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Dielectrics in a time-dependent electric field: A real-time approach based on density-polarization
functional theory
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In the presence of a (time-dependent) macroscopic electric field the electron dynamics of dielectrics cannot
be described by the time-dependent density only. We present a real-time formalism that has the density and
the macroscopic polarization P as key quantities. We show that a simple local function of P already captures
long-range correlation in linear and nonlinear optical response functions. Specifically, after detailing the numerical
implementation, we examine the optical absorption, the second- and third-harmonic generation of bulk Si,
GaAs, AlAs, and CdTe, at different levels of approximation. We highlight links with ultranonlocal exchange-
correlation functional approximations proposed within a linear response time-dependent density functional theory
framework.
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I. INTRODUCTION

Time-dependent density functional theory (TD-DFT) [1]
is a standard tool in the computation of the optical response
of molecules and in general of finite systems. In contrast, TD-
DFT is rarely employed for the study of the optical response of
extended systems such as periodic crystals. The main reason
is that within the common approximations TD-DFT fails to
describe excitonic effects which typically dominate the optical
spectra of insulators and semiconductors [2].

Though commonly attributed to the approximation for
the exchange-correlation (xc) density functional, the prob-
lem of TD-DFT for periodic crystals is more fundamental.
Calculations of the optical response of periodic crystals
use periodic boundary conditions. TD-DFT is based on
the Runge-Gross theorem [1] that establishes a one-to-one
correspondence between the time-dependent densities and
scalar external potentials. However, for periodic systems in
a time-dependent homogeneous electric field only the one-
to-one correspondence between the time-dependent currents
and potentials (scalar and vector) can be established and
time-dependent current density functional theory (TD-CDFT)
is then the correct theoretical framework [3,4]. In particular
it is the optical limit, i.e., the case in which the transferred
momentum q → 0, which cannot be described starting from
the density only. One could still work with functionals that
depend on the density only, but there is a price to pay. All
the equations have to be worked out with a finite but very
small momentum and the q → 0 limit can be performed only
at the end of the calculation. Furthermore in order to describe
excitonic effect the xc functionals have to be ultranonlocal
and to diverge as q → 0 [5]. Such an approach is used within
the linear response framework but it is not feasible within a
real-time framework since for practical reasons calculations
have to be performed directly at q = 0. Thus one needs to go
beyond the density-only treatment. As a clear indication of
this, the macroscopic polarization and the response functions

cannot be calculated within a density-only scheme at q = 0 [6].
Problems are not limited to the time-dependent case. Even in
the static limit, e.g., for dielectrics in a static homogeneous
electric field, Gonze and coworkers proved that “the potential
is not a unique functional of the density, but depends also on the
macroscopic polarization” [7]. In this case then the theory has
to be generalized to consider functionals of both the density
and the polarization in what is called density-polarization
functional theory (DPFT). The latter can be obtained from
TD-CDFT in the static limit.

Here we propose a real-time approach based on DPFT for
calculating the optical response properties of dielectrics, thus
considering functionals of both the time-dependent density
and the macroscopic bulk polarization. Real-time approaches
allow us in principle to calculate the optical response at all
order so as to access nonlinear properties [8], including non-
perturbative extreme nonlinear phenomena [9], and to simulate
real-time spectroscopy experiments [10]. It is highly desirable
then to have computationally inexpensive first-principles real-
time approaches, such as TD-DFT, that include excitonic
effects. In particular here we consider an effective electric
field which is a functional of the macroscopic polarization. We
employ simple local functionals of the polarization [3,11,12]
either fitted to reproduce the linear optical spectra [13] or
derived from the jellium with gap model kernel [14].

In the following, we review DPFT and we extend it to
the case of time-dependent electric fields. We discuss briefly
the approximations for the effective electric field and we
present how the relevant response functions are calculated
from the macroscopic polarization. Then, we show that for
the optical absorption, the second-harmonic generation (SHG)
and third-harmonic generation (THG) of semiconductors,
the simple local functionals of the polarization account for
excitonic effects similarly to the ultranonlocal kernel within
the density-only response framework. In the conclusion we
discuss the proposed approach as an alternative to existing
schemes based on TD-DFT and TD-CDFT.
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II. DENSITY-POLARIZATION FUNCTIONAL THEORY

The coupling of an external electromagnetic field with a
dielectric is described via the electromagnetic potentials and
thus is gauge dependent. In the present paper we use the length
gauge which is obtained from the multipolar gauge within the
electric-dipole approximation (EDA) [15]. This implies that
we assume a spatially uniform electric field. Such macroscopic
electric field enters via a scalar potential, ϕ(r) = −Eext · r,
whose corresponding energy has generally the form

Eϕ = −�Eext · P, (1)

where � is the volume and P is the bulk macroscopic
polarization that is then the key quantity to describe the cou-
pling of dielectrics with external fields (in the velocity gauge
the coupling would have been instead via the macroscopic
current).

For finite systems (i.e., in which the electronic density
n goes to zero when r → ∞), Eq. (1) is equivalent to∫

n(r)ϕ(r)dr and P = ∫
n(r)rdr. However these expressions

are ill defined when periodic boundary conditions are im-
posed [16]. The modern theory of polarization [17] provides
a correct definition for the macroscopic bulk polarization in
terms of the many-body geometric phase. For a system of
independent particles in a periodic potential the polarization
P along the Cartesian direction α is given by [18]

Pα = − ief

(2π )3

occ∑
n

∫
dk〈ukn|∂kα

ukn〉, (2)

where f is the spin occupation and |ukn〉 the periodic part of
the Bloch function |φkn〉.

Equation (2) seems to suggest that, though P cannot be
expressed as an explicit functional of the electron density
n, it is still an implicit functional of n through the Bloch
functions obtained from the solution of the Kohn-Sham (KS)
equation. As we discuss in the following subsection, however,
for a dielectric in a macroscopic electric field the macroscopic
polarization needs to be considered as an independent variable.
Accordingly the macroscopic part of the external electric
field Eext cannot be included via the potential vext, since the
associated energy functional would be ill defined. In such
approach the KS equations and the associated Bloch functions
depend on both the density and the macroscopic polarization
of the system.

In the following we use the Gaussian system of units (or
cgs) for the polarization, electric fields, and susceptibilities.

A. Static case

An infinite periodic crystal (IPC) in a macroscopic electric
field Eext does not have a ground state. Therefore the
Hohenberg-Kohn theorem cannot be applied and DFT cannot
be used. In particular the density does not suffice to describe
the system because the one-to-one mapping between density
and external potential does not hold: one can devise an external
macroscopic electric field that applied to a system of electrons
in an IPC does not change its density n. The works of Gonze,
Ghosez, and Godby [7], Resta [19], Vanderbilt [20], and Martin
and Ortiz [21] established that in addition to the density, the
macroscopic (bulk) polarization P is needed to characterize

an IPC in a macroscopic electric field. With some cautions the
proof of the Hohenberg-Kohn theorem can be extended [21]
to demonstrate the existence of the invertible mapping

(n(r),P) ↔ (v̄ext(r),Eext),

where v̄ext is the periodic microscopic part of the external
potential. Then the total energy of an IPC is a functional of
both the electron density n and the macroscopic polarization
P :

E[n,P] = F̄ [n,P] +
∫

�

n(r)v̄ext(r) dr − �Eext · P, (3)

where F̄ , the internal energy, is a universal functional of both
n and P (see Ref. [21] for details) and is defined in the usual
way as the sum of the expectation of the kinetic and electron-
electron interaction operators,

F̄ [n,P] = 〈�|T̂ + V̂ee|�〉. (4)

The difference with the internal energy within standard DFT
is that the N -particle wave function � is not an eigenstate
of the original Hamiltonian (which does not have a ground
state), but of an auxiliary Hamiltonian which commutes with
the translation operator (see Ref. [21] for details). Notice that
DPFT is not the only way to treat the IPC in an electric field
within a density functional framework: as an alternative Umari
and Pasquarello proposed E-DFT, a density functional theory
depending on the electric field [22].

The KS equations can be extended as well to treat IPC in
a macroscopic electric field [21]. In particular the KS crystal
Hamiltonian takes the form

Hs
k = − 1

2 (∇ + ik)2 + v̄s(r) − �E s · ∇k, (5)

which is a functional of both the density and the polarization.
In Eq. (5) the KS microscopic (periodic) potential v̄s is defined
as

v̄s(r) = v̄ext(r) + v̄H(r) + v̄xc(r); (6)

v̄ext(r), v̄H are respectively the microscopic external and
Hartree potential. The total classical potential is defined as
v̄tot(r) = v̄ext(r) + v̄H(r). v̄xc is the functional derivative of the
xc energy with respect to the density. v̄ext(r) here describes the
field generated by the ions, i.e., the electron-ion interaction in
the Coulomb gauge and neglecting retardation effects. The last
term on the right-hand side of Eq. (5)—that originates from the
last term on the right-hand side of Eq. (3)—constitutes the key
difference with respect to the zero-field KS equations. ∇k is
the polarization operator derived by functional-differentiating
P [Eq. (2)] with respect to the KS eigenstates. E s is the KS
macroscopic field

E s = Eext + EH + Exc, (7)

that contains the corresponding macroscopic components
of v̄s . Note that these macroscopic components cannot be
included via the potential which would be ill defined when
imposing periodic boundary conditions. The Exc is defined
as the partial derivative of the xc energy with respect to the
polarization density field. The sum of the macroscopic external
and Hartree fields defines the total classical field:

E tot = Eext + EH. (8)
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At zero field, that is, when no macroscopic external electric
field Eext is applied, the macroscopic component of the ionic
potential and of the Hartree component exactly cancel as a
consequence of the charge neutrality of the system and the
macroscopic xc component vanishes. In this situation standard
density-only functional theory can be used.

As v̄s and E s are functionals of the density and the
polarization, the KS equations for the KS orbitals {φnk} have to
be solved self-consistently with the density (spin-unpolarized
case)

n(r) = 2
occ∑

|φnk(r)|2 (9)

and the polarization expressed in terms of a Berry phase
[Eq. (2)].

B. Time-dependent case

The Runge-Gross theorem [1] is the basis of TD-DFT.
It establishes the one-to-one mapping between the time-
dependent scalar potential and the time-dependent density.
For the case in which a time-dependent vector potential is
present Ghosh and Dhara [4] showed that the mapping can
be established between the current-density and the vector
potential. More recently Maitra and coworkers [3] showed that
TD-CDFT is the correct framework for IPC in homogeneous
electric fields.

The time-dependent change in the polarization density field
p is related to the time-dependent current density j by

p(r; t) =
∫ t

−∞
dt ′j(r; t ′). (10)

In a dielectric we can then use either p(r,t) or j(r,t) as the
main variable to describe an IPC in a time-dependent finite
homogeneous electric field. Furthermore we can consider
separately the microscopic and the macroscopic components
of p(r,t): p̄(r,t) and P(t). The longitudinal component of
p(r,t) [and thus of p̄(r,t)] is determined by the density
through the continuity equation. When interested in the optical
limit (and working in the EDA), the microscopic transverse
component can be neglected [23] and we can extend to the
time-dependent case the one-to-one mapping:

(n(r,t),P(t)) ↔ (v̄ext(r,t),Eext(t)).

The time-dependent Kohn-Sham crystal Hamiltonian has the
same form as the equilibrium KS Hamiltonian:

Hs
k (t) = − 1

2 (∇ + ik)2 + v̄s(r,t) − �E s(t) · ∇k. (11)

We rewrite the external field and potential [24] as the contribu-
tion at equilibrium Eext,0 and v̄ext,0(r) plus the time-dependent
perturbation:

Eext(t) = Eext,0 + 	Eext(t), (12)

v̄ext(r,t) = v̄ext,0(r) + 	vext(r,t). (13)

Then,

v̄s(r,t) = vs,0(r) + 	v̄s(r,t), (14)

E s(t) = E s,0 + 	E s(t), (15)

where the 0 superscript denotes that the functional is evaluated
in the presence of the equilibrium fields, thus at equilibrium
density and polarization. We then restrict ourselves to con-
sidering the case with no external macroscopic electric field
at equilibrium, i.e., Eext,0 = 0, and to a macroscopic-only
time-dependent perturbation, i.e., 	v̄ext(r,t) = 0. Therefore

	v̄s(r,t) = 	v̄H + 	v̄xc, (16)

	E s(t) = E s(t). (17)

Finally, the TD-KS equations for the periodic part unk of the
Bloch function can be expressed as

i∂tunk = (
H

s,0
k + 	v̄s(r,t) − �E s(t) · ∇k

)
unk, (18)

and have to be solved consistently with the time-dependent
density and polarization. The latter has the same form as the
static polarization [Eq. (18)] with the difference that |vkn〉 are
the time-dependent valence bands [25].

In the time-dependent case and within the EDA, it can be
shown straightforwardly that the Hamiltonian in Eq. (11) can
be derived from the KS Hamiltonian of TD-CDFT with a gauge
transformation from the velocity to the length gauge [3].

III. EXPRESSIONS FOR THE KOHN-SHAM
ELECTRIC FIELD

The KS electric field in Eq. (7) is the sum of three
components. It seems natural to consider the external com-
ponent Eext as an input of the calculation, i.e., Eext = E inp.
The total classical field E tot is then calculated from Eq. (8)
by adding the Hartree component that in the EDA is the
polarization EH = 4πP . This is not the only possible choice
nor always the most convenient. When calculating linear and
nonlinear optical susceptibilities, which do not depend on the
total or external fields, it is numerically more convenient to
choose the total classical field as input field. Since this work’s
objective is the calculation of optical susceptibilities we adopt
indeed E inp = E tot. The two choices for the input field, i.e.,
either the total or external field, have been referred to as
“longitudinal geometry” and “transverse geometry” by Yabana
and coworkers [26] and are discussed at more length in the
Appendix.

While the choice of the input field is a matter of compu-
tational convenience, the choice of the expression for the xc
macroscopic electric field is critical to the accuracy of the
results. Like the microscopic xc potential no exact expression
is known and one should resort to an approximation for the
functional form of the xc field. Contrary to the microscopic
xc potential for which hundreds of approximations exist [27],
except for the work of Aulbur and coworkers [28] we are not
aware of approximations for the xc macroscopic field. What
does exist in the literature are xc kernels within the TD-DFT
and TD-CDFT that give a nonzero contribution to the response
in the optical limit. In what follows we link the xc kernel with
the macroscopic field (similarly to Refs. [3,11]). In fact in
the linear response limit the xc electric field is related to the
polarization p (see for example Refs. [3,11,12]) through the xc
kernel F xc. The latter describes how the xc electric field (both
microscopic and macroscopic) changes when the polarization
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is perturbed. F xc can be defined independently through the
Dyson equation connecting the polarization response function
of the physical system, χ , to the polarization response function

of the KS system, χs . By rewriting the relation between Exc and

F xc in reciprocal space [29] one obtains [3] for the macroscopic
component (G = 0)

Exc(t) =
∫

dt ′

⎡
⎣F xc

00
(t − t ′)P(t ′)

− i
∑
G′ �=0

F xc
0G′(t − t ′)

nG′(t ′)
G′2 G′

⎤
⎦, (19)

and for the microscopic components Exc
G (G �= 0)

Exc
G (t) =

∫
dt ′

⎡
⎣F xc

G0
(t − t ′)P(t ′)

− i
∑
G′ �=0

F xc
GG′(t − t ′)

nG′(t ′)
G′2 G′

⎤
⎦. (20)

The first term on the right-hand side of Eq. (19) is directly
proportional to the macroscopic polarization; the second term
involves the density and is the microscopic contribution to
the macroscopic field. Note that as we assume the EDA we
do not have the contribution from the microscopic transverse
current as in Maitra and coworkers [3]. The variation of the
microscopic xc potential 	v̄xc can be written in terms of the
microscopic components Exc

G as

	v̄xc
G (t) = i

G · Exc
G (t)

G2
. (21)

Berger [11] has recently proposed an approximation for F xc
00

from TD-CDFT. The approximation, however, requires the
knowledge of the random-phase-approximation (RPA) static
dielectric function: while within a linear response approach
this does not require any additional calculation, within a real-
time approach the RPA static dielectric function needs to be
computed beforehand. Previously, again within TD-CDFT, de
Boeij and coworkers [12] had derived an approximation for the
F xc

00
from the Vignale-Kohn current-density functional [30].

Both these approximations successfully describe long-range
effects in optical absorption spectra of dielectrics.

An alternative way to derive approximations for F xc is to
rely on the standard TD-DFT xc kernel f xc [31]. The latter
describes how the xc potential changes when the density is
perturbed and is defined from the Dyson equation relating
the density-density response of the physical and the KS
system. The general relation between F xc and f xc “involves
repeated inversions of tensor integral operators” [32] and
it is not of practical use. In the long-wavelength limit this
relation simplifies and the two kernels can be related via the
equation [3]

f xc
GG′(q → 0; t − t ′) = lim

q→0

F xc
GG′(t − t ′) · g

|q + G||q + G′| , (22)

where g is the metric tensor. For example the long-range-

corrected (LRC) approximations f xc ≈ f LRC, which take the
form

f LRC
GG′ (q → 0; t − t ′) = lim

q→0

−αLRC

|q|2 δG,0δG′,0δ(t − t ′), (23)

can be used (we assume here and in what follows α > 0). Then
F xc

00
· g ≈ −αLRC.

In this work, we derive the F xc needed in Eq. (19) from the
jellium with gap model (JGM) kernel proposed by Trevisanutto
and coworkers [14]. The latter kernel is a functional of the
electronic density n and of the fundamental gap of the material
Egap. In the optical limit the JGM kernel takes the form of a
long-range-corrected approximation with αLRC defined as the
cell average [14] of

αJGM(r; t) = 4πB̃

[
1 − exp

(
− E2

gap

4πnB̃

)]
. (24)

In the equation above B̃ = (B + Egap)/(1 + Egap), where B =
B[n] is a functional of the density found by fitting the local
field factor of the homogeneous electron gas from quantum
Monte Carlo data [33]. For cubic systems we thus consider
F xc ≈ F JGM with

F JGM
0G

(t − t ′) = − 1
2αJGM

G (t)Iδ(t − t ′), (25a)

F JGM
G0

(t − t ′) = − 1
2α∗JGM

G (t)Iδ(t − t ′), (25b)

where αJGM
G (t) is the Fourier transform of Eq. (24) and we re-

stricted ourselves to cubic systems for which the metric tensor
is the identity, I . This latter restriction is not fundamental and
the above equations can be generalized straightforwardly to
noncubic systems. Notice that we symmetrized F JGM

G,G′ so as to
obtain a Hermitian kernel. Other strategies of symmetrization
have been proposed in the literature; see Ref. [14] and
references therein.

Like standard approximations for the xc kernel this approx-
imation neglects memory effects (i.e., the macroscopic field at
time t depends on the values of the density and polarization
only at time t) and it is thus frequency independent. Several
frequency-dependent approximations have been derived from
current-density functional theory [11,12,34,35]. Contrary to
approximations for the αLRC proposed in the literature so far,
the derived approximation for α depends on the reciprocal
lattice vectors. Furthermore at difference from the approxi-
mations proposed in Refs. [13,36] this approximation does
not rely on empirical parameters—similarly to the family
of bootstrap kernels [37,38] (that relate α to the electronic
screening in an expression equivalent to that derived by Berger
from TD-CDFT).

Inserting the approximation for the kernel [Eq. (25)] in the
expression for the xc fields [Eqs. (19)–(20)] and using Eq. (21)
we obtain

E JGM(t) = αJGM
0 (t)P(t) − i

2

∑
G �=0

αJGM
G (t)

nG(t)

G2
G,

	v̄JGM
G (t) = i

2

∑
G �=0

α∗JGM
G (t)

G2
G · P(t), (26)
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TABLE I. Parameters for the DFT calculations. The kinetic
energy cutoff K , the lattice constant alatt, and the nonfrozen electrons
explicitly included in valence.

System K (Ha) alatt (bohrs) atom1 atom2

Si 14 10.260 Si: 3s23p2

GaAs 30 10.677 Ga: 4s24p1 As: 4s24p3

AlAs 20 10.696 Al: 3s23p1 As: 4s24p3

CdTe 40 12.249 Cd: 4d105s2 Te: 4d105s25p4

where the second term on the right-hand side of Eq. (20) is
zero due to our symmetrization strategy [Eq. (25)].

In our calculations we will use Eq. (26) and/or the empirical
αoptP approximation for the macroscopic xc electric field in
which αopt is a parameter which gives the best agreement
between the computed and experimental optical absorption
spectra. The two approximations will be referred as the
JGM polarization function (JGM-PF) and optimal polarization
functional (opt-PF).

IV. COMPUTATIONAL DETAILS

The eigensolutions {|φ0
mk〉} of the zero-field Hamiltonian

are calculated using the plane-wave pseudopotential density
functional code ABINIT [39] within the local density approx-
imation for the xc energy. The kinetic cutoff, the lattice
constant, and the components included in the valence and
type of the pseudopotential used in these calculations are
collected in Table I. We have employed norm-conserving
pseudopotentials of the Troullier-Martins type [40] for Si,
AlAs, and CdTe, and of the Hamann type [41] for GaAs. For all
the systems we have used four shifted 8 × 8 × 8 Monkhorst-
Pack meshes [42] to converge the ground-state density. The
periodic part {|u0

mk〉} of the so-generated eigensolutions are
used as a basis to expand the time-dependent KS Bloch
functions (or more precisely their periodic part)

|unk(t)〉 =
∑
m

∣∣u0
mk

〉〈
u0

mk

∣∣unk(t)〉 =
∑
m

∣∣u0
mk

〉
ck
mn(t), (27)

and the TD-KS equations [Eq. (18)] can be rewritten as the
equation of motions for the coefficients ck

nm. We obtained
converged spectra by truncating the sum in Eq. (27) at m = 9
bands for Si, m = 11 bands for AlAs and GaAs, and m = 13
for CdTe.

The derivatives with respect to the crystal momentum
that appear in Eqs. (2) and (5) for the polarization and the
polarization operator are evaluated numerically. Following
Souza and coworkers [25] the polarization is rewritten as

Pα = − ef

2π�

aα

Nk⊥
α

∑
k⊥

α

Im ln
Nkα −1∏

i=1

det S(ki ,ki + 	kα),

(28)
where � is the cell volume, a is the lattice vector, Nk⊥

α
is the

number of k points in the plane perpendicular to reciprocal
lattice vector bα , and 	kα the spacing between two successive
k points in the α direction. S is the overlap matrix

Smn(k,k + 	kα) = 〈umk|unk+	kα
〉. (29)

The field coupling operator ŵk = E · ∇k is calculated as

ŵk(E) = ie

4π

3∑
i=α

N‖
α(E · aα)

4D(	kα) − D(2	kα)

3
, (30)

where Nk‖
α

is the number of k points along the reciprocal lattice
vector bα and

D(	kα) = 1
2

(
P̂ki+	kα

− P̂ki−	kα

)
, (31)

P̂ki+	kα
=

occ∑
n

|ũnki+	kα
〉〈unki

|. (32)

In the definition for the projector [Eq. (32)] |ũnki+	kα
〉

are gauge covariant [25], i.e., are constructed so that they
transform under unitary transformation in the same way as
|unki

〉:

|ũnki+	kα
〉 =

occ∑
m

[S−1(k,k + 	kα)]mn|umki+	kα
〉. (33)

Equation (30), proposed by Nunes and Gonze [43],
corresponds to approximately the Gauge-covariant derivative
in Eq. (18) with a finite-difference five-point midpoint for-
mula. The truncation error in this expression converges as
O(	k4) whereas the three-point midpoint formula proposed in
Ref. [25] and used in our previous works [44–46] converges as
O(	k2). Though more cumbersome, we prefer Eq. (30), since
we noticed that when using polarization-dependent functionals
the equations of motion (EOMs) are very sensitive to numerical
error. To converge the spectra we considered 24 × 24 × 24
mesh for Si and GaAs, 18 × 18 × 18 for AlAs and CdTe.

In the TD-KS equation [Eq. (18)] we introduce a phe-
nomenological dephasing by adding a decay operator

Rnk(t) = 1

τnk

{|unk(t)〉〈unk(t)| − ∣∣u0
nk

〉〈
u0

nk

∣∣}, (34)

where the dephasing time τ can depend on the band and
crystal momentum indices. Those parameters take into account
memory effects from missing electron correlation and from
the coupling with the “environment” (e.g., defects, phonons)
that eventually lead to the finite lifetime of the excitation.
Those parameters can be in principle obtained from theory;
for example in the context of Green’s function theory they can
be obtained from the imaginary part of a self-energy. Here
we choose a dephasing time τ independent from the band
and crystal momentum indices in such a way to reproduce the
broadening of the experimental spectrum. For the nonlinear
optical spectra we used a broadening of 0.2 eV equivalent to a
dephasing time of 6.58 fs. For the absorption spectra we used a
broadening of 0.02 eV equivalent to a dephasing time of about
60 fs, and in the postprocessing we applied a further Gaussian
broadening of 0.1 eV.

We introduce as well a scissor operator 	H
QP
k to correct

the KS band gap. The value of the scissor correction can
be calculated from first principles (e.g., from GW calcula-
tions [47]), but in this work we choose the correction so
as to reproduce the band gap values found in the literature
(Table II). Table II reports further the optimal value for
α used in the opt-PF approximation as suggested by Botti
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TABLE II. Material-dependent parameters used in the simula-
tions: The parameter α employed in the opt-PF approximation and
the value of the scissor operator.

Par/Sys Si GaAs AlAs CdTe

α 0.2 0.2 0.35 0.2
	 (eV) 0.6 0.8 0.9 1.0

and coworkers [13]. For CdTe—for which to our knowledge
there are no time-dependent DFT calculations with the LRC
kernel—we use 0.2 which is obtained from the fit proposed
in Ref. [13] to extract the optimal α from the experimental
dielectric constant [48].

The final EOM is thus

i∂t |unk(t)〉 = [
Hs

k(t) + 	H
QP
k + iRk(t)

]|unk〉. (35)

We perform real-time simulations using a development
version of YAMBO [49]. For the nonlinear optical properties
we input a weak monochromatic electric field for a comb
of frequencies in the range of interest and we obtain the
frequency-dependent response functions from the polarization
by Fourier inversion formula (see Ref. [44] for details and
the Appendix). For the linear optical properties we input a
delta-like pulse and obtain the frequency-dependent response
from the polarization by Fourier transform. The EOMs are
integrated using the numerical method proposed in Ref. [25]
and used in previous works [44,45] with a time step 0.01 fs.

V. RESULTS

We considered the optical properties of bulk Si, which has
a diamond structure, and GaAs, AlAs, and CdTe, which have
zinc-blende structure. The two structures are similar; both
are face-centered-cubic systems with a two-atom basis (at the
origin, and at 1/4 of the unit cell in each direction). In silicon
the two atoms are identical; in the zinc-blende structures are the
different atoms of the II-VI (CdTe) or III-V (GaAs and AlAs)
compounds. In terms of crystal symmetries this implies that
at variance with silicon they miss the inversion symmetry, and
therefore have a dipole-allowed SHG. In what follows we study
linear and nonlinear optical properties contrasting the standard
time-dependent local density approximation (TD-LDA) with
the real-time DPFT approach.

A. Optical absorption

The experimental optical spectra on Si [50], GaAs [51],
CdTe [52], and AlAs [53] (Fig. 1, black dashed lines) show
qualitative similarities. They all present two main features,
a peak at about 3–3.5 eV (referred as E1) and a stronger
second peak at 4.5–5.0 eV (referred as E2). In GaAs and
CdTe, containing heavier third/fourth row atoms, the E1 peak
is split because of the spin-orbit interaction. Note that we do
not include spin-orbit in the KS Hamiltonian and therefore we
do not reproduce the splitting at any level of the theory.

Figure 1 compares the experimental optical absorption
spectra with −Im[χii] (i.e., the imaginary part of the diagonal
of the polarizability tensor, where i is any of the directions
x,y,z; see the Appendix), obtained from the RPA and the

Im

FIG. 1. Optical absorption in bulk Si (top left), GaAs (top
right), CdTe (bottom left), and AlAs (bottom right). Experimental
optical absorption spectra (open circles) are compared with real-
time simulations at different levels of approximation: TD-LDA
(continuous orange line), RPA (green dash-dotted line), both without
the scissor correction, and the IPA (violet dotted line) and RPA (green
dashed line) with scissor correction.

TD-LDA (without scissor correction). For the considered
systems the two approximations produce very similar spectra.
As the only difference between the TD-LDA and the RPA is
the microscopic xc potential, one can infer that the effect of
the latter is minor as already discussed in the literature [2,54].
The most striking difference between the experimental and
calculated spectra is the onset that is underestimated by
0.5–1.0 eV. When a scissor operator is added (see Table II) the
agreement is improved, though for Si, GaAs, and AlAs the E2

peak is slightly blueshifted and more importantly the E1 peak
is either underestimated or appears as a shoulder. Indeed the
underestimation of the E1 peak intensity in semiconductors by
TD-LDA (and similar TD-DFT approximations) is well known
and a signature of missing long-range correlation (see for
example Refs. [2,54–56]). Comparison of the RPA spectra and
the independent-particle-approximation (IPA) spectra shows
that crystal local field effects mostly reduce the intensity of the
E2 peak by 15%–25%. The experimental optical spectrum of
CdTe is well caught within the RPA, but for the overestimation
of the E2 peak intensity.

Figure 2 shows the effects of the macroscopic xc field that is
added through the approximated PFs discussed in Sec. III. For
Si, GaAs, and AlAs a clear improvement is observed for the
opt-PF: both intensity and position of the peaks are reproduced
reasonably well. For CdTe adding the xc macroscopic field
leads to an overestimation of the E1 peak intensity which
was well caught within the RPA. On the other hand the
E1/E2 intensity ratio is better reproduced by the PFs than
within RPA. For the JGM-PF the agreement is in general less
satisfactory. In particular for Si the E1 peak intensity is still
visibly underestimated, while for AlAs it is overestimated. The
main difference between the two approximations is the value

035149-6



DIELECTRICS IN A TIME-DEPENDENT ELECTRIC . . . PHYSICAL REVIEW B 94, 035149 (2016)
Im

FIG. 2. Optical absorption in bulk Si (top left), GaAs (top
right), CdTe (bottom left), and AlAs (bottom right). Experimental
optical absorption spectra (open circles) are compared with real-time
simulations at different levels of approximation: opt-PF (blue dashed
line), JGM-PF (pink continuous line), RPA (gray dotted line). All
approximations include the scissor operator correction.

of α: in the opt-PF, α is a parameter optimized to reproduce
the optical spectra; in the JGM-PF α is determined from the
jellium with a gap model. The model does not reproduce the
optimal value. For Si, αJGM ≈ 0.11 and for AlAs αJGM ≈ 0.52,
respectively smaller and larger than the optimal value reported
in Table II.

It is worth noticing that the xc macroscopic field in
the JGM-PF has as well a microscopic contribution. For
AlAs this contribution is singled out in the right panel of
Fig. 3 where it is shown to reduce slightly the absorption.
For silicon (not shown) the microscopic contribution to the
macroscopic field is negligible. Our results for Si and GaAs
are slightly different from the one obtained in Ref. [14] though
in principle the magnitude of the applied electric fields is

Im

FIG. 3. Effect of microscopic components in the JGM-PF on the
optical absorption (right panel) and SHG (left panel) of AlAs. The
plots compare JGM-PF spectra with (green dashed line) and without
microscopic effects (magenta continuous line) and the opt-PF (blue
dotted line).

FIG. 4. Upper panel: Contribution of the macroscopic xc field to
the optical spectrum of Si calculated as the difference between the
the opt-PF and the RPA optical absorption spectra (pink continuous
line) compared with −αRe(χ 0

ii) (green dashed line). Bottom panel:
Phase delay φ between the polarization and the applied electric field
as a function of the applied field frequency at the RPA (dotted line)
and opt-PF (continuous line) level of approximation. The horizontal
line highlights the φ = π/2 delay. See text.

within the linear response limit. In fact differences are expected
because of small differences in the numerical parameters of the
calculations (e.g., the pseudopotential, the k-point integration,
the broadening). We have verified that when using exactly
the same numerical parameters the linear response and the
real-time approaches give indeed the same optical absorption
spectra for the systems here studied.

B. Effect of xc macroscopic field on optical absorption

It is interesting to analyze how an apparently simple
approximation for the xc macroscopic field such as the αP
(in the opt-PF and JGM-PF) correctly “distinguishes” where
to increase the optical absorption spectrum at RPA level. This
information is “encoded” in the macroscopic polarization. In
fact, in the linear response limit the effective Kohn-Sham
electric field within the proposed PF approximations takes
the form

E s(ω) = [1 − α χ (ω)]E tot(ω).

That is, the intensity of the applied field is either ampli-
fied or reduced depending on the sign of Re[χii(ω)] since
Im[χii(ω)] � 0 for any positive ω. In Fig. 4 (upper panel)
we see that indeed the sign of −Re[χ0

ii(ω)] (the real part
of the RPA macroscopic response function) follows closely
that of the correction induced by xc macroscopic contribution
−αP which has been calculated by subtracting the optical
absorption obtained by the RPA, Im[χ0

ii], from the optical
absorption obtained by opt-PF, Im[χii]. To gain an insight on
how the sign of Re[χ0

ii] is linked to the localization of the
excitation we consider the phasor representation of χ0

ii(ω) =
|χ0

ii(ω)| exp (iφ): the complex argument φ (see bottom panel of
Fig. 4) gives the phase delay between P and E . In particular
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a delay of φ = π/2 corresponds to in-phase oscillation of
the macroscopic polarization current J = −∂P/∂t with E .
Where the optical absorption is negligible those oscillations
are plasmons; where instead it is non-negligible they can be
considered as a signature of delocalized excitations (note that
in fact the optical absorption has a maximum at φ = π/2).
Heuristically, for more localized excitations we may expect a
phase delay larger than π/2, and for delocalized excitations a
phase delay smaller than π/2.

Then, the cos φ, and Re(χii) which is proportional to it,
are negative for localized excitations and positive for the more
delocalized ones. A correction proportional to −Re(χii) then
increases the absorption in correspondence of more localized
excitation and decreases it for more delocalized excitations.
Note as well that in the RPA the phase delay is overestimated.
Then the absorption, proportional to sin φ, is too small for
φ > π/2 (localized excitation) and too large for φ < π/2
(delocalized excitation).

C. Second-harmonic generation of GaAs, AlAs, and CdTe

In zinc-blende structures the only independent nonzero
SHG component [61] is χ (2)

xyz (or its equivalent by permutation).
The module of the calculated χ (2)

xyz for the systems under study
is reported in Fig. 5 and compared with experimental values
where available. Note that when the energies are not corrected
by a scissor (left panel) for both GaAs and CdTe a large part of
the energy range of the SHG spectra is in the absorption region
where both one-photon and two-photon resonances contribute
to the intensity. For AlAs the part of the SHG spectra below
2 eV is instead in the transparency region of the material
(only two-photon contributions). When the scissor correction
to the energy is applied (right panel), the transparency region
for GaAs and CdTe is below 1 eV and for CdTe below
3 eV. In the transparency region only two-photon resonances
contribute. Comparing the TD-LDA with the RPA and the
independent particle (IP) spectra (left panel) shows that crystal
local field effects (that tend to reduce the overall SH intensity)
are partially compensated by the microscopic xc effects (that
tend to increase the SH intensity). In general both effects are
relatively stronger than for the optical absorption. Applying the
scissor correction does not correspond to a simple shift (like in
the optical absorption case) but changes the spectra. First the
SH intensity is reduced overall (because of sum rules); second
the intensity is redistributed as the scissor modifies the relative
position of one-photon and two-photon resonances (that are
shifted by half of the scissor value). For GaAs and CdTe the
addition of macroscopic correlation through the approximated
PF leads to an enhancement of about 40% in GaAs and 80% in
CdTe with respect to the RPA. On the other hand as discussed
for those systems local field effects are very large and in
fact the spectra from the PF are not significantly different
than at the IP level, meaning an almost exact cancellation
of the crystal local effects and the macroscopic xc effects as
describe by the approximated PFs. Only in the case of AlAs,
the macroscopic correlation enhances significantly the SH,
adds features, and redistributes relative weights with respect
to the IP approximation.

Regarding the comparison with experiment (right panel),
in GaAs the peak at 1.5 eV and the feature at 2.2 eV in

FIG. 5. SHG spectra of GaAs (top panels), AlAs (middle panels),
and CdTe (bottom panels) obtained from real-time simulations at
different levels of approximation. Left panels: IPA (dotted violet),
RPA (dashed green), and TD-LDA (continuous orange)—all without
scissor operator correction. For comparison we included the RPA
spectrum of GaAs and AlAs calculated by Luppi et al. [57]
(open triangles). Right panels: opt-PF (dashed blue) and JGM-PF
(continuous pink) are compared with IPA (dotted gray) and RPA for
CdTe and GaAs. Available experimental results are shown for GaAs
(open circles) [58] and CdTe (open circles [59] and stars [60]).

the experimental SHG are fairly reproduced by the opt-PF
and JGM-PF approximations. All approximations significantly
overestimate the SHG for energies below 1 eV. A similar
breakdown of the opt-PF approximation (that within the
response theory context corresponds with the long-range
corrected kernel) has been observed by Luppi and coworkers
and traced back to the errors in the theoretical macroscopic
dielectric function [57]. For CdTe, the approximation that is
closer to experimental results (which however are available
only around 1 eV) is the RPA while both PF approximations
overestimate the experimental SH. This is consistent with the
results for optical absorption for which the RPA gives the best
agreement among all approximations considered.

We have also compared our results from real-time simula-
tions with those obtained from a response approach by Luppi
and coworkers [57] and we found a good agreement, slightly
better than our previous work [44] thanks to the higher order
approximation for the covariant derivative [Eq. (30)]. In the
left panel of Fig. 5 we show for example the comparison
for the RPA. There is a very good correspondence between
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the two spectra for AlAs. For GaAs there are small but still
visible differences which we argue are due to the different
pseudopotentials used. In fact we obtain a similar variation
in our results when repeating the calculations with different
pseudopotentials. It is known that SHG is very sensitive to
changes in the electronic structure and that is turn changes
when using different pseudopotentials. This is particularly true
in the case of GaAs and the sensitivity on the pseudopotential
choice was also observed in the referenced calculations. Note
that in the pseudopotentials we used, d orbitals are considered
as core electrons, whereas they are included as valence
electrons in the calculation of Luppi and coworkers [57]. On
the other hand pseudopotentials including d electrons that we
were testing did not provide a much better agreement.

D. Third-harmonic generation of Si

The THG for Si has two independent components, χ
(3)
1212 ≡

χ (3)
xyxy and χ

(3)
1111 ≡ χ (3)

xxxx . In the expression for the TH
polarization along the direction i,

Pi(3ω) = 3χ
(3)
1212Ei(ω)|E(ω)|2 + (

χ
(3)
1111 − 3χ

(3)
1212

)
E3

i (ω),

3χ
(3)
1212 is the isotropic contribution, while χ

(3)
1111 the anisotropic

contribution. Figure 6 shows the calculations for A = |χ (3)
1111|

and B = |3χ
(3)
1212|, the modules of the 1111 and 1212

components of the THG of Si [62]. The TD-LDA spectra
(left panels) both present two main features, a peak around
0.9 eV (three-photon resonance with E1) and a shoulder around
1.4 eV (three-photon resonance with E2). Both features are
more intense and pronounced in the |3χ

(3)
1212|. Results within

TD-LDA resemble closely those obtained within the RPA

FIG. 6. THG of Si: |χ (3)
1111| and |3χ

(3)
1212| components (see text).

Spectra obtained from real-time simulations at different levels of
approximation. Left panels: TD-LDA (continuous orange line), RPA
(green dashed line), IPA (dotted violet line) without scissor operator
correction are compared with and IPA (gray dotted line) with scissor
operator correction. Right panels: JGM-PF (continuous pink line),
opt-PF (blue dashed line), and RPA (gray dotted line) with scissor
operator correction.

and IP approximation. For the E1 three-photon resonance the
microscopic xc effects cancel with the local-field effects, so
that TD-LDA almost coincides with the IP approximation.
For higher energies instead, the TD-LDA and RPA spectra
are practically identical. Applying a scissor operator does
not simply shift the peaks by an amount of about 1/3 of the
scissor value. The overall intensity of the spectra is reduced (as
expected from sum rules) and as well the relative intensity of
the E1/E2 resonances changes. Specifically the ratio is close to
or even smaller than 1 in the scissor-corrected spectra, while
it is ≈1.2–1.3 in the uncorrected spectra. The macroscopic
xc field introduced with the approximations for the PF (right
panels) enhances the intensity of the spectra and as well the
E1/E2 ratio. Consistently with what is observed for the linear
response the largest α (opt-PF for silicon) produces the largest
correction.

Experimental measurements are available for the ratio R1

between the THG signal obtained with 45 and 0 incident
angles and for the ratio R2 between the THG signal obtained
with circularly polarized light and linearly polarized light at 0
incident angle. From those measurements then σ = |1 − B/A|
and the phase φ(B/A) can be deduced [62]. The experimental
results are reported in Fig. 7. Both σ and φ(A/B) present
two features at about 1.1 eV and 1.4 eV in correspondence of
the three-photon E1 and E2 resonances. All the theoretical
results are very similar irrespective of the approximation
used and the differences observed for the A = |χ (3)

1111| and
B = |3χ

(3)
1212| in Fig. 6. The results from the scissor-corrected

approximations (right panels) are just shifted by 1/3 of the
scissor operator. When compared with the experiment all

FIG. 7. THG of Si: Anisotropy parameters σ and φ (see text).
Experimental data (open circles) [62] compared with results obtained
from real-time simulations at different levels of approximation.
Left panels: TD-LDA (continuous orange line), RPA (green dashed
line), IPA (dotted violet line) without scissor operator correction
are compared with the IPA (gray dotted line) with scissor operator
correction. Right panels: JGM-PF (continuous pink line), opt-PF
(blue dashed line), and RPA (gray dotted line) with scissor operator
correction.
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the approximations reasonably reproduce the behavior at
energies lower than 1 eV. However for both σ and φ(A/B)
(we consider here only the scissor-corrected approximations
which have resonances at the correct energies) the peak in
correspondence with the E1 resonance is missing and the
feature in correspondence with the E2 resonance is much
less pronounced than in experiment. When compared with
calculations from Moss and coworkers [63] at the independent-
particle level from the electronic structure calculated either
with empirical tight-binding or semi-ab-initio band-structure
techniques, the intensities we found for A and B are similar
to the latter, but the main spectral features are similar to the
former. Note that the THG based on empirical tight binding
shows in the σ and φ spectra a peak at 1.1 eV.

VI. SUMMARY AND CONCLUSIONS

We have implemented a real-time density functional ap-
proach suitable for infinite periodic crystals in which we work
within the so-called length gauge and calculate the polarization
as a dynamical Berry phase [25]. This approach, in addition to
the electron density, considers also the macroscopic polariza-
tion as a main variable and extends to the time-dependent case
the DPFT introduced in the 1990s [7,19–21] to correctly treat
the IPC in electric fields within a density functional framework.
In the corresponding time-dependent KS equations next to the
microscopic xc potential also appears a macroscopic xc electric
field which is a functional of the macroscopic polarization (and
eventually of the microscopic density). We have derived ap-
proximations for the xc electric field exploiting the connection
with long-range-corrected approximations for the xc kernel
within the linear response theory. We have considered two
approximations, the optimal polarization functional, linked to
the long-range-corrected xc kernel proposed in Ref. [13] and
the jellium with a gap model polarization functional linked to
the analogous approximation for the xc kernel [14]. We have
applied this approach, which we refer to as real-time DPFT, to
calculate the optical absorption, second- and third-harmonic
generation in different semiconductors (Si, GaAs, AlAs, and
CdTe). We have compared results with “standard” real-time
TD-DFT, namely without macroscopic xc effects, and to
experimental results where available. The general trend is an
overall improvement over standard TD-DFT as to be expected
from the results obtained within the response framework [13].
Of the considered approximations, the opt-PF provides the
best agreement with the experiment.

The approach here proposed combines the flexibility of a
real-time approach, with the efficiency of DPFT in capturing
long-range correlation. It allows calculations beyond the
linear regime (e.g., second- and third-harmonic generation,
four-wave mixing, Fourier spectroscopy, or pump-probe ex-
periments) that includes excitonic effects. It is an alternative
approach to real-time TD-DFT for extended systems proposed
by Bertsch, Rubio, and Yabana [64]. At variance with our
approach the latter uses the velocity gauge—which has the
advantage of using the velocity operator that is well defined
in periodic systems—rather than the position operator that
requires special attention. On the other hand, although this
approach has shown promising results [26,65], it turns to be
quite cumbersome for studying response functions beyond the

linear regime due to the presence of divergences that in princi-
ple should cancel, but that are difficult to treat numerically [66].
Furthermore nonlocal operators—such as pseudopotentials or
the scissor operator—are cumbersome to treat in velocity
gauge [67] while they are trivial in length gauge.

Similarly to any density functional approaches, a delicate
point is the approximation of the xc effects. In addition to the
xc potential as in standard DFT, in this approach we also need
an approximation for the macroscopic xc field. Though for the
systems here studied the opt-PF approximation seems to work
well, such a good performance cannot be expected in general.
For example, based on the experience from linear response
calculations, this approximation is not expected to work very
well for large gap insulators or systems with a reduced
dimensionality (e.g., nanostructures or layers) in which the
electronic screening is small [68]. Furthermore, in the opt-PF
the α that is chosen has a material-dependent parameter rather
than one obtained from first principles. In this respect within
the other approximation here studied, JGM-PF, α is determined
from first principles but does not always have the optimal
value. Further studies then should try to develop universal
approximations to the polarization functional, possibly going
beyond the linear response formulation that was here used in
the derivation of the polarization functionals.
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APPENDIX: INDUCED FIELD
AND RESPONSE FUNCTIONS

One of the objectives of atomistic simulations is the
calculation of the macroscopic dielectric function or of related
response functions of dielectrics. Within TD-DFT such goal
is achieved via the calculations of the microscopic density-
density response function χ̃ρρ , defined via the equation

δnG(q,ω) = χ̃
ρρ

GG′(q,ω) δvext
G′ (q,ω). (A1)

Here G are the reciprocal lattice vectors and ω the frequency
obtained from the Fourier transforms r → G and t → ω. In
addition to χ̃ρρ , the irreducible response function χρρ and the
auxiliary response function χ̄ρρ can be defined via

δnG(q,ω) = χ
ρρ

GG′(q,ω) δvtot
G′ (q,ω), (A2)

δnG(q,ω) = χ̄
ρρ

GG′(q,ω)
[
δvext

G′ (q,ω) + δv̄H
G′ (q,ω)

]
. (A3)
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To linear order and at finite momentum (i.e., q �= 0), the
longitudinal microscopic dielectric function can be derived
from the response functions,

ε−1
GG′(q,ω) = δG,G′ + 4π

χ̃
ρρ

GG′(q,ω)

|q + G||q + G′| , (A4)

εGG′(q,ω) = δG,G′ − 4π
χ

ρρ

GG′(q,ω)

|q + G||q + G′| . (A5)

The longitudinal macroscopic dielectric function can then
be obtained as εM (q,ω) = 1/ε−1

00 (q,ω). The absorption ex-
periment however is described at q = 0 where the dielectric
function εM (ω) ≡ εM (0,ω) can be obtained only via a limiting
process. It is defined as

εM (ω) =
[

1 + 4π lim
q→0

χ̃
ρρ

00 (q,ω)

|q|2
]−1

, (A6)

εM (ω) = 1 − 4π lim
q→0

χ̄
ρρ

00 (q,ω)

|q|2 . (A7)

As we observed in the introduction this approach is at least
problematic in real-time simulation, where it is numerically
more convenient to directly work at q = 0 and thus the density-
density response function cannot be used.

Within DPFT the key quantity is the one which relates
the macroscopic electric field E tot or Eext to the first-order
polarization P (1):

P (1)(ω) = χ̃(ω)Eext(ω), (A8)

P (1)(ω) = χ (ω)E tot(ω). (A9)

χ (ω) = χ (1)(ω) is the (first-order) polarizability; χ̃(ω) =
χ̃ (1)(ω) is the quasipolarizability. Since we obtain the polar-

izability dividing the Fourier transform of the time-dependent
polarization by the input electric field, we obtain either χ̃ (ω)

or χ (ω) depending on whether we assume E inp = Eext or

E inp = E tot. Notice that in this framework we have already
made the distinction between macroscopic fields, described in
terms of Eext/E tot, and microscopic ones, described in terms of
v̄tot/v̄tot. χ̃ (ω) and χ(ω) are thus macroscopic functions. The

longitudinal dielectric function can be obtained, to first order
in the field, as

εM (ω) = [1 + 4πχ̃ii(ω)]−1, (A10)

εM (ω) = 1 − 4πχii(ω), (A11)

where χ̃ii is any of the diagonal components of χ .

More in general the n-order polarization can be expressed
as

P (n)(t) =
∫

dt1 . . . dtn χ (n)(t − t1, . . . ,t − tn)

×E tot(t1) . . . E tot(tn), (A12)

where χ (n) is the n-order polarizability related to n-order

nonlinear optical properties. Also here we could define the
χ̃ (n) as the response to the external field. The two can be
related from the equation

χ̃ (n)(ω) = χ (n)(ω)(1 − 4πχ (1))n. (A13)

As for the linear case we obtain either χ̃ (n)(ω) or χ (n)(ω)

depending on whether we assume E inp = Eext or E inp = E tot.
However, since usually χ (n)(ω) is the quantity considered in

the literature the last choice is more convenient in nonlinear
optics.
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