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Dipole analysis of the dielectric function of color dispersive materials:
Application to monoclinic Ga2O3
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We apply a generalized model for the determination and analysis of the dielectric function of optically
anisotropic materials with color dispersion to phonon modes and show that it can also be generalized to excitonic
polarizabilities and electronic band-band transitions. We take into account that the tensor components of the
dielectric function within the Cartesian coordinate system are not independent of each other but are rather
projections of the polarization of dipoles oscillating along directions defined by the, non-Cartesian, crystal
symmetry and polarizability. The dielectric function is then composed of a series of oscillators pointing in
different directions. The application of this model is exemplarily demonstrated for monoclinic (β-phase) Ga2O3

bulk single crystals. Using this model we are able to relate electronic transitions observed in the dielectric
function to atomic bond directions and orbitals in the real space crystal structure. For a thin film revealing
rotational domains we show that the optical biaxiality is reduced to uniaxial optical response.
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I. INTRODUCTION

For the understanding, design, and fabrication of optoelec-
tronic devices, the optical properties of the involved materials
have to be known. A well established and powerful method
for the determination of these properties is spectroscopic el-
lipsometry [1,2]. We concentrate here on the dielectric function
(DF), which is usually obtained by means of numerical model
analysis of the experimental ellipsometry data and then often
described by a series of line-shape model dielectric functions
in order to deduce phonon properties, free charge carrier
concentrations, and the properties of electronic transitions
(e.g., Refs. [2,3]). For isotropic materials this method is well
established. However, in recent years, optically anisotropic
materials, as, e.g., Ga2O3 [4–7], CdWO4 [8], and lutetium
oxyorthosilicate [9], went into focus of research since they are
promising candidates for optoelectronic applications in the
ultraviolet (UV) spectral range. However, the determination
of their optical and electronic properties is more challenging
compared to isotropic materials since they depend on the
crystal orientation. The dielectric function is represented by
a (frequency-dependent) tensor and the determination of its
components requires a series of measurements for various
crystal orientations.

For (nonchiral) optically anisotropic materials, the dielec-
tric function is in general a symmetric tensor consisting of six
independent components [10], i.e.,

ε =
⎛
⎝εxx εxy εxz

εxy εyy εyz

εxz εyz εzz

⎞
⎠. (1)

Due to its symmetry, this tensor can be diagonalized indepen-
dently for the real and imaginary part at each wavelength
separately. In the transparent spectral range, i.e., for the
vanishing imaginary part, the diagonal elements are the
semiprincipal axes of the ellipsoid of wave normals and are
usually called dielectric axes. For materials with monoclinic
or triclinic crystal structure, the orientation of the dielectric
axes depends on the wavelength, an effect often called

color dispersion. In the spectral range with nonvanishing
absorption, the situation becomes even more complex. Due
to the independent diagonalizability of the tensor (1) for the
real and imaginary part, the corresponding dielectric axes in
general do not coincide with each other. Thus, in general, six
dielectric axes are present. For these classes of materials only
a few reports on the determination of the full tensor of the
DF exist, e.g., for α-PTCDA [11], pentacene [12], BiFeO3

[13], CdWO4 [8], K2Cr2O7 [14], CuSO4 · 5H2O [15], and
effective anisotropic materials as, e.g., slanted columnar films
[16]. Most of these works are limited to the determination of
the line shape of the dielectric function, treating the tensor
components of the DF independently of each other. This can,
from a technical point of view, result in large correlations
between the individual tensor elements causing nonphysical
results. More importantly, the nature of polarizabilities in
the material, like phonons, excitons, and electronic band-
band transitions, cannot be explored in this way. Thus, line
shape model dielectric functions (MDF) representing the
oscillators properties like energy, amplitude, broadening, and
even oscillation direction in a meaningful and physical correct
way have to be used.

Facing this, Dressel et al. [12] proposed an approach assum-
ing that the dipole moments are aligned to three polarization
axes which should coincide with the crystallographic axes.
Taking this model into account, the tensor of the DF is fully
described by its three independent principal elements and the
known angles between the crystallographic axes. However,
as a consequence of this approach, the principal axes of
the indicatrix (related to the real part of ε) coincide with
those of the conductivity tensor (related to the imaginary
part of ε) which is not generally valid as shown for instance
for CdWO4 [8] and Ga2O3 [7]. To overcome this problem,
Höfer et al. [14,15] used for the infrared spectral range
a model, developed earlier by Born [17,18] for phonons
and generalized by Emslie et al. [19], which consists of a
sum of damped Lorentz oscillators individually aligned to
the axis of their respective dipole moments. For phonons,
these axes are related to the atomic displacement and thus
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to some extent to the crystallographic axes. Furthermore,
their dissipative spectral range is usually narrow. Thus, the
question arises if such a model can be applied to spectrally
widespread excitations like electronic band-band transitions,
which consist of numbers of individual dipoles whose axes are
connected to overlapping atomic orbitals of various symmetry
and therefore not necessarily coincide with crystallographic
directions. Furthermore, the density of states (DOS) of the
electronic band structure is distributed within a wide energy
range in a complex manner causing nonsymmetric line shapes
of the imaginary part of the dielectric function which spectrally
overlap for different contributions and directions.

Here we demonstrate that the approach of oriented dipole
oscillators is generally valid for all kinds of excitations. We
demonstrate this exemplarily for monoclinic Ga2O3 (β-phase)
single crystals and a thin film in the spectral range from infrared
to vacuum ultraviolet. We show that this model provides a deep
insight in electronic properties of the materials: Comparing
the directions of the electronic polarizabilities obtained by
modeling the experimental ellipsometry data using line shape
MDF to the real space atomic arrangement in the crystal and
considering theoretical calculated electron density distribution
as well as orbital-resolved DOS allows us to assign the
observed transitions to individual orbitals.

The paper is organized as follows: In Sec. II we discuss
at first the general form of the DF for all kinds of crystal
symmetries and its composition. After that we demonstrate
its applicability to the case of β-Ga2O3 single crystals in
the infrared and ultraviolet spectral range. Finally, we show
by means of a practically relevant β-Ga2O3 thin film, which
exhibits rotation domains, that the approach of using directed
transitions explains the effective uniaxial properties of the film
and enhances the sensitivity to the out-of plane component of
the DF.

II. DIELECTRIC FUNCTION

In linear optics the optical response of a material is
determined by dipole excitations, e.g., optical phonons, elec-
tronic band-band transitions, or excitons which in sum are
represented by the dielectric function (ε). For materials with
a crystal structure symmetry lower than the cubic one, the
excitations generally differ in amplitude, broadening, and
energy between the crystallographic directions.

Let χ ′
i be the tensor representing the susceptibility of the ith

dipole excitation in the system with the principal axes given
by x ′, y ′, and z′ in such a way (without losing generality)
that the orientation of the dipole moment coincides with the
x ′ axis (Fig. 1). Then, the only nonzero component of χ ′

i

is χ ′
i,x ′x ′ , i.e., χ ′

i,x ′x ′ �= χ ′
i,m′n′ = 0 with m′,n′ ∈ {x ′,y ′,z′}. In

general, the polarization direction of the excitation and the
laboratory system do not coincide with each other and hence
a transformation has to be performed. This transformation is
typically described by means of a rotation matrix R which
takes into account the Euler angles φ and θ . Thus the
susceptibility of the ith dipole excitation in the laboratory
system is given by χi = R(φi,θi)χ ′

iR
−1(φi,θi). For the entire

dielectric function, the susceptibility of all excitations have to

FIG. 1. Relation between the laboratory coordinate system (x, y,
and z) and the system of the excitation (x ′, y ′, and z′). The blue double
arrow denotes the direction of the dipole moment of the excitation as
discussed in the text.

be considered, i.e.,

ε = 1 +
N∑

i=1

R(φi,θi)χ
′
iR

−1(φi,θi). (2)

Note, the Euler angles φi and θi are in general different
for each excitation. The advantage of this expression is
that the components of the resultant dielectric tensor in the
Cartesian coordinate system are not independent of each other
but rather composed of the respective projected part of the
excitation’s line-shape function according to the directions
of their individual dipole moment. For the entire dielectric
function it follows that, due to the finite broadening of
each excitation and by considering Kramers-Kronig relation,
the orientation of the principal tensor axes of the real and
imaginary parts differ from each other as it is well known and
observed in experiments, e.g., for CdWO4 [8] and Ga2O3 [7].

Equation (2) represents the general case which has to be
used for triclinic crystals. It can be simplified depending on the
crystal symmetry. Crystals with monoclinic structure exhibit
one symmetry axis, representing a C2 rotation axis or the
normal of a mirror plane Cs (or both, C2h), which we identify
in the following with the y direction. The plane perpendicular
to the y axis, the x-z plane, reveals no symmetry which defines
a Cartesian coordinate system preferentially. Therefore, from
symmetry arguments, considering dipoles polarized either
along the y axis or in the x-z plane, one can simplify Eq. (2) to

ε = 1 +
Ny∑
i=0

χi,yy +
Nxz∑
j=0

R(φj )χ ′
jR(φj )−1, (3)

with χi,yy and χ ′
j being the contribution of the susceptibility

of the respective directions. Ny and Nxz represent the number
of excitations with the corresponding polarization directions
and φ is the angle between the polarization direction and the
x axes within the x-z plane. Equation (3) leads to the well
known form of the DF

ε =
⎛
⎝εxx 0 εxz

0 εyy 0
εxz 0 εzz

⎞
⎠. (4)

A further simplification can be made for orthorhombic ma-
terials containing three orthogonal twofold rotation symmetry
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axes. In this case the DF can be written as

ε = 1 +
Nx∑
i=0

χi,xx +
Ny∑
j=0

χj,yy +
Nz∑
k=0

χk,zz, (5)

and the dielectric function tensor contains only diagonal
elements. In the case of uniaxial materials, e.g., those with
a hexagonal symmetry, χi,xx = χi,yy and Nx = Ny holds. For
isotropic materials, the numbers of oscillators in all three
directions is the same and therefore the DF reduces to the
scalar given by

ε = 1 +
N∑

i=1

χi. (6)

For practical application Eq. (2) has to be further modified.
The real and imaginary parts of any dielectric function are
connected to each other by the Kramers-Kronig relations.
Contributions of excitations at energies higher than the
investigated spectral range to the real part of the DF have
to be considered. These contributions are usually described
by pole functions. In the case presented here, this means
that the identity tensor in Eq. (2) has to be replaced by a
real valued tensor with the form given by the corresponding
crystal structure where each component is represented by a
pole function.

III. EXPERIMENT

By using the approach presented in Sec. II and line-shape
MDFs, the parametrized dielectric function of β-Ga2O3 bulk
single crystals and of a thin film was determined in the mid-
infrared up to the vacuum-ultraviolet spectral range by means
of generalized spectroscopic ellipsometry.

Ga2O3 crystallizes at ambient conditions in monoclinic
crystal structure, the so-called β phase (Fig. 2). The C2h

symmetry axis of this crystal structure coincides with the
crystallographic b axis in real space and is orthogonal to the a

and c axis. The angle between the nonorthogonal a and c axis
is β = 103.7◦ [20] resulting in a nonvanishing off-diagonal
element of the dielectric tensor within the Cartesian coordinate
system [7,21]. We investigated two single side polished bulk
single crystals from Tamura Corporation with (010) and (2̄01)
orientation, allowing access to all components of the tensor

FIG. 2. Schematic representation of the unit cell of β-Ga2O3.
The tetrahedrally coordinated Ga atoms are shown in blue, whereas
the octahedrally coordinated ones are shown in green. The oxygen
atoms are marked in red. The (2̄01) plane is highlighted by the gray
rectangle. (Image created by VESTA [23].)

of the DF. X-ray diffraction (XRD) measurements do not
reveal any hints for the presence of rotation domains, twins, or
in-plane domains.

The thin film was deposited on a c-plane-oriented sapphire
substrate by means of pulsed laser deposition (PLD) at T ≈
730 ◦C. After deposition, the sample was annealed for 5 min
at T ≈ 730 ◦C and oxygen pressure of pO2 = 800 mbar. XRD
measurements confirm the monoclinic crystal structure of the
film and the surface orientation was determined to be (2̄01).
In contrast to the bulk single crystals, six rotation domains are
observed which are rotated against each other by an angle of
60◦ [22]. In contrast to the bulk single crystals, which reveal
a smooth surface without atomic steps, the surface roughness
of the thin film was determined to be Rs ≈ 5 nm.

For the determination of the dielectric function we use
spectroscopic ellipsometry, which determines the change of
the polarization state of light by interaction with a sample.
In the general case, this is expressed by means of the 4 × 4
Mueller matrix (MM, M) which connects the Stokes vectors
of the incident (reflected) light Sin (Sref) by Sref = M Sin [1,2].
The MM can be represented as a matrix of 2 × 2 block
matrices where the diagonal ones are mainly related to the
reflection coefficients for the light polarized parallel (p) and
perpendicular (s) to the plane of incidence. The off-diagonal
block matrices are a measure for the conversion of s- into
p-polarized light, and vice versa. In the special case where no
energy transfer between orthogonal polarization eigenmodes
of the probe light takes place, like for isotropic samples or
optically uniaxial samples with the optical axis pointing along
the surface normal (as in the case for the thin film presented
here, cf. Sec. V), these block off-diagonal matrices vanishes.
The change of the polarization state can then be expressed by
the ratio of the complex reflection coefficients, i.e., ρ = r̃p/r̃s.
The index represents the polarization of the light with respect
to the plane of incidence.

For the determination of the DF, the experimental data are
analyzed by transfer-matrix calculations considering a layer
stack model taking into account the dielectric function of the
involved materials [1,2]. For the bulk single crystals, the model
consists of a semi-infinite substrate (Ga2O3 itself) and a surface
layer accounting for some roughness or contaminations. For
the infrared spectral range the surface layer can be neglected.
For the thin film the model consists of a c-plane oriented
sapphire substrate, the Ga2O3 thin film layer, and the surface
layer. The dielectric function of sapphire was taken from
the literature [24]. The surface layer was modeled using
an effective medium approximation (EMA) [25] mixing the
DF of Ga2O3 and void by 50% : 50% for the bulk single
crystals [7]. For the thin film this fraction was chosen as an
unknown parameter and the best match between experiment
and calculated spectra was obtained for 80% : 20%. In the
following we choose our coordinate system in such way that
êx ‖ a axis, êy ‖ b axis, and êz = êx × êy .

IV. BULK SINGLE CRYSTALS

A. Infrared spectral range

The MM in the infrared spectral range 250−1300 cm−1,
corresponding to 31–161 meV, was determined at angles of
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FIG. 3. Experimental (symbols) and calculated (lines) infrared spectra of the MM elements of a β-Ga2O3 bulk single crystal for an angle
of incidence of 70◦. The corresponding orientation of the crystal is given by the Euler angles on top of each column in the yzx notation.

incidence of 30◦, 50◦, and 70◦ for different in-plane rotations,
i.e., rotating the crystal around its surface normal by 30◦,
60◦, and 90◦. These measurements were performed using
a commercial rotating compensator ellipsometer in PSCA
configuration [26] with an FTIR spectrometer and a spectral
resolution of 4 cm−1. For selected orientations the recorded
MM spectra are shown in Fig. 3. The nonvanishing block-
off-diagonal elements of the MM demonstrate the optically
anisotropic character of the sample.

The experimental data were modeled as described in
Sec. III. The dielectric function in the infrared spec-
tral range was described by taking into account phonons
only because the contributions of free charge carriers was
found to be negligible. The contribution of each phonon
mode to the dielectric function is described by a Lorentz

oscillator:

χ ′
i,x ′x ′ = AiγiEi,0

E2
i,0 − E2 − iγiE

, (7)

with Ai , E0, and γ being the amplitude, energy, and broadening
of the ith-TO phonon mode, respectively. The entire DF is
then given by Eq. (3) summing up all phonon contributions.
The high energy contributions were described by a constant
tensor with the shape of Eq. (4). The modeled and experimental
MM spectra are shown in Fig. 3 yielding a good agreement.
The parameters of the best-match MDF are summarized in
Tables I and II. The obtained DF is shown in Fig. 5. Note that
a similar DF is obtained by using a Kramers-Kronig consistent
numerical analysis and considering the four components of the
DF [Eq. (4)] to be independent of each other.
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TABLE I. Experimentally determined dimensionless amplitudes (A), oscillator strength (fexpt = AγE0), damping parameters (γ ), and
energies (E0,expt) of the TO phonon modes. The angle φexpt represents the determined angle between the x (a) axis and the direction of the
dipole moment in the x-z plane (a-c plane). The phonon energy, oscillator strength, and direction of the dipole from ab initio calculations are
given by E0,calc, fcalc, and φcalc, respectively. For comparability reasons, the experimentally determined and calculated oscillator strength was

normalized to the respective values for the B (6)
u mode (f B

(6)
u ). The phonon energies taken from literature are shown in the right columns. The

uncertainty of the experimentally determined data is typically 0.5 cm−1 for the energy, 1% for the amplitude and broadening, and 1◦ for the
dipole orientation.

γexpt φexpt φtheor E0,expt E0,calc E0,expt E0,calc

Aexpt fexpt/f
B

(6)
u

expt fcalc/f
B

(6)
u

calc (cm−1) (deg) (deg) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1) (cm−1)

A(1)
u – – 0.01 – – – – 160.7 155 154.8 155 155.7 141.6

B (1)
u – – 0.41 – – 101 – 224.3 250 213.7 216 202.4 187.5

B (2)
u – – 0.33 8 – 176 253.5 267.3 290 262.3 300 260.4 251.6

B (3)
u – – 0.03 – – 39 – 281.9 310 279.1 337 289.7 265.3

A(2)
u 51 0.50 0.50 21 – – 295.3 300.5 n.o. 296.6 352 327.5 296.2

B (4)
u 86 0.18 0.16 4 166 173 356.7 361.0 375 356.8 374 365.8 343.6

B (5)
u 82 0.95 0.96 17 46 47 430.3 434.2 455 432.5 500 446.8 410.5

A(3)
u 83 0.77 0.78 13 – – 446.7 447.0 525 448.6 526 475.7 383.5

B (6)
u 73 1.00 1.00 15 128 130 572.1 560.8 640 572.5 626 589.9 574.3

A(4)
u 73 0.39 0.43 5 – – 661.5 665.8 668 663.2 656 678.4 647.9

B (7)
u 32 0.25 0.23 7 28 30 691.0 692.5 692 692.4 720 705.8 672.6

B (8)
u 10 0.13 0.13 11 74 76 743.0 742.5 731 743.5 760 753.8 741.6

this work Ref. [27] Ref. [21] Ref. [27] Ref. [21] Ref. [28]

While the imaginary part of the diagonal elements is
always positive, as required from causality, the off-diagonal
element can be negative. This negative value does not
violate any physical principles since the sign arises from
the transformation of the coordinate system and depends on
the orientation of the dipole moment with respect to the
chosen laboratory system. Negative off-diagonal elements
can also be obtained for uniaxial materials if the laboratory
system does not coincide with principal axes of the tensor of
the DF.

For the assignment of the symmetry of the observed optical
phonon modes we have to consider their irreducible repre-
sentation at the 
 point, i.e., 
 = 10Ag + 5Bg + 8Bu + 4Au

[27]. The phonon modes with the Ag and Bg symmetry are
Raman active, whereas those with Au and Bu symmetry are
infrared active. In the investigated spectral range, 9 of the
total 12 infrared-active-optical phonon modes are observed.
Their properties are summarized in Table I. For the modes
which have a dipole moment in the x-z plane (a-c plane,
Bu symmetry), the polarization direction with respect to the
x (a) axis is given by the angle φ, which was found to
differ for each phonon mode. This is also in agreement with
the results recently reported by Schubert et al. [21]. The
phonon mode B(3)

u was not observable in our experiment.
This can be attributed to the weak sensitivity to this mode

TABLE II. Contributions of the high frequency dielectric function
to the dielectric tensor in the infrared spectral range.

xx yy zz xy xy yz

ε∞ 3.60 3.58 3.54 0.00 −0.03 0.00

caused by its low amplitude which is predicted by ab initio
calculations (see below) and to the pronounced noise caused
by the low sensitivity of the detector of our setup in this spectral
range. Furthermore, for the mode B(2)

u only the frequency and
broadening are given since also the strong noise in this spectral
range and the probable spectral overlap with B(3)

u prohibit the
determination of its dipole direction.

For comparison we calculated the phonon modes by
ab initio calculations based on the B3LYP hybrid functional
approach implemented in the CRYSTAL14 code [29–31].
Thereby we used the Gaussian-type functions basis set of
Pandey et al. [32] for gallium and of Valenzano et al. [33] for
oxygen, which we slightly modified, and 150 k points in the
irreducible Brillouin zone. The five tolerances T1 · · · T5 used
in CRYSTAL14 to define the truncation criteria of Coulomb
and exchange infinite sums were set to 8 (T1 · · · T4) and 16
(T5), respectively. Furthermore, we used a tolerance of the
energy convergence of 10−11 Hartree. All input parameters and
calculation conditions can be found in Ref. [31]. The calculated
lattice parameters are a = 1.2336 nm, b = 0.3078 nm, and
c = 0.5864 nm, in reasonable agreement with those reported in
the literature [20]. The corresponding phonon mode energies,
oscillator strength, and the direction of the dipoles are given in
Table I and are in excellent agreement with those determined
by ellipsometry [34]. The excellent agreement is not restricted
to the infrared active phonon modes but is also obtained for
the Raman active modes [31].

B. Ultraviolet spectral range

The numeric DF in the UV spectral range, obtained by using
a Kramers-Kronig consistent numerical analysis, was recently
reported by us [7]. Details on the experimental setup used for
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this spectral range can be found in Ref. [7]. In order to extract
the properties of the contributing electronic transitions, e.g.,
energy and electronic orbitals involved, and to demonstrate the
universal applicability of Eq. (2) for electronic transitions, we
analyzed the contribution of each transition to the entire DF
by using line-shape model functions. Symmetry consideration
and band structure properties [7,35] yield that the transitions
are polarized either along the y axes or within the x-z plane.
We have shown, using density functional theory calculations
combined with many-body perturbation theory including
quasiparticle and excitonic effects [35], that the DF in the
spectral range from the fundamental absorption edge up to
some eV higher is dominated by excitonic correlation effects.
From these calculations we deduce that three transitions, which
are polarized along the y axis and four, polarized within the x-z
plane, contribute mainly to the DF in the investigated spectral
range. These excitonic contributions have been described
by a model function developed by Tanguy for Wannier
excitons taking into account bound and unbound states
[36–38]:

χ exc
i =

Ai

√
Eb

x,i

ν2
i

[g(ξ (νi)) + g(ξ (−νi)) − 2g(ξ (0))], (8)

with

g(ξ ) = −2f (S/ξ ) − ξ

S
− 2f (1 − ξ ) − 1

ξ
,

ξ (x) = 2√
EgS−x

Eb
x,i

+
√

EgS−x

Eb
x,i

+ 4
S

,

f (z) = d

dz
ln 
(z),

νi = E + iγi .

Ai , γi , Eg , Eb
x,i , and S represents the amplitude, the

broadening, the energy of the fundamental bound state, the
unscreened exciton binding energy, and the screening factor,
which can take values between −∞ (totally screened Coulomb
potentials) and +∞ (unscreened Coulomb potential). 
(z) is
the Gamma function. The contribution of weakly pronounced
band-band transitions were summarized by using a Gaussian
oscillator (χGauss). A further Gaussian oscillator was included
to consider contributions of transitions at energies higher than
the investigated spectral range due to their spectral broadening.
These contributions together with the pole function (χPole)
were considered for each component of the dielectric func-
tion tensor independently because they may originate from
different transitions. Thus, the dielectric function reads

ε =1 +
3∑

i=1

χ exc
i,yy +

4∑
j=1

R(φj )χ ′exc
j R(φj )−1

+ R(φj )χ ′Gauss
j R(φj )−1 + χhigh, (9)

with χhigh:

χhigh
mm = χGauss

mm + χPole
mm , (10a)

χhigh
xz = χPole

xz , (10b)

χhigh
xy = χhigh

yz = 0, (10c)

and m ∈ {x,y,z}.
The experimentally recorded and the calculated spectra

of the MM elements are shown for selected orientations in
Fig. 4, yielding good agreement. The difference between the
experimental and the calculated spectra for energies E > 7 eV
was also observed by using the above mentioned numerical
Kramers-Kronig-consistent analysis and might be caused by
the limitation of the used approach for the description of the
surface layer [7]. This can be attributed to the fact that the
sensitivity to this layer is strongly enhanced in this spectral
range due to the enhanced absorption and therefore reduced
penetration depth of the probe light.

The parameters of the best-match MDF are summarized in
Tables III and IV. We extracted a screening factor and an exci-
ton binding energy of about S ≈ 0.7 and Eb

X = 270 meV, re-
spectively, for all contributions. The obtained exciton binding
energy agrees well with that estimated by our theoretical calcu-
lations of Eb

X = 291 meV in the Wannier-Mott picture with an
electron mass of about 0.27m0 and an averaged dielectric con-
stant of ε∞ ≈ 3.55. The lattice polarization does not contribute
to the screening because of the fact that Eb

X is much larger than
the highest optical phonon frequency. That means the lattice
is not fast enough to contribute to the electron-hole screening
[39]. Note that we considered the same exciton binding energy
for all excitonic transitions because of the strong correlation
between energy of the fundamental bound state and the corre-
sponding binding energy. This assumption is further supported
by the fact that the upper valence bands are rather flat with
large hole masses, so that the binding energy of all excitons
is ruled by the electron mass, i.e., the dispersion of the lowest
conduction band at the 
 point which is nearly isotropic.

The dispersion of the tensor elements for the entire inves-
tigated spectral range is shown in Fig. 5. The contributions
of excitonic transitions to ε2 are shown as colored solid lines
(from red to blue). The orientation of the corresponding dipole
moments in the x-z plane is indicated by the arrows in the
inset. In agreement with our theoretical calculations and the
numeric MDF [7,35], the two energetically lowest transitions
(labeled as X1 and X2) are strongly polarized along the x and z

direction, respectively. At higher energies, there are transitions
along the y axis (b axis, labeled as Xb

i ) and within the x-z
plane (a-c plane, labeled as X3 and X4). The directions of the
dipole moments of the excitonic transitions (X1 · · · X4) in the
x-z plane with respect to the x axis are denoted by the angle
φ (Table III). Our band structure calculations (for details see
Ref. [35]) reveal also that for light polarized in the x-z plane the
absorption is dominated by four transitions. The direction of
their corresponding transition dipoles is in excellent agreement
with those obtained by ellipsometry. This indicates that the
excitons are mainly formed by these individual band-band
transitions.

Based on calculated charge distribution [40] and atomic
arrangement within the x-z plane (a-c plane), we relate the
directions of the dipole moments of all four pronounced exci-
tonic excitations within this plane (X1 · · · X4), obtained from
the ellipsometry model, to atomic bonds in the crystal structure
as shown in Fig. 6. For transitions along the y axis, no direct
assignment to individual orbitals was possible because of the
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FIG. 4. Experimental (symbols) and calculated (lines) spectra of the MM elements of a β-Ga2O3 bulk single crystal for an angle of incidence
of 70◦. The corresponding orientation of the crystal is given by the Euler angles on top of each column in the yzx notation.

complex distribution of atomic bonds. Please note that the
uncertainty in the experimentally determined dipole moment
directions amounts to 10◦, caused by the simplification due
to the used model functions, which summarize spectrally over
different individual transitions. As all these transitions reveal
no contribution to εyy , only bonds located solely within the
subplanes of the x-z plane (a-c plane) are considered (cf.
Fig. 6). It is found that all excitonic transitions except the
first one, which appears to take place between oxygen atoms,
are between differently coordinated gallium and oxygen. In
the following discussion we will use the nomenclature given
by Geller [20] and label the tetrahedrally and octahedrally
coordinated Ga atoms as Ga(I) and Ga(II), respectively, while
the three different sites of the oxygen atoms are labeled as O(I),
O(II), and (OIII). These atoms are located in the plane perpen-

dicular to the C2 rotation axis (b axis) and on five sets of the
Wyckoff position 4i, i.e., (000, 1

2
1
2

1
2 ) ± (x0z) (cf. Fig. 6) [20].

Band structure calculations reveal that the uppermost
valence bands are dominated by oxygen p orbitals, while
the DOS of the lowest conduction bands is composed of
almost equal contributions from Ga s, O s, and O p orbitals
[5,35,40,41]. Thus, dipole allowed transitions can take place
from O p orbitals to Ga s and O s orbitals. It turns out that the
states near the conduction band minimum are preferentially
determined by octahedrally coordinated Ga(II) [40]. This is
reflected by the assignment of the dipole directions to the
atomic bonds in Fig. 6. The transition X2, almost directed along
the x (a) axis, involves O and Ga(II) and also reveals a high
amplitude in the DF. Ga(II) is located between O(II) and O(III).
The best match of the experimentally determined as well as
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TABLE III. Parameters of the UV model dielectric functions for the observed transitions within the investigated spectral range. The angle
φ represents the determined orientation of the dipole moment in the x-z plane (a-c plane) with respect to the x (a) axis. Right columns: The
calculated lowest allowed quasiparticle transitions for the uppermost valence bands into the lowest conduction band at the 
 point (only allowed
transitions are given). The number of the valence band is given by VB. The quasiparticle energies Ecalc has to be shifted by about 0.2 eV toward
lower energies to approach the measured exciton energies. The optical transition strengths are characterized by the squares of the Cartesian
components of the velocity operator vi and the resulting dipole orientation is given by φcalc. The uncertainty of the experimentally determined
data are up to 20 meV for the energy, 10% for the amplitudes and broadening, and 10◦ for the dipole orientation.

Experiment Calculation

Aexpt Eexpt γexpt φexpt Ecalc vx vy vz φcalc

Label Direction Type (eV3/2) (eV) (meV) (deg) VB (eV) (m�/aB) (m�/aB) (m�/aB) (deg)

X1 a-c Exciton 15 4.88 70 110 44 5.05 −0.15 0.00 0.39 110.8
X2 a-c Exciton 18 5.10 80 17 43 5.29 0.43 0.00 0.14 17.7
X3 a-c Exciton 16 6.42 215 48 38 6.75 0.12 0.00 0.24 62.9
X4 a-c Exciton 26 6.90 170 119 34 7.33 −0.17 0.00 0.20 130.2
G1 a-c Gauss 0.28 6.08 1.378 124 – – – – – –
Xb

1 b Exciton 8.3 5.41 75 – 41 5.62 0.00 0.23 0.00 –
Xb

2 b Exciton 20 5.75 139 – 39 5.99 0.00 0.46 0.00 –
Xb

3 b Exciton 3.5 6.87 253 – 32 7.95 0.00 0.02 0.00 –

calculated dipole orientation is obtained for the Ga(II)-O(III)
bond, indicating that the transition X2 is mainly related to the
orbitals of this bond. The transitions X3 and X4 are assigned to
take place between Ga(I) and O(III). The directions obtained
from model analysis of the DF does not fit as good as for
transition X2, may be caused in correlation effects due to
spectral overlap of different contributions to the DF. Finally,
transition X1, directed almost along the crystallographic c

axis, was assigned to take place either between O(I) and
O(III) or between two O(II) atoms, or both. While the first
possibility involves differently coordinated atoms suggesting
dipole allowed transitions between p- and s-like orbitals,
the second possibility involves similar coordinated atoms
(s-like character) which implies a lower oscillator strength.
The relatively high amplitude of this transition is not fully
understood, because based on our calculations [35] and
Ref. [40], the charge density between the involved atoms and
also the DOS of the oxygen orbitals in the conduction band is
predicted to be relatively low.

These results nicely demonstrate the potential of the used
model approach for the tensor of the dielectric function to gain
deep insight into electronic properties of highly anisotropic
materials.

TABLE IV. Parameters of the UV model dielectric function
describing the contributions of the high energy transition to the
dielectric function in the investigated spectral range.

Gauss Pole

E γ A E

A (eV) (eV) (eV2) (eV)

χ
high
xx 1.41 9.18 2.5 138 11.9

χ
high
yy 1.47 8.89 2.8 154 11.8

χ
high
zz 1.97 8.97 1.7 105 11.7

χ
high
xz – – – 36.3 20.4

V. THIN FILM

As mentioned above, the PLD-grown β-Ga2O3 thin film
exhibits (2̄01) out-of-plane orientation with six in-plane
rotation domains, rotated by multiples of 60◦. As their size is
much smaller than the optically probed sample area of about
5 × 8 mm2, the measured optical response is determined by an
average over these domains. Thus, this film can be described as
an effective medium [2]. Assuming an uniform distribution of
these rotation domains, the dielectric function of this effective
material is given by

ε = 1

6

6∑
k=1

R(θk)εmonoR−1(θk)

=
⎛
⎝0.5(ε̃xx + ε̃yy) 0 0

0 0.5(ε̃xx + ε̃yy) 0
0 0 ε̃zz

⎞
⎠, (11)

with εmono being the dielectric tensor of one rotation domain
which has a shape given by Eq. (4), θk = (k − 1)π/3 being the
rotation angle of the kth rotation domain (k = 1, . . . ,6), and
R(θk) is the rotation matrix around the surface normal. The
components ε̃mm (m ∈ {x,y,z}) are defined in such a way that
ε̃xx and ε̃yy are the contributions perpendicular, whereas ε̃zz is
the contribution along the sample surface normal. Taking into
account Eq. (3), the tensor elements are

ε̃xx = 1 +
∑

j

χ ′
j,x ′x ′ cos2(φj + φ0), (12a)

ε̃yy = 1 +
∑

i

χi,yy, (12b)

ε̃zz = 1 +
∑

j

χ ′
j,x ′x ′ sin2(φj + φ0), (12c)

with χ ′
x ′x ′ and χyy being, as described in Sec. II, the

susceptibility of the j th and ith excitation in the x-z plane and
along the y direction, respectively. The angle φj represents the
orientation of the dipole moment of the j th excitation with
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FIG. 5. Dielectric function (black solid line) of a β-Ga2O3 bulk single crystal in the infrared and UV spectral range. The red to blue colored
solid lines represent the contribution in the investigated UV spectral range, whereas the red dashed lines represent the contribution of the
high-energy contributions. The arrows in the insets depict the orientation of the corresponding dipole moments of the phonons and the excitonic
transitions in the x-z plane (a-c plane) and their relative amplitude ratio.

respect to the x (a) axis and φ0 = 40.1◦ the angle between the
surface plane and the x (a) axis.

Equation (11) is similar to those of an uniaxial material.
Thus the film can be treated as optically uniaxial with

FIG. 6. (a) and (b) Schematic representation of projections of the
crystal structure of β-Ga2O3 into the x-y plane (a-b plane) (a) and
x-z plane (a-c plane) (b). The unit cell is indicated by the black
framed box. Bonds are indicated by lines between the atoms. The
tetrahedrally coordinated Ga(I) atoms are shown in blue and the
octahedrally coordinated Ga(II) are shown in green. The oxygen
atoms are marked in red. (c) Sublayers of the x-z plane (a-c plane)
(left: sublayer 1, right: sublayer 2) as indicated in (a). Here the oxygen
atoms at different lattice sites are highlighted by colors as O(I) red,
O(II) orange, and O(III) yellow (see also text). The dashed colored
arrows relate the dipole directions of the transitions X1 · · · X4 to
atomic bonds within the crystal structure. Please note that only one
example is shown for each transition. (Images created by VESTA
[23].)

ε⊥ = 0.5(ε̃xx + ε̃yy) and ε‖ = ε̃zz (⊥ and ‖: perpendicular and
parallel to the optical axis) with an orientation of the effective
optical axis along the surface normal.

For such samples the sensitivity to ε‖ is usually limited
[42] due to the high index of refraction of the investigated
material resulting in a propagation direction of the wave within
the sample with only very small angles off the optical axis.
But there is a finite projection of the electromagnetic field
strength onto the optical axis and thus the optical response
is determined by ε⊥ and ε‖ in any case, which have to be
considered in order to obtain a physical meaningful dielectric
function [43]. However, in contrast to a homogeneous uniaxial
material, those effective ε⊥ and ε‖ are not independent of
each other. It is obvious from Eqs. (11) and (12) that the

FIG. 7. Real (a) and imaginary (b) part of the thin film’s
pseudodielectric function for angles of incidence 60◦ and 70◦. The
experimental and calculated data are shown as symbols and red solid
lines, respectively.
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FIG. 8. Real (a) and imaginary (b) part of the tensor components
of the Ga2O3 thin film (solid lines). For comparison, the components
calculated by Eq. (11) using the single crystal values are shown as
dashed lines.

same transitions contribute to both ε̃xx and ε̃zz. Thus, the
transitions contributing to ε‖ appear also in ε⊥ which differ
only in the ratio of the corresponding oscillator strength (f ) by
fi,zz/fi,xx = sin2(φi + φ0)/ cos2(φi + φ0). Note, the opposite
is not valid, since transitions contributing to ε̃yy and therewith
also to ε⊥ do not appear in ε‖. Compared to homogeneous
uniaxial materials, this correlation results in more sensitivity
for the determination of the tensor component ε‖.

The uniaxial behavior of the film with the optical axis paral-
lel to the surface normal is reflected by vanishing off-diagonal
elements of the MM. Therefore, standard ellipsometry is
sufficient for measuring the full optical response (cf. Sec. III).
The experimental data are shown in Fig. 7 in terms of the
pseudodielectric function [2]

〈ε〉 = 〈ε1〉 + i〈ε2〉 = sin2 �

[
1 + tan2 �

(
1 − ρ

1 + ρ

)2
]
, (13)

with � being the angle of incidence. Below E ≈ 4.8 eV,
oscillations due to multiple reflection interferences caused by
the interfaces within the sample are observed which vanish
with the onset of the absorption at higher energies. These
interferences allows a precise determination of the thickness
of the thin film which is about 330 nm.

For the parametric model of the dielectric function of the
thin film we used the same set of model dielectric functions as
for the bulk single crystal. The calculated spectra are shown
as red solid lines in Fig. 7 and a good agreement between
the experimental and calculated data is apparent. The tensor
components of the dielectric function of the thin film are
shown in Fig. 8. For comparison, the components calculated
from the DF of the bulk single crystal by using Eq. (11)
are shown as dashed lines. For the thin film, we needed to
adjust energies and amplitudes of the transitions and even the

dipoles’ orientation angles φ within the x-z plane (a-c plane).
The other parameters, e.g., broadening and exciton binding
energy, were kept constant and were taken from the bulk single
crystal model DF in order to reduce the parameter correlation.
Compared to the DF of the single crystal, a blue shift of the
transition energies and a lowering of the oscillator strengths
is observed for the thin film. The reduced oscillator strength
in the investigated spectral range cannot explain the lowering
of the real part of the dielectric constant and therewith of the
index of refraction in the visible spectral range only. Therefore,
the reduced refractive index indicates also a reduced oscillator
strength of the high energy transitions compared to the bulk
single crystal. We relate these changes of the DF properties
compared to the bulk single crystal on the one hand to crystal
imperfections typically lowering the oscillator strength of
electronic transitions by dissipative processes. On the other
hand, also strain will be possibly present in the thin film,
causing changes in the bond length and maybe also torsion of
the unit cell causing different dipole moment orientations.

VI. SUMMARY

We have determined the dielectric function of β-Ga2O3

by using a generalized oscillator model taking into account
the direction of the dipole moments for each transition.
Within this model, the components of the tensor of the
dielectric function within the Cartesian coordinate system
are not independent of each other but are determined by
the projection of the corresponding dipole direction. In doing
so, we could determine the tensor components of the DF of
β-Ga2O3 bulk single crystals and a thin film. By means of the
determined direction of the dipoles we assign the involved
orbitals for the observed transitions. For the thin film we
showed that the presence of rotation domains leads to the
formation of an effective uniaxial material. The sensitivity
to the out-of-plane component of the dielectric function is
enhanced compared to pure uniaxial materials since it is
connected to the in-plane component. This allows a precise
determination of this component even if the optical axis is
perpendicular to the surface, which is relevant for applications
in optoelectronics.
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