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Particle-hole cumulant approach for inelastic losses in x-ray spectra
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Inelastic losses in core level x-ray spectra arise from many-body excitations, leading to broadening and damping
as well as satellite peaks in x-ray photoemission (XPS) and x-ray absorption (XAS) spectra. Here we present a
practical approach for calculating these losses based on a cumulant representation of the particle-hole Green’s
function, a quasiboson approximation, and a partition of the cumulant into extrinsic, intrinsic, and interference
terms. The intrinsic losses are calculated using real-time time-dependent density functional theory while the
extrinsic losses are obtained from the GW approximation of the photoelectron self-energy and the interference
terms are approximated. These effects are included in the spectra using a convolution with an energy dependent
particle-hole spectral function. The approach elucidates the nature of the spectral functions in XPS and XAS and
explains the significant cancellation between extrinsic and intrinsic losses. Edge-singularity effects in metals are
also accounted for. Illustrative results are presented for the XPS and XAS of both weakly and more correlated
systems.
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I. INTRODUCTION

Inelastic losses in x-ray spectra have long been of interest.
These losses arise from electronic correlations, reflecting the
coupling of electrons and holes to excitations of the system,
such as plasmons and electron-hole pairs. Besides broadening
and damping, they lead to additional features in the spectra that
are not captured by the quasiparticle approximation. For exam-
ple, in x-ray photoemission spectra (XPS), they correspond to
satellites beyond the main quasiparticle peak and a reduction
in main-peak intensity. As a result, conventional theories of
x-ray spectra are usually only semiquantitative. Two classes of
losses have been identified: (i) intrinsic losses which arise from
excitations due to the sudden creation of a core hole, including
shake-up, shake-off, and charge-transfer excitations; and (ii)
extrinsic losses, which arise from similar excitations during the
propagation of the photoelectron. The extrinsic losses are often
approximated in terms of the inelastic mean-free path, which
is related to the imaginary part of the electron self-energy
� [1,2]. Interference effects have also been discussed, both
formally and using approximate models [3–5].

Surprisingly, inelastic losses in x-ray absorption spectra
(XAS) are typically smaller than one might expect, as theoret-
ical estimates of the intrinsic losses alone are typically about
30% of the main quasiparticle peak, even in weakly correlated
systems [3]. Moreover, losses due to satellites in XAS are
almost always neglected in practical calculations, ranging from
independent-particle to the Bethe-Salpeter equation (BSE)
[6–8]. Their neglect at low energies is often justified on the
basis of the adiabatic approximation, and is often rationalized
on the belief that the error is small or only contributes a
smooth background, e.g., the many-body amplitude factor S2

0
in XAS [9]. The resolution of this paradox lies in the effect
of the interference terms, as both classes of losses involve
similar excitations with couplings of opposite sign and tend
to cancel [3]. While it has been argued that this cancellation
is perfect at threshold, at least for plasmon excitations [3],
we find that it is generally incomplete, e.g., for the case of
charge-transfer satellites. Another reason for their neglect is
the computational difficulty of first principles calculations of

these losses, and various attempts ranging from plasmon pole
models [5], configuration interaction (CI) [10], multiplets [11],
to dynamical mean-field theory [12] have had only mixed
success.

The aim of this work is twofold in an effort to address
these issues: first we develop a formal approach based on
a generalization of the cumulant Green’s function (CG) that
includes intrinsic and extrinsic losses and interference terms;
and second we develop practical approximations for these
losses which are applicable both to weakly correlated and
some d- and f -electron materials. In contrast to the Dyson
equation for the one-particle Green’s function g = g0 + g0�g,
the CG is based on an exponential representation in the time-
domain g(t) = g0(t)eC(t), where g0(t) is the noninteracting
Green’s function and C(t) is the cumulant. This expansion is
closely related to the linked-cluster theorem and has various
uses in theoretical physics. Its applications to spectra were
significantly developed by Hedin and collaborators [3,13],
and a new derivation for the one-particle Green’s function
based on a functional differential equation has recently been
developed [14,15]. While no more demanding computationally
than Hedin’s GW approximation for the self-energy �, the
CG has successfully explained satellite effects in the XPS of
weakly correlated systems [14–17], while the GW approxima-
tion usually overestimates the satellite position and strength.
Applications of cumulant methods to correlated materials
based on the quasiboson method [3] and on dynamical mean-
field theory [12] have also been proposed.

Despite the above successes, the single-particle Green’s
function alone is inadequate to describe x-ray spectra, which
involves the simultaneous creation of both a particle and a hole.
Instead, our generalization here is an analogous exponential
representation of the “particle-hole Green’s function” GK (t) =
G0

K (t)eC̃K (t), where C̃K (t) is calculated to second order in the
couplings to the excitations in the system. The structure of GK

is related to the effective Green’s function for x-ray spectra
introduced by Campbell et al. [5] (CHRB) transformed to
the time domain (see Appendix). Here, K = (c,k) labels the
transition from a given core-level |c〉 to a photoelectron state
|k〉. A formal derivation of a related cumulant model for the

2469-9950/2016/94(3)/035156(12) 035156-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.035156


J. J. KAS, J. J. REHR, AND J. B. CURTIS PHYSICAL REVIEW B 94, 035156 (2016)

two-particle Green’s function has recently been introduced
by Zhou et al. [15]. The real-time representation of GK (t)
considerably simplifies the theory, and leads directly to an
expression for the many-body XAS μ(ω) at photon energy �ω

as a convolution of the spectrum calculated in the presence
of a static core hole with an effective particle-hole spectral
function AK (ω):

μ(ω) =
∑

k

∫
dω′ AK (ω′)μ0

K (ω − ω′). (1)

Here, μ0
K (ω) is the independent-particle XAS calculated in

the presence of a core hole, and AK (ω) = −(1/π )Im GK (ω).
A similar convolution—Eq. (49) in Ref. [5]—over the XAS
fine structure χK (ω) yields the many-body reduction factor
S2

0 in the XAS fine structure. Effects of thermal vibrations
and disorder can be included implicitly in μ0 and χK [18] by
averaging over the structural variations. Convolutions related
to that in Eq. (1) have also been used to incorporate inelastic
losses in the XPS photocurrent Jk(ω) [3,4,19].

Inelastic losses beyond the independent-particle approxi-
mation are embedded in the cumulant C̃K (t). Partitioning the
cumulant into intrinsic, extrinsic, and interference terms then
facilitates practical calculations beyond simple models. The
factorization of the particle-hole Green’s function GK implicit
in the cumulant representation is analogous to that in the
classic treatment of the x-ray edge singularities by Nozières
and de Dominicis [20]. Likewise, our cumulant treatment also
accounts for edge singularities from low-energy particle-hole
excitations in metals, as shown below.

The remainder of this paper is as follows. Section II
describes our theoretical approach including the treatment of
edge-singularity effects, while Sec. III contains applications
to x-ray spectra for transition metals and charge-transfer satel-
lites. Finally, Sec. IV contains a summary and conclusions.

II. THEORY

A. Particle-hole Green’s function

A detailed treatment of inelastic losses in core-level XAS
is given by Campbell et al. [5], starting from the formal
expression

μ(ω) = − 1

π
Im

〈
�0

∣∣∣∣�† 1

ω − H + iδ
�

∣∣∣∣�0

〉
. (2)

This starting point is equivalent to the many-body Fermi
golden rule, where H is the total Hamiltonian, which includes
electron-electron interactions, |�0〉 the N -particle ground state
of the system (including valence electrons and ion cores)
with energy E0, and � = �k〈k|d|c〉c†kcc + H.c. is the dipole
operator coupling the photon to the electronic system. Unless
otherwise specified we use atomic units, m = |e| = � = 1,
and temperature is assumed to be zero. The system is then
partitioned into three subsystems, a single core-level |c〉, the
valence electrons |	〉, and the photoelectron levels |k〉; the
core hole is eliminated using a canonical transformation.
This partition then leads to an expression for the XAS in
terms of an effective single-particle Green’s function G̃(ω)
(see Appendix), which is a contraction of the “particle-hole”

Green’s function GK (ω) for a discrete core state |c〉,

μ(ω) = − 1

π
Im 〈c|d†P G̃(ω) Pd|c〉, (3)

where εk = εc + �ω and P = �k>kF
|k〉〈k| is the projection

operator onto unoccupied levels of the initial state. As
in CHRB, G̃K is approximated using a quasiboson model
Hamiltonian in which the three subsystems are represented
in terms of a core hole and a photoelectron coupled to a set of
bosonic excitations, e.g., plasmons, particle-hole excitations,
etc., keeping all terms to second order in the couplings. Next,
we introduce a cumulant ansatz for G̃K

G̃K (t) = G̃0
K (t)eC̃K (t), (4)

where G̃0
K (t) = g0

c (t)g0
k (t), and g0

c (t) and g0
k (t) are the bare

core-hole and photoelectron Green’s functions, respectively,
the latter being calculated in the presence of the core hole.
The generalized cumulant C̃K (t) is determined (Appendix)
by transforming Eq. (32) of CHRB to the time domain and
matching the leading terms in powers of the quasiboson
coupling constants,

C̃K (t) =
∫

dω γK (ω)(eiωt − iωt − 1). (5)

This ansatz is similar to that derived by Zhou et al. [15], where
GK is the two-particle Green’s function of the Bethe-Salpeter
equation. However, the cumulants differ in technical details.
The Landau representation [21] of Eq. (5) ensures that the
particle-hole spectral function

ÃK (ω) = − 1

π
Im

∫
dt eiωt G̃0

K (t)eC̃K (t) (6)

remains normalized with an invariant centroid. Thus the
effect of the bosonic excitations is a transfer of spectral
weight from the main peak to the satellites while the overall
strength is conserved. Note that lifetime broadening due to
the photoelectron interactions is included naturally. While
the lifetime of valence holes is determined in large part by
the electron self-energy within the GW approximation, the
deep core lifetime depends on other factors such as Auger
or Koster-Kronig transitions, which are not accounted for in
our present theory. Thus core-hole lifetime effects are treated
by adding a damping term, −�c|t |, to the cumulant, where
�c is the core-hole lifetime tabulated from experiment. In
addition to describing the excitation spectrum, the cumulant
formalism simplifies the calculation of both the quasiparticle
peak shift (or relaxation energy) �E and the net quasiparticle
weight (or renormalization constant) ZK in terms of the kernel
γK (ω) = βK (ω)/ω2 [3],

ZK = e−aK , (7)

aK =
∫

βK (ω)

ω2
dω, (8)

�E =
∫ ∞

0

βK (ω)

ω
dω. (9)

The excitation spectrum βK (ω) for XAS is implicit in the
particle-hole cumulant CK (t), and hence the structure of
γK (ω). This structure can be understood formally in terms of
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the fluctuation potentials or oscillator strength amplitudes V q

that couple electron and hole states to boson excitations q with
energies ωq [3–5,22] (see Appendix). Formally, the fluctuation
potentials can be obtained by diagonalizing the screened
Coulomb potential W = ε−1v. As an illustrative example, the
fluctuation potential for plasmons of momentum q in the ho-
mogeneous electron gas is V q = [vqω

2
p/2ωq)]1/2 exp(iq · r),

where vq = 4π/q2 is the bare Coulomb interaction. If recoil
due to plasmon dispersion is ignored, γK (ω) can be expressed
as a perfect square,

γK (ω) =
∑

q

∣∣∣∣V q

kk+qg
0
k+q(ω − ωq) − V

q
cc

ωq

∣∣∣∣
2

δ(ω − ωq). (10)

This representation is similar to that in the treatment of inelas-
tic losses in XPS [3,4,22], where the fluctuation potentials V q

are discussed in detail. Unfortunately, this form does not seem
to be computationally useful except in simple models, due to
the nonlocal character of the interference terms. Thus instead,
we partition γK , and hence CK (t), into intrinsic (c), extrinsic
(k), and interference terms (kc), respectively, i.e.,

γ̃K (ω) = γc(ω) + γk(ω) + γck(ω), (11)

C̃K (t) = Cc(t) + Ck(t) + Cck. (12)

The amplitudes aK and shifts �E can also be split into intrinsic,
extrinsic, and interference contributions. The intrinsic and ex-
trinsic parts of �E are formally equivalent to those of the GW

approximation, while the interference term tends to reduce the
shift. Similarly, the renormalization constant can be related
to derivatives of the self-energy at the quasiparticle energies,
i.e., Zk = exp(−ak) where ak = d�k/dω + d�c/dω − ack ,
and again the interference terms reduce many-body effects,
restoring weight to the quasiparticle peak. Note that in using
a final-state rule (or static BSE) approximation as the starting
point in Eq. (1), this shift is already taken into account. In order
to avoid double counting and considering the approximations
used for the interference terms, we subtract this shift in our
final results.

If interference is neglected, the particle-hole Green’s
function would be simply a product of the core-hole Green’s
function gc(t) = g0

c (t)eCc(t) and the damped final state Green’s
function in the presence of a core hole g̃k(t) = g̃0

k (t)eCk(t).
This approximation implies that the intrinsic and extrinsic
losses are independent and additive. However, this yields
XAS satellite strengths that are generally too large. Thus
the interference terms are usually essential; they provide an
energy dependence, which tends to cancel the extrinsic and
intrinsic losses near threshold, due to the opposite signs
of the hole and photoelectron charges, while at very high
energies only the intrinsic losses remain. This phenomenon
is characterized as an adiabatic to sudden transition. It is
used to justify the adiabatic approximation and the usual
neglect of inelastic losses near threshold, i.e., well below the
characteristic excitation energy ωp.

In any case, the above partition of the cumulant C̃K (t)
permits independent treatments of the various terms. This is
advantageous computationally as the physics of the intrinsic
and extrinsic losses can differ significantly. In particular,

real-space approaches can be very efficient for a deep core hole
where the core-electron is highly localized, while reciprocal
space methods can be more appropriate for the delocalized
photoelectron. Here we treat the intrinsic losses with the
cumulant Cc(t) for the core-hole Green’s function using a
real-space, real-time method of Kas et al. (KVRC) [23], as
described below. This local approach was found to account
well for charge-transfer satellites in the XPS of transition
metal oxides. In contrast, the extrinsic losses are treated
using the cumulant approximation Ck(t) for the photoelectron
Green’s function. Finally, the interference terms Cck(t) are
approximated, e.g., with an interpolation formula. We note,
however, that the partition of the cumulant is somewhat
arbitrary, and can be tailored for computational purposes. For
example, CHRB lump the quasiparticle part of the cumulant
into the damped particle Green’s function in the presence of a
core hole, g̃k(t) = g′

k
0(t) exp[Cqp

k (t)], so that the net spectral
function only contains the satellite contributions. The full
many-body XAS μ(ω) can then be expressed as a convolution
of an independent particle XAS with a spectral function as
in Eq. (1), where μ0(ω) is the independent particle XAS
calculated in the presence of a core hole.

B. Intrinsic losses

The intrinsic losses are given by the leading factors
in GK (t), which correspond to a cumulant representation
of the core-hole Green’s function as originally derived by
Langreth [24],

gc(t) = iθ (t)e−iεct+Cc(t), (13)

where θ (t) is the unit step function. In terms of the fluctuation
potentials, the intrinsic excitation spectrum γc(ω) ≡ βc(ω)/ω2

can be expressed as βc(ω) = ∑
q |V q

cc|2δ(ω − ωq). Physically,
V q/ωq can be interpreted as a shake-up amplitude, and from
first-order perturbation theory, is equivalent to a many-body
overlap integral between the ground state and the shake-up
excited state |Kq〉 with a boson in state q and a core hole in
level |c〉 [5].

The localized nature of a deep core hole in x-ray spectra
has led us to consider a real-space, real-time approach for the
intrinsic cumulant Cc(t) introduced by KVRC,[23] which is
not limited to small clusters. Our treatment is based on a time-
dependent density functional theory formalism (RT-TDDFT)
inspired by that of Bertsch and Yabana [25] for optical
response. Such methods are advantageous for calculations of
density response, since they are quantitative yet require little
computational effort beyond successive applications of Kohn-
Sham DFT in the time-evolution of the system. RT-TDDFT
has been successfully applied both to linear and nonlinear
optical response [26–29]. The approach has also been applied
to calculate the quasiparticle contribution μqp(ω) in Eq. (1) to
core-level x-ray absorption spectra, using a time-correlation
approach that ignores satellites [30].

We will refer to Cc(t) as the Langreth cumulant [24],
since a similar formalism was introduced to calculate edge
singularities in electron gas models of deep-core x-ray spectra,
following the classic treatment of Nozières and de Domini-
cis [20]. Transforming Langreth’s approach [22,24] to real
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space, Cc(t) can be approximated to second order in the
core-hole potential by

Cc(t) =
∫

dω βc(ω)
eiωt − iωt − 1

ω2
, (14)

βc(ω) =
∫

d3rd3r ′ V ∗(r)V (r ′) Im[χ (r,r ′,ω)]. (15)

The time dependence [exp(iωt) − iωt − 1]/ω2 arises from the
transient core-hole potential, which turns on at time t = 0 and
then off at time t . Here, V (r) is the bare core-hole potential,
and the response function,

χ (r,r ′,ω) = i

∫
dt eiωt 〈ρ̂(r,t)ρ̂(r ′,0)〉, (16)

is equivalent to the dynamic structure factor which is di-
rectly related to the local density-density correlation function
〈ρ̂(r,t)ρ̂(r ′,0)〉, where ρ̂(r,t) is the density operator.

In more detail, our approach is as follows: βc(ω) is obtained
from the Fourier transform of the “core-response” function
�c(t) using the relations [23]

βc(ω) = ω Re
∫

dte−iωt�c(t), (17)

�c(t) =
∫

d3rV (r)δρ(r,t), (18)

where δρ(�r,t) is the change in electron density from equilib-
rium due to the core-hole perturbation, and V (�r) is the potential
due to the presence of the core hole [23]. This function �c(t)
is computed using RT-TDDFT via a modified version of the
SIESTA framework [31].

The normalized core-hole spectral function Ac(ω), which
characterizes the distribution of intrinsic excitations, is then
obtained from the imaginary part of gc(ω) in frequency space,

Ac(ω) = − 1

π
Im

∫
dt eiωtgc(t). (19)

This procedure is illustrated here for the fullerene molecule
C60 in the gas phase, and results for �c(t) and βc(ω) are
shown (top and middle respectively) in Fig. 1, along with a
comparison of the spectral function with experimental XPS
results. Additional details for the case of C60 will be published
elsewhere [33]. As an illustration of the theory, we present
calculations of the core-hole spectral function Ac(ω). As
discussed below, Ac is closely related to the core XPS, and
is in good agreement with the experimental spectrum, apart
from a smooth background term, and a mismatch of the high
binding energy peak in the experiment at about −27 eV, and in
the theory at about −31 eV. This energy shift could be due to
a variety of factors including the use of a local basis set or the
approximate kernel used in the TDDFT. For this example, we
have not included extrinsic and interference effects, which are
expected to increase the weight of the plasmon peak relative
to the lower energy peaks.

As discussed in Ref. [3], the XPS photocurrent Jk(ω) can
be approximated by Ac(ω) when the energy dependence of
the matrix elements can be neglected, apart from a smooth
background,

Jk(ω) = |Mck|2Ac(ω) ≈ Ac(ω), (20)
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FIG. 1. (a) (top) The core response function �c(t); (b) (middle)
βc(ω) for C60 and (c) (bottom) theoretical core-level spectral function
of C60 compared to experimental 1s XPS [32].

where Mck is the dipole transition element. The extrinsic
and interference terms may also be important, although in
monoatomic weakly correlated systems, they mostly affect the
size of the satellites and not their shape [4,14]. For quantitative
calculations, a particle-hole spectral function ÃK (ω) tailored
for the XPS photocurrent is needed. This spectral function
differs from that in XAS due to the differences in boundary
conditions, such as the effects of the surface on the fluctuation
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potentials. In particular, in XPS, the finite inelastic mean-
free path of the photoelectron limits the depth from which
electrons can reach the surface (and detector). Photoelectrons
originating deeper in the material, i.e., with longer mean-free
paths, have larger probabilities of creating excitations. On
the other hand, small mean-free paths are associated with
larger couplings, and thus the two effects compete. For a
deep hole coupled to ideal plasmons or bosons, the cumulant
representation of gc(t) given by Eqs. (14) and (15) is exact [24].
It can be shown that this approximation is equivalent to the
decoupling approximation of Ref. [14]. However, corrections
to the second-order approximation for the cumulant will
generally affect the structure of higher-order satellites.

C. Edge singularities

For metallic systems, edge singularities have been pre-
dicted due to existence of particle-hole excitations at zero
frequency [20,24]. In this case, βc(ω) ∼ ω at low frequency,
and the usual description of the quasiparticle peak becomes
problematical because the quasiparticle weight is strictly zero,
a phenomenon known as the Anderson orthogonality catastro-
phe [34]. Instead the spectral function, and hence the threshold
peak in XPS is predicted to have a power-law singularity
Ac(ω) ∼ ωα−1, as discussed in many works [20,24,34,35].
Anderson, and later Nozières and de Dominicis derived the
exponent α = 2�l(2l + 1)(δl/π )2 in terms of the phase shifts
δl at the Fermi energy induced by the core-hole potential. Sub-
sequently Langreth related α to the low-frequency behavior of
the loss function,

α =
∑

q<2qF

|υq |2N (εF )

qvF |ε(q,0)|2 , (21)

where N (εF ) is the density of states at the Fermi level, vF is
the Fermi velocity, and υq is the Fourier transform of the core-
hole potential to momentum space. This power-law singularity
corresponds to a logarithmic behavior of the cumulant in the
long-time limit C(t) → ln(t−α).

Here we have reinvestigated this singular behavior within
the cumulant formalism. We generalize the quasiparticle line
shape to an asymmetric form that includes a power-law singu-
larity, analogous to that of Doniach and Šunjić [35]. To do this,
we further partition the core-hole excitation spectrum βc(ω)
into “particle-hole” and “plasmon” contributions, where the
particle-hole contributions only contribute at low frequencies
and give the part of the excitation spectrum βph(ω), which
is linear in frequency. This linear part responsible for the
logarithmic divergence of the cumulant in the long-time limit,
and hence the singular behavior at threshold. We therefore
redefine the main peak in terms of the normalized spectral
function Aph resulting from the “particle-hole” contribution
of the excitation spectrum βph(ω), which is defined with an ad
hoc exponential damping factor to enforce normalizability of
the spectral function

βph(ω) = αωe−ω/ωp . (22)

The exponent α corresponds to the linear coefficient at low
frequencies and ωp is the plasmon frequency. The precise
nature of the damping is not important as it does not effect the
edge singularity, and the net excitation spectrum is conserved

by setting the plasmon part as βpl(ω) = β(ω) − βph(ω).
Substituting this form into Eq. (14) for the particle-hole
cumulant gives

Cph(t) = −iαωpt − α ln(1 − iωpt). (23)

The main peak of the core-hole Green’s function and the
associated spectral function are then

gph(t) = −ie−i(εc+αωp)t−α ln(1−iωpt), (24)

Aph(ω) = e−apl
e−ω̃/ωp

�(α)

ω−α
p

ω̃1−α
, (25)

where ω̃ = ω − εc − αωp is the frequency relative to thresh-
old. This representation has the correct behavior at long
times as well as at t = 0, where the cumulant must vanish
to preserve normalization. The weight of the quasiparticle
spectral function, i.e., the generalized renormalization constant
is given by the plasmon-part Z = e−apl , which is reduced from
unity due to the high energy (e.g., plasmon) excitations,

apl =
∫

dω
βpl(ω)

ω2
, βpl(ω) = β(ω) − βph(ω). (26)

As an example, we show the separation of the particle-hole
and plasmon peaks for fcc Al in Fig. 2 (bottom).

We note that this edge-singularity correction only appears
in the intrinsic spectral function in metals; there is generally no
contribution from the extrinsic losses for photoelectron states
k far above threshold. However, for XAS, an additional Mahan
edge singularity factor

μ̃(ω) ∼ ω−2δl/π , (27)

appears in the dipole-matrix elements due to the nonorthog-
onality of the one-particle levels with and without the core
hole [5,20]. Even in insulators, one may expect a nonsingular
enhancement factor given by Eq. (27), with the threshold Fermi
energy set at midgap. In contrast. the main peak in the extrinsic
spectral function Ak(ω) has an asymmetric Fano line shape, as
discussed by Aryasetiawan et al. [13]. Finally, we note that the
finite lifetimes of the core hole and photoelectron will broaden
the observed edge singularity.

D. Extrinsic losses

Our treatment of extrinsic losses in the cumulant Ck(t) is
based on the GW approximation to the cumulant, as discussed
by Hedin and others for the one-particle Green’s function, and
leads to a Landau form similar to that for intrinsic losses. The
difference is that the kernel is given by

βk(ω) = 1

π
|Im �k(ω + εk)|, (28)

where �k(ω) is the electron self-energy calculated in the
GW approximation [15,37]. Formally, the GW self-energy
can be expressed in terms of fluctuation potentials as �(ω) =
�qV

qg̃(ω − ωq)V q . In contrast to the CG, the spectral func-
tion from the GW approximation only contains single boson
excitations. In this work, we use the efficient many-pole model
self-energy [2] to calculate the kernel. The model is based
on a representation of the dielectric function in the screened
Coulomb interaction W = ε−1v in terms of plasmon-like
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FIG. 2. Results of the calculated core excitation spectrum (top)
of Al using the real-time TDDFT method compared to that of an
electron gas (EG) with rs = 2.07. The model particle hole part and
plasmon parts are also shown. The bottom portion shows the total
spectral function (dashed) along with partition into the main (green
filled) and satellite (red filled) parts.

excitations and matches to a zero momentum-transfer loss
function L(ω),

L(ω) = −Im ε−1(ω). (29)

In this work, L(ω) is calculated via the first-principles
code AI2NBSE, which solves the GW /Bethe-Salpeter equation
for valence excitations [38]. As an example, we show the
calculated loss function for CeO2 compared to experiment in
Fig. 3. The GW excitation spectrum in the cumulant from
Im �k is then given by the MPSE model as a sum of plasmon
pole self-energies,

Im �k(ω) =
∑

i

gi Im �i
k(ω; ωi), (30)

where �i(ω,ωi) is the the plasmon pole self-energy evaluated
with plasmon frequency ωi , and gi is the associated weight
from the pole representation of the loss function.
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FIG. 3. Theoretical loss function of CeO2 compared with ex-
perimental results [36]. Note that the first major peak at ≈15 eV
corresponds very well with the high-binding-energy satellite in the
XPS, whereas the low-energy satellite has no corresponding peak in
the loss function.

E. Interference terms

The calculation of the interference terms poses a number
of technical difficulties, especially in the treatment of recoil.
Although various approximations have been introduced, in-
cluding plasmon-pole models and semiclassical approxima-
tions [3,5,22,39], none is as yet fully satisfactory, and can
lead to negative spectral weight in some cases. On the other
hand, one expects physically that the kernel βK (ω), like βc and
βk , should be positive definite. Another complication with the
interference terms is that the exchange of a boson between the
photoelectron and hole should be associated with a change in
photoelectron state, i.e., k → k + q. Only if this is neglected
(at least partially) can the particle-hole Green’s function be
considered diagonal, so that Eq. (1) is strictly valid (see
Appendix). This approximation is not expected to capture all
excitonic effects well, which is why we use a starting point that
includes the static interaction and screening of the core hole,
and apply the convolution to incorporate nonadiabatic effects.
In terms of fluctuation potentials, the interference contribution
is given by the cross-terms in Eq. (10):

γck(ω) = −2
∑

q

V
q

kk+qV
q∗
cc

ωqωkq
δ(ω − ωkq). (31)

Here, ωkq = ωq + εk−q − εk is the excitation energy including
recoil. Various approximations can be used in practical calcu-
lations. For example, the recoil effects can be approximated
by neglecting the cross terms in ωqk , i.e., averaging over all
directions q̂, so that ωqk ≈ ωq + (1/2)q2 [40]. We find that
for the plasmon pole model, neglecting recoil altogether is
a reasonable approximation for k near kF , although some
of the integrals become ill defined at large k when recoil
is neglected. A similar recoil approximation was used in
deriving the cumulant expansion for the one-particle Green’s
function [40]. We find that for the plasmon pole model, this
approximation is reasonable for k near kF , although some of
the integrals may become ill defined at large k when recoil is
neglected. As an alternative, both the positive-definiteness of
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FIG. 4. Comparison of calculated interference term βck(ω) (red)
with the interpolation model given by Eq. (32) (green) for k = kF .
Both were calculated using the plasmon pole approximation and the
recoil approximation detailed in Appendix.

the total kernel, and qualitative behavior of the interference
terms can be enforced by approximating the interference term
as

βck(ω) = −2λ
√

βc(ω)βk(ω), (32)

where λ is an adjustable parameter. Here we compare only
calculations with λ = 1 or λ = 0. This ad hoc interpolation
model ignores the phases in the interference amplitudes but
preserves the correct limiting behavior: λ = 1 gives the max-
imum possible interference, while interference is neglected
when λ = 0 and vanishes if either βc(ω) or βk(ω) is zero. We
have also verified that this form gives a good approximation
to the satellite weight when compared to the interference
term within the plasmon pole approximation [Eq. (A9) in
Appendix].

In order to assess the quality of the above approximation,
we calculated the interference within the plasmon pole model
near the Fermi momentum, which is of particular importance
for XANES. First, we used the interpolation model above,
and second, an approximation which neglects recoil (see
Appendix). Figure 4 shows that these two approximations are
nearly identical near kF .

The importance of interference effects in XAS is demon-
strated in Fig. 5, which shows a comparison between ex-
periment and calculations of the XAS of NiO with only
intrinsic losses (blue) and with all losses (red). Clearly, the
results agree remarkably well with experiment. They also
compare well with previous work [19,41], although in those
approaches the experimental XPS was used to approximate
the spectral function, and interference effects were assumed
to cancel the high energy plasmon entirely. For this example,
the amplitude of the core-hole potential was adjusted in order
to achieve reasonable agreement with satellite intensity in the
XPS.

III. X-RAY SPECTRA

Finally, in this section, we present illustrative results of our
approach for the XPS and XAS for a variety of materials. The

0

 0.2

 0.4

 0.6

 0.8

1

 1.2

 1.4

 8340  8350  8360  8370  8380

μ(
ω

) (
no

rm
al

iz
ed

)

ω (eV)

Ext+Int+Inf
Int

Exp.

FIG. 5. Ni K-edge XAS spectrum for NiO calculated with
intrinsic losses alone (blue) and all losses (red), compared to
experiment (crosses) [19].

single-particle XAS spectra were calculated using the FEFF9

code [18], which was then convolved with the spectral function
derived above.

A. K -edge Al

As a first example, we show the experimental XAS for
fcc Al metal compared to the calculated results including
the cumulant convolution, and those of the single-particle
calculation (Fig. 6, top). Both calculations agree fairly well
with experiment, although the single-particle spectrum does
not contain enough broadening at about 1590 eV, where the dip
is too large. The figure (bottom panel) also shows the separate
contributions from the intrinsic, extrinsic, and interference
satellites. Note that the interference terms nearly completely
cancel the weight of the extrinsic and intrinsic satellites, and
return that weight to the quasiparticle peak, showing that in
this case, the adiabatic approximation is reasonable.

B. Elemental transition metals

As an application of the theory to d-electron materials,
we present results for the core-hole spectral function and
photocurrent of elemental transition metals Fe and Ni from
Eq. (20) in Fig. 7. For these systems a 6 eV satellite observed
in some experimental spectra has been of great interest, but its
origin has been controversial, especially for Ni. Interestingly,
the RT-TDDFT approach also yields satellites around 6 eV;
however, their amplitude is smaller than that observed in
experiment. In addition, the experimental XPS data for Ni
shows a satellite closer to 4 eV. This energy/amplitude
mismatch is also apparent in the comparison of theory and
experiment in Fe. However, the qualitative differences between
theory and experiment are consistent, where the satellite moves
toward the main peak with decreased amplitude going from Fe
to Ni.

Next, we use the particle-hole spectral function to calculate
the XAS using the convolution in Eq. (1). As Fig. 7 indicates,
the effect of the satellites generally adds to the asymmetry of
the edge peak, leading better agreement with experiment than
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FIG. 6. (top) Theoretical Al K-edge XAS spectrum compared
to the quasiparticle theory in this work and experimental data [42]
and (bottom) total satellite weight ak for Al and different con-
tributions as a function of the particle energy Ek . Note that the
total satellite strength has the expected structure, being small at
threshold and exhibiting significant cancellation among the various
contributions.

the single-particle spectrum. In this case, ignoring interference
effects (λ = 0) seems to be a reasonable approximation,
although this agreement may be due in part to the neglect
of multiplet effects that mix the edges.

C. Charge-transfer satellites

Charge-transfer (CT) excitations are particularly strong in
transition metal oxides, and have been the subject of numerous
investigations [19,23,47]. Here we discuss the application of
our particle-hole cumulant approach to CT satellites, namely,
the f -electron system CeO2, again following the treatment of
the intrinsic losses in XPS by KVRC. The top plot in Fig. 8
(top) shows the core-hole spectral function compared to the
experimental Ce 4s and 5s XPS of CeO2. The agreement in
peak position is reasonable, although the qualitative change in
satellite amplitudes in going from the 4s to 5s hole is not re-
produced. There could be several reasons for this discrepancy:
first, our present calculations ignore the shape of the core-state,
and thus the core-hole potential may not be accurate; and
second–and possibly more important for the case of CeO2—the
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FIG. 7. Calculated spectral function of Fe, and Ni compared to
experimental Ni 1s and Fe 3s XPS data (top) [43,44]. The calculated
Ni L23-edge XANES is also compared to experiment (bottom) [45].

core-hole potential is assumed to be a static Coulomb potential
and exchange is ignored. Third, the 5s states are treated as core
states in the calculation, and should probably be promoted into
the valence for this system. Finally, frustrated Auger configu-
rations can also play a role in the spectrum, but are not treated
here [10]. Figure 8 (bottom) shows our calculations of the XAS
of CeO2 calculated at various levels of theory and compared
with experiment. Interestingly, the agreement with experiment
is quite reasonable with only intrinsic losses, suggesting that
extrinsic losses and interference have a minor effect on the
XAS. Consequently, these CT systems represent cases where
the cancellation of the intrinsic and extrinsic losses is generally
incomplete at threshold, and that intrinsic losses are essential
for a quantitative treatment. This is supported by investigations
of CT systems using the three-state model of Lee, Hedin, and
Gunnarsson [19,41,47], where the sudden limit is reached at
relatively low energies, and that the interference is in fact
constructive near threshold. This constructive interference is
missing in our model of interference (at least with λ = 1),
and may be one reason for some missing amplitude in our
CT excitation in CeO2. Figure 9 shows the dependence of the
spectral function (top) on the photoelectron energy, as well as
the various contributions to the satellite weights (bottom).
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IV. CONCLUSIONS

We have developed both the theory and a practical approach
for calculating inelastic losses due to intrinsic, extrinsic, and
interference effects in x-ray spectra within a generalized
particle-hole cumulant expansion, and a partition of the
cumulant into extrinsic, intrinsic and interference contribu-
tions. These losses are included in the spectra in terms of a
convolution with a particle-hole spectral function that accounts
for their energy dependence. The cumulant approach simplifies
the formalism and facilitates practical calculations. Here, the
core-hole cumulant is calculated via a real-time real-space
approach, while an efficient many-pole model self-energy
is used to obtain the extrinsic part. Interference effects are
approximated using an interpolation model. This model avoids
the complications of recoil effect which can lead to a number of
technical problems such as unphysical negative spectral weight
at some energies. The approach is complementary to, and can
be used to correct various methods for calculating XAS and
XPS that ignore inelastic losses and satellites, e.g., in a post-
processing step. The cumulant theory also elucidates both their
behavior and the differences between the spectral functions for
XAS and XPS which may be important to their interpretation.
In contrast to the relatively sharp features of independent
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FIG. 9. For reference the particle-hole spectral function ÃK (ω)
for CeO2 (top) and the satellite weights of the individual contributions
(bottom) are also given.

particle spectral function for the ground state, the particle-hole
spectral function exhibits significant breadth and asymmetry
of both the quasiparticle peak and the satellite contributions
well above the Fermi energy. The cumulant approach can also
account for edge singularities in the spectrum. Physically, the
treatment of inelastic losses here is analogous to an “excitonic
polaron,” i.e., the interaction of the particle-hole created in
photoexcitation with the density fluctuations produced by the
particle-hole system. This is in contrast to the “electronic
polaron” described by the GW approximation [3], where the
single-particle excitations arise from the generally stronger
density fluctuations due to to a core hole or a photoelectron.
For the L-edge XAS of Fe and Ni, the spectral function reduces
the whiteline significantly and increases the asymmetry of the
peak, bringing the theoretical curve closer to experiment, and
giving good agreement, especially in Ni. However, there is
missing weight at roughly 5–7 eV, indicating that the strength
of the satellites in this region is underestimated with the
current approximation. As in CHRB, we find that interference
effects play a large role in reducing the effects of many-body
excitations, especially in XAS. However, in general, we find
the cancellation to be incomplete, especially in charge-transfer
systems, where the intrinsic satellites are dominant. For these
cases the inclusion of both interference terms and extrinsic
losses are usually essential to provide a quantitative treatment
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of the near edge spectrum. Finally, although effects of thermal
vibrations are not discussed in detail here, they can be folded
into the calculation of the single-particle spectrum μ0(ω).
These effects can be approximated via the use of Debye-Waller
factors as in the real-space multiple scattering code FEFF9
[18,48], by convolving with an effective quasiparticle spectral
function [33], or by performing a configurational average over
MD snapshots. The effects of phonons on the satellite structure
is expected to be rather weak, and is in many cases obscured
by the large core-hole lifetime, but can also be treated via
cumulant methods [49,50].
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APPENDIX: PARTICLE-HOLE CUMULANT PROPERTIES

Here, we briefly summarize the derivation of the gener-
alized particle-hole starting from the detailed derivation of
CHRB [5], and the cumulant definition as in Gunnarsson
et al. [50]. In particular, we derive expressions for the terms
γc, γck , and γk in the partition of the particle-hole cumulant,
and we present illustrative results within the plasmon pole
approximation focusing on the interference terms.

Briefly, the many-body XAS can be expressed as [5]

μ(ω) = − 1

π
Im〈c|d†P geff(ω + Ec) Pd|c〉, (A1)

where the effective Green’s function geff is obtained by
retaining all terms in an expansion to second order in the
fluctuation potentials V q,

geff(ω) = e−a

[
g̃(ω) +

∑
q

∣∣∣∣V
q
cc

ωq

∣∣∣∣
2

g̃(ω − ωq)

− 2
∑

q

V
q
cc

ωq
g̃(ω − ωq)V qg̃(ω)

]
. (A2)

Here, g̃(ω) is the damped photoelectron Green’s function in the
presence of the core-hole including extrinsic interactions, and
the fluctuation potentials V q ≡ V q, are defined to diagonalize
the screened coulomb potential W (r,r′,ω), i.e.,

Im W (r,r′,ω) =
∑

q

V q(r)V ∗q(r′)δ(ω − ωq), (A3)

and the matrix element V
q
cc = 〈c|V q |c〉. The exponent a =∑

q |V q
cc/ωq |2 corresponds to the number of intrinsic (shake-

up) excitations [3].
A crucial step in the derivation of the particle-hole cu-

mulant representation is the observation that the expression
for geff simplifies considerably in the time domain. For
example, the Fourier transform of the second term, which
characterizes the satellite contribution from intrinsic losses, is∑

q |V q
cc/ωq |2 exp(iωqt). Similarly, if we now express geff to

second order in the fluctuation potentials, which are implicit

in the definition of g̃(ω), we obtain

geff(ω) = g0(ω) +
[∑

q

g0(ω)V qg0(ω − ωq)V qg0(ω)

+
∑

q

∣∣∣∣V
q
cc

ωq

∣∣∣∣
2

(g0(ω − ωq) − g0(ω))

− 2
∑

q

V
q
cc

ωq
g0(ω − ωq)V qg0(ω)

]
. (A4)

Next, we follow the procedure of Gunnarsson to derive
a second-order cumulant approximation for the effective
Green’s function in the time domain, which has the structure
of a particle-hole Green’s function [50]. In particular, we start
with an exponential form for the effective particle-hole Green’s
function, i.e.,

GK (t) = g0
c (t)g0

k (t)eCK (t). (A5)

We can then find the particle-hole cumulant to second order
by expanding the cumulant Green’s function to second order
in the fluctuation potentials, and matching to the second-order
expansion of the effective Green’s function given in Eq. (A4),
Fourier transformed to the time domain. This yields a Landau
form for the cumulant CK (t) where the kernel is partitioned
into extrinsic, intrinsic, and interference terms, respectively,

CK (t) =
∫

dωγK (ω)(eiωt − iωt − 1),

γK (ω) = γk(ω) + γc(ω) + γkc(ω). (A6)

Note that the second term in Eq. (A4) (corresponding to γc

does not produce a core-level self-energy shift. This is because
the above equation assumes that this shift has already been
included in the calculation of the core-level energy. In the
above equation, we have assumed a bare core-hole energy, and
the inclusion of the −iωt provides the core-level shift. The
kernels γc and γk of the intrinsic and extrinsic cumulants are
given by [5]

γc(ω) =
∑

q

∣∣V q
cc

∣∣2

ω2
q

δ(ω − ωq),

γk(ω) =
∑

q

∣∣V q
kk+q

∣∣2

ω2
kq

δ(ω − ωkq)

= |Im�k(ω + Ek)|
πω2

. (A7)

The interference term can be derived similarly, although a
further approximation of constant matrix elements must be
made to force the particle-hole Green’s function to be diagonal,
namely 〈k|d|c〉 = 〈k + q|d|c〉. This yields the interference
kernel

γkc(ω) = −2
∑

q

V
q
ccV

q
kk+q

ω ωkq
δ(ω − ωkq), (A8)

where ωkq = ωq + Ek+q − Ek.
As a concrete example, we illustrate the result with the

plasmon pole approximation for the dielectric function. In
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that case the fluctuation potentials are plane waves, V q(r) =
V

q

0 exp(k · r). Thus we have V
q
cc = V

q

0 and V
q
kk′ = v

q

0 δk′,k+q.
The integrals over q can be performed, to find explicit
expressions for the contributions to γK (ω), however, we find
that this solution is plagued by unphysical behavior such as
negative spectral density, which can be understood as follows.
Due to the opposite couplings of the fluctuation potentials
for the photoelectron and the core hole, the interference
term is opposite in sign compared to those for the intrinsic
and extrinsic terms. Consequently, any approximations made
in calculating the various terms can easily lead to negative
overall amplitude when interference is strong. Such anomalous
behavior can be caused by the second-order approximation of
the terms in the cumulant, or the neglect of the off-diagonal
parts of the interference terms, which correspond to recoil
with a transfer of momentum from the core hole to the
photoelectron.

Note that the extrinsic and interference terms γk and γck

do not have the same excitation frequencies as the intrinsic
term, a fact that will almost certainly cause problems, since
the interference term can be strong enough to cancel both
the intrinsic and extrinsic terms. If we instead neglect recoil
(εk+q ≈ εk) in the delta functions, we can then write the
complete excitation spectrum as a perfect square, which will

ensure a positive definite result. In that case, we find

γk(ω) = ω2
pθ (ω − ωp)

πω
√

2(ω − ωp)

× 1

[(2ω − ωp)2 − 2k2(ω − ωp)]
,

γc(ω) = ω2
pθ (ω − ωp)

π
√

2(ω − ωp)ω3
,

γkc(ω) = ω2
pθ (ω − ωp)

4πkω2(ω − ωp)

× ln

[
2ω − ωp + k

√
2(ω − ωp)

2ω − ωp − k
√

2(ω − ωp)

]
, (A9)

where for simplicity we have taken the plasmon dispersion
to be ωq = ωp + 1/2q2 and V

q

0 = [vqω
2
p/2ωq)]1/2. Unfortu-

nately, these expressions are only valid for low photoelectron
momentum k, since the integrals are ill defined for large k when
recoil is neglected. However, we use them only to evaluate
our approximation for the interference term in reference to
XANES calculations, where the photoelectron momentum is
relatively low.
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