF with the disorder
σDOS and not the thermal energy kBT , are essential to reach
agreement with both MC and experiments at higher fields.

In order to further test the accuracy of the kDD model,
we compare in Fig. 4 the jV curves for various thicknesses
calculated by MC and kDD on basis of the same parameter
set used in Fig. 3. The ability to correctly capture the thick-
ness dependence of space-charge limited currents in organic
semiconductors was previously shown to be a distinctive
quality of the EGDM, implying that the field and temperature
dependence of charge transport have been correctly captured
[6]. Indeed, the agreement between the curves in Fig. 4 is
satisfactory. We attribute the minor deviations that arise at
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(a) (b)

FIG. 3. (a) Temperature-dependent current-voltage characteristics of a hole-only TQ1:PCBM device with L = 110 nm. Open symbols are
experiments, and connected solid symbols are calculations by MC. (b) Comparison between calculations by MC (connected solid symbols) and
kDD (dashed lines). Simulation parameters are σDOS = 0.085 eV, ν0 = 5.53 × 1010 s−1, and aNN = 1.8 nm, giving μ0 = 1.8 × 10−8 m2 Vs−1.
Injection barriers of 0.2 eV were used for the Ohmic contacts.

low and intermediate field strengths for the 50 nm device to
the kDD model not accurately describing the rare but high-
conductivity percolation pathways that dominate the transport
through very thin layers [32,33]. For the same thickness at high
voltages, i.e., very high fields, the Miller-Abrahams hopping
rates used in the MC calculations produce a well-understood
artifact in the form of a decreasing mobility when most hops are
down in energy, giving rise to hopping rates and conductivities
that level off. In the kDD formalism, this does not happen.

Having established good performance of our model under
steady-state near-equilibrium conditions, we now turn to the
limit of ultrafast charge transport of photocreated charges,
where transient and far-from-equilibrium phenomena are
expected to dominate. In Fig. 5(a), we compare simulated
charge extraction experiments using the same hole hopping
parameters as used in Figs. 3 and 4. Electron parameters were
taken from Ref. [21].

We have previously shown that TREFISH plus transient
photocurrent experiments directly probe the ultrafast charge
carrier dynamics in disordered organic semiconductors, as well
as the strong dispersion in extraction times of photocreated

FIG. 4. Thickness dependence of space-charge limited conduc-
tion as calculated by MC (connected solid symbols) and kDD (dashed
lines). T = 300 K, and L = 50, 110, 200, and 300 nm; otherwise, the
same parameters are used as in Fig. 3.

charge carriers [21]. Moreover, it was found that these can be
consistently described and understood on the basis of kinetic
MC models that account for the slow energetic relaxation of
charges in a Gaussian-shaped DOS [22]. The overall good
agreement with MC calculations shows that the kDD model
captures these phenomena to a large degree.

As an example of the practical potential of our model, we
used it to reanalyze the previously published data set from
Ref. [21], as shown in Fig. 5(b). The low computational
cost of the kDD formalism allowed use of a least-squares
fitting procedure. Compared to the previously published fit
that was based on MC calculations—see the thin dashed lines
in Fig. 5(b)—the agreement between experiment and model
has somewhat increased. The calculation time required to do
this has gone down by more than an order of magnitude.
The difference in the extracted hopping parameters (e.g.,
for the holes, σDOS = 0.113 eV and ν0 = 4.93 × 1010 s−1 vs
σDOS = 0.10 eV and ν0 = 1 × 1010 s−1 in Ref. [21]) reflects
the interchangeability of disorder and attempt frequency that
we signaled in our earlier paper. Therefore, within the limits of
the Gaussian disorder model, using kDD and MC to analyze the
same experimental data set leads to extracted hopping param-
eters that are largely equivalent—using Eqs. (3) and (4), these
parameters correspond to steady-state hole mobilities of μ0 =
3.2 × 10−10 m2 Vs−1 and μ0 = 4.5 × 10−10 m2 Vs−1, respec-
tively, in good agreement with the experimental photo-charge
extraction by linearly increasing voltage (photo-CELIV) mo-
bility of pristine TQ1 films μ = 6 × 10−10 m2Vs−1 [21].

Deviations from experiment are mainly present in the
first part of the charge extraction transient, corresponding to
electron extraction, especially r , the lowest field curve (−1 V),
and occur for both kDD and MC simulations. As such, their
origin must be sought in the common underlying Gaussian
disorder formalism. We speculate that the electron DOS might
deviate from a strict Gaussian. We attribute the fact that
different parameters are needed to describe the hole transport
in Figs. 3 and 5 to the fact that the shown experiments have been
performed on different samples made from different batches of
the TQ1 polymer. Moreover, we suspect some deterioration of
the devices under the time-consuming TREFISH plus transient
photocurrent measurements, possibly leading to a somewhat
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(a) (b)

FIG. 5. Simulation of combined TREFISH and transient photocurrent experiments. (a) Extracted charge vs time as calculated by MC
(connected open symbols) and kDD (solid red lines), using the hole parameters from Fig. 3 and electron parameters σDOS = 0.12 eV,
ν0 = 1 × 1013 s−1, L = 70 nm, and T = 300 K from Ref. [21]. (b) Measured (heavy black lines; data taken from Ref. [21]) and calculated by
kDD (solid red lines) charge extraction for a TQ1 : PC71BM organic photovoltaic device. Parameters are obtained by a least-squares fitting
procedure and are σDOS = 0.125 eV and ν0 = 1.84 × 1013 s−1 for electrons and σDOS = 0.113 eV and ν0 = 4.93 × 1010 s−1 for holes. The thin
dashed lines are an MC calculation using the parameters from Ref. [21]: σDOS = 0.10 eV and ν0 = 1 × 1010 s−1 for holes and σDOS = 0.12 eV
and ν0 = 1 × 1013 s−1 for electrons.

increased hole disorder and concomitantly a reduced hole
mobility.

The dispersive transport that is probed in the combined
TREFISH and transient photocurrent experiment of Fig. 5 is
driven by the slow relaxation process of photocreated charge
carriers [21,22,34]. In Fig. 6, we plotted the calculated energy
loss with respect to the center of the respective (electron or
hole) DOS. The correspondence between MC and kDD models
is perfect—the difference at very short timescales is due to the
trivial fact that the MC and kDD models initialize the charge
carrier distributions differently. MC selects random energies
in the DOS (Eq. (1)), so on average, charges are generated in
the DOS center, leading to zero loss at t = 0, whereas kDD
initializes charge carriers at the transport energy (Eq. (5)).
The curves in Fig. 6 are not strictly log-linear [1], as would
be the case for an exponential DOS [18,19]. Nevertheless, the
physical reason for the slowing of the relaxation process is the
same: the further charges relax, the longer they will be stuck
in their current site and the rarer even deeper sites become.

FIG. 6. Time-dependent relaxation of photocreated electrons and
holes as calculated by MC (symbols) and kDD (lines). Same
parameters as Fig. 5(a).

Finally, we should point out that in the time interval relevant
for the extraction of photocreated charges, cf. Fig. 5, neither
the electrons nor the holes fully reach their equilibrium energy
E∞ = σ 2/kBT of ∼0.56 eV for electrons and ∼0.39 eV for
holes, in agreement with experiments [22].

V. CONCLUSION

We have developed a nonequilibrium DD model that
naturally takes into account the characteristic aspects of charge
carrier motion in disordered organic semiconductor materials:
a density and electric field-dependent mobility under steady-
state conditions and highly dispersive and fast charge transport
when the charge population has not yet reached thermal
equilibrium. The latter is typically the case for photocreated
charges. We benchmarked our kDD model to the more time-
consuming kinetic MC calculations and used it to successfully
describe both direct current and ultrafast charge transport ex-
periments. In addition, the slow relaxation process of nonequi-
librium charge carriers in the DOS is accurately described.

APPENDIX: DIVERGENCE OF IMAGE POTENTIAL

The divergence of the image potential in Eq. (8) at z = 0
and z = L is numerically troublesome. When correct treatment
of the image potential is imperative, as is the case in Figs. 3
and 4, an approximate value for Vim is used at the contacts. In
particular, we used

Vim(0) = Vim(aNN) − Z1(Vim(2aNN) − Vim(aNN)) (A1)

with the empirical prefactor Z1 > 0. A similar expression for
the contact at z = L is used. For Z1 substantially larger than
unity, it becomes virtually impossible for charges to diffuse
into the device—the image potential leads to a field that is
directed to the contact, precluding drift motion away from the
contact. We solved this by artificially increasing the diffusion
constant (Eq. (6)) at z = 0 and z = L by a factor Z2 > 1. The
exact outcome of the model calculations is fortunately only a
weak function of Z1,Z2, provided both are sufficiently large.
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Moreover, only the low-field regime is affected by the choice
of Z1,Z2. Unfortunately, calculation times increase drastically
for large Z1. We used Z1 = Z2 = 10 as a good compromise
when fitting the hole-only diode experiments in Figs. 3 and
4 and thus recommend the use of these numbers when fitting

space-charge limited currents experiments. For simulations
of TREFISH + transient photocurrent, which are inherently
less dependent on the choice of contacts, we suggest the use
of the (much) faster combination Z1 = 3, Z2 = 1, which was
used in this paper.
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