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Non-Fermi-liquid magic angle effects in high magnetic fields
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We investigate a theoretical problem of electron-electron interactions in an inclined magnetic field in a
quasi-one-dimensional (Q1D) conductor. We show that they result in strong non-Fermi-liquid corrections to a
specific heat, provided that the direction of the magnetic field is far from the so-called Lebed’s magic angles
(LMAs). If magnetic field is directed close to one of the LMAs, the specific heat corrections become small and
the Fermi-liquid picture restores. As a result, we predict Fermi-liquid–non-Fermi-liquid angular crossovers in
the vicinities of the LMA directions of the field. We suggest to perform the corresponding experiment in the Q1D
conductor (Per)2Au(mnt)2 under pressure in magnetic fields of the order of H � 25 T.
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It is well known that closed electron orbits in a magnetic
field in metals are characterized by de Haas–van Alphen and
Shubnikov–de Haas quantum oscillations [1]. For open orbits,
Landau quantization is not possible and another quantum
effect—Bragg reflection from boundaries of the Brillouin
zone—plays an important role [2–4]. In particular, it has been
shown [5–8] that the latter effect results in the appearance of
angular magnetic oscillations, such as the so-called Lebed’s
magic angles (LMAs), Danner-Kang-Chaikin’s (DKC) oscil-
lations, and Lee-Naughton-Lebed’s (LNL) ones. It is important
that the DKC and LNL oscillations are well explained within
the Fermi-liquid approach to open quasi-one-dimensional
(Q1D) pieces of the Fermi surface in the Q1D conductors
(TMTSF)2X (X = ClO4, PF6, etc.), (DMET)2I3, and some
others [4,6–8]. On the other hand, in many cases, the LMA
phenomena are experimentally claimed [9–13] to be of a non-
Fermi-liquid nature. This was claimed by Chaikin’s group for
the Nernst effect in (TMTSF)2PF6 [9,10,12], by Brooks’ group
for the Nernst effect in (TMTSF)2ClO4 [11], and recently by
Uji’s group [13] for the Hall effect in (TMTSF)2ClO4. In our
opinion, some non-Fermi-liquid effects were also observed
in the LMA resistive experiments in the Q1D compound
(Per)2Au(mnt)2 by Graf et al. [14].

A non-Fermi-liquid theory of the LMA phenomenon was
suggested in Ref. [15]. In particular, we showed [15] that an
inverse electron-electron scattering time increased at the LMA
directions of a magnetic field due to some commensurability
effects in a “one-dimensionalized” electron spectrum in a
Q1D conductor, resulting from Bragg reflections. Yakovenko
studied the same “commensurability” effects in several ther-
modynamic properties of a Q1D conductor [16], including
specific heat (see also Refs. [17,18]). Note that the physical
conclusion of the work [16] was similar to that of Ref. [15],
that a Q1D metal became more 1D at the LMA directions of
the field. There are two main goals of the current article. The
first one is that we consider the case of high magnetic fields and
come to the conclusion that, at directions of the magnetic field
far from one of the LMAs, the corrections to specific heat from
electron-electron interactions are strong and thus we expect to
have some kind of non-Fermi-liquid. Our second goal is to
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show that, at the LMA directions of a magnetic field, the Q1D
system becomes a two-dimensional (2D) one and thus the
above discussed corrections become small. Therefore, Fermi
liquid restores in the near vicinity of the LMA directions. As a
result, in a tilted magnetic field, we expect non-Fermi-liquid–
Fermi-liquid angular crossovers. This result is opposite to the
previous statements of Refs. [15–17], since below we make use
of a more realistic model of a Q1D spectrum. Note that very
recently we have suggested non-Fermi-liquid–Fermi-liquid
crossovers in a Q1D conductor [19]. There are two crucial
differences between the current work and Ref. [19]. First,
the LMA phenomenon has not been considered in Ref. [19].
Second, in Ref. [19], we have considered the transport
property, an inverse electron-electron scattering time.

Let us first consider a simplified Q1D electron spectrum,
used in Refs. [15–17,19],
ε(p) = ±vF (px ∓ pF ) − 2ty cos(pyay) − 2tz cos(pzaz), (1)

in a magnetic field, inclined in the (y,z) plane,
H = (0, sin α, cos α)H, A = (0, −cos α, sin α)Hx, (2)

where vF pF � ty,tz. Then, by using the Peierls substitution
method for an open electron spectrum [2], p → p − ( e

c
)A, we

come to the following Schrödinger-like equations,{
∓ivF

d

dx
− 2ty cos

[
pyay − ωy(α)

vF

x

]

− 2tz cos

[
pzaz + ωz(α)

vF

x

]}
φ±

ε (x; py,pz)

= ε φ±
ε (x; py,pz), (3)

where e and c are the electron charge and the velocity of light,
correspondingly; energy ε is counted from the Fermi level. It
is important that Eq. (3) can be exactly solved,

φ±
ε (x; py,pz) = exp

(±iεx

vF

)
exp

{
∓ ily(α)

×
(

sin

[
pyay − ωy(α)

vF

x

]
− sin[pyay]

)}

× exp

{
± ilz(α)

(
sin

[
pzaz + ωz(α)

vF

x

]

− sin[pzaz]

)}
, (4)
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where

ωy(α) = evF ayH cos α

c
, ωz(α) = evF azH sin α

c
, (5)

and

ly(α) = 2ty

ωy(α)
, lz(α) = 2tz

ωz(α)
. (6)

It is easy to prove that at high enough magnetic fields directed
far from the y and z axes, where

H � H ∗ = max

{
2tyc

evF ay cos α
,

2tzc

evF az sin α

}
, (7)

wave functions (4) become almost 1D since ly(α),lz(α) � 1.
Let us consider the following more realistic Q1D electron

spectrum, which takes into account additional possibilities for

electron jumping in the (y,z) plane:

ε(p) = ±vF (px ∓ pF ) − 2ty cos(pyay) − 2tz cos(pzaz)

− 2t cos(pyay + pzaz) − 2t cos(pyay − pzaz), (8)

where t < ty,tz is the overlapping of electron wave functions
along the following LMA directions

tan[α(1,1)] = ay

az

(9)

and

tan[α(1,−1)] = −ay

az

. (10)

By making use of the Peierls substitution method, the corre-
sponding Schrödinger-like equation in this case can be written
as

{
∓ ivF

d

dx
− 2ty cos

[
pyay − ωy(α)

vF

x

]
− 2tz cos

[
pzaz + ωz(α)

vF

x

]
− 2t cos

[
pyay + pzaz − ωy(α) − ωz(α)

vF

x

]

− 2t cos

[
pyay − pzaz − ωy(α) + ωz(α)

vF

x

]}
ψ±

ε (x; py,pz) = εψ±
ε (x; py,pz). (11)

It is possible to prove that Eq. (11) has the following solutions:

ψ±
ε (x; py,pz) = exp

(±iεx

vF

)
exp

{ ∓2it

ωy(α) − ωz(α)

(
sin

[
pyay + pzaz − ωy(α) − ωz(α)

vF

x

]
− sin[pyay + pzaz]

)}

× exp

{ ∓2it

ωy(α) + ωz(α)

(
sin

[
pyay − pzaz + ωy(α) + ωz(α)

vF

x

]
− sin[pyay − pzaz]

)}
φ±

ε (x; py,pz),

(12)

where φ±
ε (x; py,pz) are given by Eq. (4).

Let us consider the case of high magnetic field (7), inclined far from the main crystallographic axes y and z. Then, all
contributions to wave functions (12) are almost 1D, with the exception of

�(x; py,pz) = exp

(±iεx

vF

)
exp

{∓2it

ω(α)

(
sin

[
pyay + pzaz − ω(α)

vF

x

]
− sin[pyay + pzaz]

)}
, (13)

where ω(α) = ωy(α) − ωz(α) and α > 0. Note that, in this
article, we calculate the specific heat in the vicinity of the
LMA (9), i.e., at

|δα| � 1, δα = α − α(1,1). (14)

Therefore, below we will consider Eq. (13) as effective electron
wave functions in a high magnetic field.

Let us qualitatively discuss the effective wave function (13)
behavior with changing direction of a magnetic field from the
LMA direction (9) and how this results in Fermi-liquid–non-
Fermi-liquid angular crossovers. If the direction of a magnetic
field exactly coincides within the LMA (9), then it is easy
to show from Eq. (13) that effective electron wave functions
become the following:

�(x; py,pz) = exp

(±iεx

vF

)
exp

[±i4tx

vF

cos

(
pyay

+pzaz − ωy − ωz

2vF

)]
. (15)

Note that, in Eq. (15), we can shift the electron momentum
inside the function cos(· · · ) and obtain 2D wave functions,
which do not depend on a magnetic field,

�(x; py,pz) = exp

(±iεx

vF

)

× exp

[±i4tx

vF

cos(pyay + pzaz)

]
, (16)

and which are characterized by a pure 2D electron spectrum,

ε(p) = ±vF (px ∓ pF ) − 2t cos(pyay + pzaz). (17)

[Note that, physically, 2D wave functions (16), independent
of a magnetic field, come from the fact that the electron
momentum component for spectrum Eq. (8) is conserved
when a magnetic field is applied along the LMA (9).] For
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2D electrons (17), we expect Fermi-liquid behavior. As shown
later, it corresponds to small corrections to electron specific
heat from electron-electron interactions. On the other hand, if
a magnetic field is applied not close to the LMA direction (9)
(i.e., |δα| � 2t/ω � 1), then the effective wave functions (13)
become pure 1D and we expect non-Fermi-liquid behavior.
Below, it is shown that the latter situation corresponds to
the appearance of corrections to electron specific heat due
to electron-electron interactions of the order of a specific heat
of free electrons.

Since the effective electron wave functions are known
(13), we can define Matsubara’s finite temperature Green’s
functions by means of the following standard formula [20],

G±(x,x1; py,pz) =
∑

ε

�±(x; py,pz)[�±(x1; py,pz)]∗

iωn − ε
,

(18)

where ωn = 2πT (n + 1/2) are the so-called Matsubara fre-
quencies. As a result of straightforward calculations, we obtain

G±(x,x1; py,pz)

= −i sgn(ωn)

vF

exp

[
±ωn(x − x1)

vF

]

× exp

{∓2it

ω(α)

[
sin

(
pyay + pzaz − ω(α)x

vF

)

− sin

(
pyay + pzaz − ω(α)x ′

vF

)]}
(19)

for ±ωn(x − x1) < 0.
Below, let us calculate the lowest-order corrections to elec-

tron free energy, resulting from electron-electron interactions.
Note that there are several corresponding Feynman’s diagrams.
One of them is shown in Fig. 1, where (+) and (−) correspond
to electrons from the right and left pieces of the Q1D Fermi
surface (8), respectively. There are two types of diagrams: (a)
without the paramagnetic Pauli term, corresponding to spin
splitting in a magnetic field, and (b) with the paramagnetic
term. We have proved that the diagram without the Pauli term
gives maximal corrections to electron specific heat. Therefore,
below, we calculate the free-energy correction, resulting from
such diagrams, with one of them being shown in Fig. 1. If
we consider δ3-function electron-electron interactions, it is
possible to demonstrate that the corresponding correction to
free energy per one electron is


F (α) = −π3g2T 3

pF vF

∫ ∞

1/ε0

dx
cosh(2πT x)

sinh3(2πT x)
J (x,α), (20)

where

J (x,α) =
∫ 2π

0

dφ

2π
J 2

0

{
8t

ω(α)
sin

[
ω(α)x

2

]
cos(φ)

}
, (21)

with g and ε0 being the effective electron coupling constant and
cutoff energy, correspondingly; J0(· · · ) is the Bessel function
of the first order [21]. From Eqs. (20) and (21), it is possible
to derive the correction to specific heat per one electron,


C(α) = −3

4
g2C0

∫ ∞

0

(
x2

sinh2(x)

)′′′
J̃ (x,α), (22)

FIG. 1. One of the Feynman’s diagrams, corresponding to the
lowest-order corrections to electron free energy from electron-
electron interactions. Solid lines with arrows stand for electron
Green’s functions, whereas solid lines without arrows represent
electron-electron interactions. All electrons have the same spin
projection on a magnetic field.

where C0 = kBπ2T/3(pF vF ) is a specific heat of noninteract-
ing electrons per one electron, kB is the Boltzmann constant,
and

J̃ (α,x) =
∫ 2π

0

dφ

2π
J 2

0

{
8t

ω(α)
sin

[
ω(α)x

4πT

]
cos(φ)

}
. (23)

Below, we numerically calculate the integral (22) as a
function of angle α. For the calculations, we use the following
values of the parameters: ay = az [i.e., α(1,1) = 45◦ in Eq. (9)],
8t/ωy(0) = √

2, and ωy(0)/(4πT ) = 10
√

2 (see Fig. 2). It is
possible to show that for large values of |δα| = |α − 45◦|, the

FIG. 2. Normalized correction to electron specific heat,
−
C/(g2C0), due to the Feynman’s diagrams of Fig. 1, is numerically
calculated by means of Eqs. (22) and (23). The main minimum of the
correction, corresponding to the LMA with α = 45◦, is split into two
secondary dips.
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correction to electron specific heat (22) in a Q1D conductor
can be estimated as


C � −g2

2
C0. (24)

Since, in general, g2 ∼ 1, the correction (24) is strong and we
expect in this region of angles some kind of non-Fermi-liquid
behavior in a metallic phase. As seen from Fig. 2, close to the
first LMA, α(1,1) = 45◦, there is a broad but strong minimum,
where the corrections become at least ten times smaller in
a magnitude. Therefore, we can expect some kind of angular
non-Fermi-liquid–Fermi-liquid crossover (or phase transition)
in the vicinity of α(1,1). Note that these calculations support our
previous results about the 1D nature of electron wave functions
(12) and the 2D nature of electron wave functions (16) and (17)
at different directions of a magnetic field in a Q1D conductor.
On the other hand, such a secondary effect as splitting of a
minimum of the specific heat correction magnitude, shown in
Fig. 2, is due to oscillation of the function [x2/ sinh2(x)]

′′′
in

Eq. (22) and thus does not have a clear physical meaning.
Here, let us discuss a generalization of our theory on a more

realistic Q1D electron spectrum, which can be represented as

ε(p) = ±vF (px ∓ pF ) − 2
∑
mn

tm,n cos(may + naz), (25)

where m and n are the integers. It is easy to understand that,
in this case, electron wave functions become purely 2D at an
infinite number of the LMA,

tan[αm,n] =
(m

n

)(
ay

az

)
, (26)

and thus we may expect the appearance of minima of a
magnitude of specific heat corrections due to electron-electron
interactions at a series of the LMA (26) at infinite small
temperature. Nevertheless, we argue that, at finite temperature
T , there are only several “effective LMAs” from Eq. (26),
which satisfy the condition tm,n � T . We expect that the
minima of the specific heat correction appear only for such
effective LMAs. Another point is that m = 0 and n = 0 in

Eq. (26), corresponding to the main crystallographic axes ay

and az, are also the LMAs and all statements of the article are
valid for them.

To summarize, we have predicted Fermi-liquid–non-Fermi-
liquid angular crossovers in a high magnetic field in Q1D
conductors at the LMA directions of the field. From one
side, our current results support, from a thermodynamic
point of view, the pioneering statement of Ref. [19], that
Fermi-liquid–non-Fermi-liquid angular crossovers have to
exist when a magnetic field is applied in the vicinities of the
main crystallographic axes ay and az. On the other hand, our
current results are more general than the results of Ref. [19]
and predict the above-mentioned angular crossovers to exist
at directions of a magnetic field close to the all “effective
LMAs”, given by Eq. (26). Below, we suggest to perform
the experiment described in this article in the Q1D conductor
(Per)2Au(mnt)2 in a metallic phase under pressure. If we take
its band parameters [14], vF = 1.7 × 107 cm/s, ty � 20 K,
tz < ty , we obtain that inequality (7) corresponds to magnetic
fields, H � 25 T. Note that our present detailed numerical
calculations (see Fig. 2) correspond to a very low temper-
ature region, T � 0.1 K, nevertheless, our very preliminary
numerical calculations show that the suggested LMA effects
exist in (Per)2Au(mnt)2 also at T � 1 K, although, in the latter
case, they are characterized by much smaller magnitudes. We
stress that, at the LMA directions of a magnetic field (26), we
have established “two dimensionalization” of the Q1D electron
spectrum (8) and (25), in contrast to the previous statements
[15,16], where an increase of “one dimensionalization” of the
simplified Q1D spectrum (1) was considered. As a result,
we have predicted minima of a magnitude of the correction
to specific heat (see Fig. 2), instead of maxima, suggested
in Ref. [16]. Since the correction due to electron-electron
interactions is negative, we conclude that there have to exist
maxima of specific heat in Q1D conductors at the LMA,
instead of minima [16].
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