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conductance properties of realistic Majorana nanowires
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We consider a simple conceptual question with respect to Majorana zero modes in semiconductor nanowires:
can the measured nonideal values of the zero-bias-conductance-peak in the tunneling experiments be used as a
characteristic to predict the underlying topological nature of the proximity induced nanowire superconductivity?
In particular, we define and calculate the topological visibility, which is a variation of the topological invariant
associated with the scattering matrix of the system as well as the zero-bias-conductance-peak heights in the
tunneling measurements, in the presence of dissipative broadening, using precisely the same realistic nanowire
parameters to connect the topological invariants with the zero-bias tunneling conductance values. This dissipative
broadening is present in both (the existing) tunneling measurements and also (any future) braiding experiments
as an inevitable consequence of a finite braiding time. The connection between the topological visibility and the
conductance allows us to obtain the visibility of realistic braiding experiments in nanowires, and to conclude that
the current experimentally accessible systems with nonideal zero-bias conductance peaks may indeed manifest
(with rather low visibility) non-Abelian statistics for the Majorana zero modes. In general, we find that a large
(small) superconducting gap (Majorana peak splitting) is essential for the manifestation of the non-Abelian
braiding statistics, and in particular, a zero-bias conductance value of around half the ideal quantized Majorana
value should be sufficient for the manifestation of non-Abelian statistics in experimental nanowires. Our work
also establishes that as a matter of principle the topological transition associated with the emergence of Majorana
zero modes in finite nanowires is always a crossover (akin to a quantum phase transition at finite temperature)
requiring the presence of dissipative broadening (which must be larger than the Majorana energy splitting in the
system) in the system. For braiding, this dissipation is supplied by the finite speed of the braiding process itself,
which must be diabatic in any real experiment for braiding to succeed.
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I. INTRODUCTION

In 2012, in an important experimental report [1], Mourik
et al. presented evidence for the possible existence of non-
Abelian Majorana zero modes (MZMs) in InSb nanowires
subjected to an external magnetic (Zeeman) field in proximity
to an ordinary s-wave superconductor (NbTiN in Ref. [1]).
This experiment followed precisely earlier theoretical predic-
tions [2–6] on how to create, localize, and observe MZMs
in nanowires by judiciously combining Rashba spin-orbit
coupling, Zeeman spin splitting, and s-wave superconduct-
ing proximity effect—the basic idea of the prediction, first
explicitly developed in Ref. [2], being that a combination
of spin-orbit coupling and spin splitting could, in principle,
convert ordinary s-wave superconductors into topological
(effectively spinless, although spin could play an important
role in some situations [7]) p-wave superconductors which
would carry localized MZMs at suitable defect sites (including
the boundaries) provided the Zeeman field is large enough
to overcome the s-wave superconducting gap, thus inducing
a chiral [2,5] (or helical [3,6]) topological p-wave gap.
The observation by Mourik et al. received considerable
support from several other independent experiments [8–13]
in semiconductor nanowires (both InSb and InAs) where
signatures for the existence of MZMs were reported by
other groups. The fact that a spinless p-wave superconducting
wire would have localized MZMs (with non-Abelian anyonic
braiding statistics) at the wire ends was already pointed out
by Kitaev almost 15 years ago [14], and Sengupta et al. [15],
also 15 years ago by coincidence, established the possibility

that these MZMs, localized as zero-energy midgap interface
states in topological superconductors, could be experimentally
detected using differential tunneling spectroscopy where the
perfect Andreev reflection associated with the MZMs would
produce a quantized zero-bias conductance (precisely at zero
energy, i.e., at midgap) which would be a signature of their
existence. A similar signature for Majorana fermion edge
states at the interface of a superconductor and surface of
a topological insulator was made by Law et al. [16]. Such
zero-bias conductance peaks (ZBCP), also predicted in the
specific context of the semiconductor nanowires by Sau et al.
[5], are precisely the observations of most of the experimental
claims [1,8–13] for the possible observation of MZMs in
semiconductor nanowires. The subject has created enormous
excitement in the community because of the novelty associated
with topological superconductivity and non-Abelian statistics
as well as the possibility of carrying out fault-tolerant
topological quantum computation using MZMs [17], and has
been extensively reviewed in the recent literature [18–24].
The current work provides a link between the experimentally
observed ZBCP in the semiconductor nanowires and the
possible topological properties of the underlying MZMs
through extensive numerical simulations calculating certain
topological invariants along with ZBCP values for the same
nanowire parameters.

Although the MZM interpretation (i.e., the relevant semi-
conductor nanowires in these experiments carry non-Abelian
MZMs at the ends of the wires) is the most natural ex-
planation for the experimental observations [1,8–13] in the
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semiconductor nanowires, particularly in view of the existing
theoretical predictions [2–6] preceding the experiments, many
questions remain, and the possibility that the ZBCPs arise from
some other nontopological mechanism cannot definitively be
ruled out. In this regard, several mechanisms have been sug-
gested, which do not necessitate the occurrence of a topological
phase transition (TPT) for the appearance of ZBCP [25–31].
None of these alternate nontopological mechanisms requires
the ZBCP to be canonically quantized to 2e2/h as is the ex-
pected ideal value for the perfect Andreev reflection associated
with MZMs [15,16,32,33]. However, the observed ZBCP in
the experiments is not quantized either and is, in fact, typically
well below 2e2/h, which has been explained as arising from a
number of physical mechanisms affecting the experimental
situation [34]. Several experimentally observed features of
the ZBCP fall short of the idealized theoretical expectations:
(1) ZBCP height is much smaller than the predicted perfect
quantized value of 2e2/h; (2) recent attempts to produce
ZBCPs closer to the quantized value typically appear to lead
to a a broadening much larger than the thermal value [35];
and (3) ZBCP often does not manifest the expected oscillatory
peak splitting (with increasing Zeeman field) predicted for
MZMs [36–39] in finite length wires where the MZMs at the
two wire ends should overlap with each other producing an
energy splitting around zero bias. In spite of a large number
of theoretical investigations in the literature, explaining the
observed nonideal ZBCP properties as a result of underlying
Majorana modes and its interplay with disorder, temperature,
lead couplings and other nonidealities [16,34,40–45], it is hard
to discount alternate nontopological mechanisms conclusively
yet, particularly since the experimentally observed ZBCP
remains well below the ideal quantized value of 2e2/h. At
best, the experiments seem to (weakly) satisfy the necessary
conditions for MZMs (i.e., the observation of a ZBCP under
the predicted conditions), but not the sufficient conditions
for claiming conclusive evidence supporting the existence
of non-Abelian MZMs. It is entirely possible, perhaps even
likely, that the invariable existence of finite disorder, finite
temperature, finite wire length, finite coupling to the tunneling
leads, imperfect proximity coupling, and other nonidealities
in the realistic systems make it completely impossible to
observe the predicted perfect ZBCP quantization of 2e2/h in
the experimental setups. It is encouraging that recent materials
improvements in making the nanowires have led to a substan-
tial enhancement in the observed value of the ZBCP although
it is still smaller than the perfect quantized value of 2e2/h

[46]. However, it should be noted that zero-bias tunneling
conductance peaks could arise in superconductors from a mul-
titude of reasons, and cannot by itself be taken as compelling
evidence for the existence of MZMs. We need some direct
evidence for the topological phase transition accompanying
the emergence of MZMs [47,48] and some measurements for
topological properties. Perhaps the controversy regarding the
existence or not of MZMs in nanowires would not arise if every
experimental detection of the ZBCP found a value close to the
expected universal quantized Majorana value of 2e2/h, but the
fact that the experimental ZBCP value is both nonuniversal
from experiment to experiment and is always much lower than
2e2/h casts a dark shadow on the MZM interpretation of the
experimental tunneling transport measurements.

Given that the defining exclusive property of the MZMs is
their topological non-Abelian braiding characteristics [49,50]
with the MZMs being subgap zero-energy non-Abelian any-
onic excitations, it would seem that an experiment conclusively
establishing their non-Abelian character would be the decisive
sufficient condition for their existence. Indeed, several pro-
posals have been put forth in the literature for probing the
non-Abelian braiding properties of MZMs [24,51–65], and
experimental efforts are currently underway to carry out MZM
braiding to test their non-Abelian properties. An observation
of the non-Abelian braiding properties would go a long way
in establishing the existence of true MZMs in nanowires. The
current work is a theoretical attempt to directly test what such
a non-Abelian braiding experiment is likely to observe in
realistic nanowires where the ZBCP is very far from being
quantized and has large broadening. We establish in this work
a clear connection between the observation of imperfect ZBCP
and underlying topological properties, showing that the current
experimental observations are indeed (but only marginally
so) consistent with the possibility of the nanowires hosting
non-Abelian Majorana zero modes purely from the perspective
of braiding-related topological properties.

To provide a context, we start by assuming that the
experimental observation in Ref. [1] (and other nanowire
experiments) of the ZBCP is indeed a signature of (highly)
imperfect MZMs which, because of various nonidealities
in the system (e.g., disorder, temperature, tunnel coupling
to the environment, finite wire length, Majorana splitting,
etc.), produce a ZBCP, which is highly suppressed (and
broadened) compared to the canonically quantized value
of 2e2/h [16,34,40,42,44]. The immediate question then is
whether (or perhaps, to what extent) such imperfect almost-
MZMs would have intrinsic non-Abelian braiding properties
possibly showing up experimentally (or numerically in our
study). In the absence of a braiding experiment to directly
observe non-Abelian statistics for Majorana exchange at
present, we are left to speculate on the extent to which
non-Abelian statistics would be observed when nanowire
MZMs are braided based on the only available experimental
signal for their existence, i.e., ZBCP. It is then prudent to ask
if we can relate the observed (nonideal) characteristics of the
ZBCP, i.e., height and width of the peak, to the topological
content of the approximate MZMs. Our work quantitatively
establishes this connection and hence sheds light on the
possibility of observing the topological nature of MZMs (in
terms of non-Abelian exchange statistics) in future braiding
experiments carried out in the same (or similar) samples as
the ones currently manifesting nonideal ZBCPs. Thus, rather
than simulating a future braiding experiment, we look at the
electron tunneling properties of the nanowire close to zero
energy to answer the extent to which it might be possible to
demonstrate the non-Abelian characteristics of the Majorana
modes for the given set of physical quantities of the system,
viz., Majorana splitting, topological gap, tunneling strength,
etc.

Kitaev suggested calculating a precisely defined quantity—
topological invariant (TI)—to distinguish between trivial and
topological phases in a p-wave superconducting wire [14].
The invariant suggested by Kitaev is suitable for systems with
periodic boundary conditions. An appropriate generalization
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of the TI suitable for a finite system with an open boundary
condition was introduced by Akhmerov et al. [66] in terms
of the S matrix of the associated system. Since we want
to relate features observed in tunneling experiments (which
are necessarily conducted on finite wires with open boundary
conditions) to the underlying topological nature of the MZMs,
we would use the proposed scattering matrix invariant to
calculate the TI of the realistic system in order to quantify
the topological nature of the semiconductor nanowire as we
tune the physical parameters that are critical to the existence
of MZMs, viz., wire length and Zeeman field. In fact, a variant
of the scattering matrix TI were recently used in part by
Adagedeli et al. [67] to show the existence of topological phase
for disordered (mean free path Lmf shorter than the induced
coherence length ξ ) semiconductor nanowires.

However, a subtlety of the usual definition of the TI
Q0 = sgn[det(r)], where r is the reflection matrix from the end
is that it requires us to ignore transmission of quasiparticles
in-between the ends of the wire [66–68]. Such transmission
of quasiparticles always exist for the finite wires we consider
in this work. In fact, as we will discuss in more detail in this
work, for finite wires the TI Q0 is always trivial when one
uses the exact reflection matrix (as opposed to the effectively
semi-infinite approximation used in Refs. [66,67]). In this
work, instead of ignoring transmission across the wire, we
circumvent this problem by introducing dissipation into the
system. While some form of dissipation has been important
in previous calculations of the scattering matrix TI [67,68],
dissipation in our work represents the finite rate of braiding. As
pointed out in previous works [31,69] dissipation can change
the qualitative behavior of Majorana modes and the TI.

The standard scattering TI Q0 is not sensitive to imper-
fections of the topological phase such as transmission of
quasiparticles through the wire. Such transmission through the
wire would interfere with topological signatures of Majorana
modes such as conductance quantization and non-Abelian
statistics. To remedy this, we define a variant of the TI,
Q = det(r), which we refer to as topological visibility (TV),
as a measure of the topological character of the system. From
the calculations presented here, it will become clear that the
TV is better suited to determining the visibility of signatures
of the Majorana fermion such as quantized conductance peak
and non-Abelian statistics than the TI, which is just the sign
of the TV. In the limit that we ignore transmission through
the wire so that r is unitary, which is the case considered in
Refs. [66–68], this quantity is identical to Q0. One might be
concerned that the topological visibility Q is not quantized as
Q0. However, Q is quantized as long as the system is properly
gapped so that r is unitary. Whenever Q is not quantized,
which is near a topological phase transition, whether Q0 is
trivial or not depends on nonuniversal details of the system
which determine whether det(r) is slightly positive or slightly
negative. To keep our terminology consistent with previous
works [66–68], we will refer to Q < 0 to be topological
[i.e., Q0 = sgn(Q) = −1] and Q > 0 to be nontopological.
The presence of dissipation eliminates the discreteness of the
topological visibility Q by relaxing the unitarity of the theory,
leading to the possibility of the TV being any number between
+1 and −1 instead of having a magnitude precisely equal
to unity. Only when Q is close to it’s extreme values ±1

can Q0 be reliably determined to be topological or not. The
competition between the strength of dissipation and the finite
size splitting of Majorana modes in determining the TV is
the central focus of our work. In fact, our work establishes
that the emergence of MZMs in any finite length wires (i.e.,
in any experimental system, which must always use finite
wires) is always a “topological quantum crossover” rather than
a “topological quantum phase transition” where dissipative
broadening plays a fundamental role—rather trivially, there
is no topological phase in the absence of broadening in any
finite length wire since the MZMs are never precisely at zero
energy in finite wires! The TV of the finite system taking on
any possible value between +/−1 rather than being precisely
equal to +1 (nontopological) or −1 (topological) is a direct
consequence of the topological transition being a crossover in
the finite system with broadening—without any broadening,
the finite system must always by definition have a TV equal
to 1 since the MZM is always displaced from the energy
zero. We identify the topological crossover point as the TV
passing through zero in our calculation with the TV < (>) 0
being identified as the topological (nontopological) phase. We
also identify the deviation in the magnitude of the TV from
unity being the direct manifestation of finite “visibility” in the
braiding experiment—closer the TV is to unity in magnitude,
higher is the visibility for the corresponding phase (depending
on whether the TV is positive or negative).

The dissipation we introduce is not just a mathematical
convenience and is an actual physical quantity present in
the real experimental nanowires. Dissipation can play a role
in reducing the conductance from the quantized Majorana
value to the experimentally observed value (even at zero
temperature). Similarly, dissipation might be responsible for
increasing the width of the zero-bias peak beyond the thermal
width [35]. One might wonder if it is possible for the dissipative
broadening to exceed temperature. In fact, coupling to a
fermion bath can lead to such dissipation even at nearly zero
temperature. Such a fermion bath can arise from subgap states
at the semiconductor-superconductor interface generated by
disorder in the superconductor [70]. While a finite array of
such subgap states is usually coherent, the presence of weak
interaction and temperature coupled to such subgap states can
lead to decoherence of the fermions, turning such a large
density of subgap states into a fermion bath. Alternatively
such a fermion bath can arise from subgap states in vortices
generated by the magnetic field.

We will relate the topological nature of MZMs calculated in
the tunneling conductance setup to the non-Abelian braiding
statistics of MZMs through the appropriate direct numerical
calculations of both the ZBCP and TV magnitudes in realistic
systems, establishing correlations among them. If the exper-
imentally observed ZBCPs are indeed almost-MZMs (and
not spurious effects arising from totally distinct mechanisms
that have nothing to do with topological superconductivity),
then our work would provide a useful guide for the expected
visibility of a non-Abelian braiding experiment in real samples
since we start by numerically calculating ZBCPs in the
nanowires ensuring that the calculated ZBCP magnitudes are
approximately consistent with experimental observations. Our
work in fact encompasses two qualitatively distinct realistic
aspects of the experimental situation. First, we establish the
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quantitative connection between having a ZBCP strongly
suppressed from the quantized 2e2/h value and the topological
content of the associated almost-MZMs, i.e., we investigate
how suppressed the ZBCP could be from 2e2/h and still
manifest some topological character. Second, we investigate
the deleterious effects of MZM splitting, which must invariably
be present in all finite nanowires because of the overlap of
the MZMs from the two ends, on the braiding properties (or
more precisely, on the value of the TV, which distinguishes
topological and trivial phases). The key concepts of dissipative
broadening and realistic finite lengths of the nanowires hosting
MZMs play crucial conceptual as well as quantitative roles in
our theory.

The reason for focusing on the tunneling scenario is
twofold. First, Majorana tunneling experiments have already
been successfully conducted whereas the braiding experiments
with nanowire Majorana are proposed future works. This
allows us to work with known experimental parameters
and check our tunneling conductance results against the
existing data that are either published or in principle should
be under present experimental reach. Therefore quantitative
expectations about putative non-Abelian Majorana braiding
experiment of the future can be drawn based upon the available
data and present experiments on the tunneling conductance by
relating both sets of results on the same system. Second, it is
conceptually easier to characterize and computationally easier
to numerically simulate electron tunneling into Majorana
nanowires than a braiding operation. We point out that ram-
ifications of braiding operations on MZMs in an experiment
have been studied theoretically and many detailed effects and
subtleties have been pointed out in Refs. [71–76]. However,
since we are focusing on the topological content of stationary
Majorana modes (probed numerically by simulating a tunnel-
ing conductance measurement), our result would represent the
best possible outcome one may hope to get towards observing
the non-Abelian braiding statistics of MZMs. In particular,
our work specifically connects the outcome of a braiding
experiment (i.e., the direct measurement of the TV in a system)
in relation to the measurement of the tunneling conductance
in the same sample, answering the question whether a given
value of a measured (in our case, numerically) ZBCP value is
consistent or not with a topological value for the (numerically
calculated) TV. In general, the non-Abelian character in a
Majorana braiding experiment will be observed for fast enough
braiding operation so that the energy uncertainty associated
with the braiding time is larger than the Majorana splitting,
which will entail approximate Majorana modes to appear to be
roughly degenerate (as opposed to being well-split). However
the experiment must distinguish the Majorana modes from the
continuum set of (above-gap) bulk states. Therefore the speed
of the braiding must be slow enough so that the associated
energy uncertainty is not of the order of the topological gap.
Or in other words, the braiding operation should be slow
with respect to the inverse topological gap, but fast compared
with the Majorana splitting. We argue that this is in complete
analogy to how dissipative broadening, which is likely present
in a tunneling conductance setup, must be larger than Majorana
splitting but smaller than the topological gap to realize a
nearly quantized conductance peak and also a topologically
nontrivial value for the TV. Our detailed numerical simulations

quantify these conceptual points. In fact, our work clearly
establishes that one can make quantitative statements about
“how topological” a particular system could be (at least, the
upper bound) based simply on a detailed knowledge of the
ZBCP peak height and broadening.

In this work we explore the connection between conduc-
tance and the TV and calculate their dependence on the Majo-
rana splitting and the energy gap. These effects are studied for
a specific Majorana hosting semiconductor Rashba nanowire
(e.g., InSb or InAs nanowire with strong Rashba spin-orbit
coupling) model proposed by Lutchyn et al. and Oreg et al.
[3,6]. This particular model benefits from having been studied
extensively theoretically (especially see Refs. [41,77]) as well
as from being used as the theoretical guide to realize MZMs
experimentally [1]. The paper is organized as follows. In
Sec. II, we introduce the model Hamiltonian and write it in its
discretized form to make it amenable to numerical techniques.
In Sec. III, we investigate the effect of relevant energy scales,
namely Majorana splitting and broadening, on the behavior of
the TV and conductance near the topological phase transition
as well as deep in the topological phase. Particular emphasis
is placed on possible correlations between the two quantities
in this general set-up. In Sec. IV, we use the relationship
between braiding, tunneling conductance, and TV to study
how conductance measurements can be used to characterize
the outcomes of braiding experiments. Finally, we conclude
in Sec. V. Appendix A reviews the details of calculating
the conductance and TV from the scattering matrix for the
nanowire model obtained using KWANT [78]. In Appendix B,
we discuss some more technical subtleties that arise in the
numerical calculations using the S matrix leading to the TV.

II. MODEL HAMILTONIAN

A schematic representation for an experimental setup
to measure tunneling conductance is shown in Fig. 1. A
semiconductor nanowire with Rashba spin-orbit coupling
(SOC) is attached to a normal lead through a potential barrier
localized at the end. A magnetic field is applied parallel to
the wire (perpendicular to the SOC direction) and an s-wave
superconductor is placed in proximity to the nanowire to facil-
itate Cooper pair tunneling into the semiconductor effectively

FIG. 1. A schematic diagram for measuring the tunneling con-
ductance. One end of the Rashba nanowire is shown attached to
a normal lead. The lead is connected to the nanowire through a
potential barrier. Magnetic field is parallel to the nanowire. Proximate
s-wave superconductor is responsible for the superconducting order
parameter in the nanowire.
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endowing the nanowire with an s-wave superconducting order
parameter through proximity coupling. A voltage bias V is
applied to the lead and the tunneling current I is measured to
obtain the differential conductance

G = dI/dV . (1)

As discussed in more detail in the appendix, for N conducting
channels in the lead, the conductance G can be computed from
the normal reflection matrix ree and the Andreev reflection
matrix reh through the relation,

G = N − Tr(reer
†
ee − rehr

†
eh), (2)

and the TV can be computed from the zero-frequency
reflection matrices [66] as

Q = Det[reer
∗
ee − reerehr

−1
ee r∗

eh]. (3)

The reflection matrices can be computed given the system and
lead Hamiltonian, which we discuss in the remainder of the
section.

Let us consider a particular semiconductor Rashba
nanowire model introduced by Lutchyn et al. [3]—see also
Refs. Sau et al. [2] and Oreg et al. [6]—which was shown
to support MZMs at the two ends in the clean limit. These
theoretical works directly motivated the nanowire Majorana
experiments of Refs. [1,8–13]. The BdG Hamiltonian describ-
ing the 1D nanowire in the presence of Rashba SOC, Zeeman
splitting, and superconducting proximity effect, is given by

Hsys =
(

− 1

2m∗ ∂2
x + iαRσy∂x − μ

)
τz

+ μ0Bσx + �0τx, (4)

where, m∗, αR, μ, and �0 are the effective mass, the strength
of Rashba SOC, the chemical potential and the proximity
induced superconducting gap, respectively. Throughout this
paper we set � = 1. Here and henceforth τx,y,z and σx,y,z

are Pauli matrices acting on particle-hole and spin space,
respectively. μ0 = gμB is the usual gyromagnetic ratio times
the Bohr magneton defining the Zeeman field strength μ0B.
To make it amenable to numerical techniques, we discretize
the continuum Hamiltonian as

H dis
sys =

NNN∑
nnn=1

[−t(|n + 1〉〈n| + H.c.)τz

+ iα(|n + 1〉〈n| − H.c.)σyτz + �0|n〉〈n|τx

+ (−μ + 2t)|n〉〈n|τz + VZ|n〉〈n|σx], (5)

where t = 1
2m∗a2 with a being the lattice constant for the

discretized tight-binding model in Eq. (5). Length of the
nanowire is given by L = aN , where N is the number of unit
cells in the wire, the SOC strength is given by α = αR

2a
, and

we have defined the Zeeman field strength, VZ ≡ μ0B giving
the spin splitting. The nondiagonal terms in the site index
arise from nearest neighbor hopping. This system has been
shown to support MZMs [3,6]. In fact, for a clean nanowire
it is now well-known that MZMs exist as stable localized
zero-energy excitations at the ends of the nanowire whenever
VZ >

√
�2

0 + μ2.

Before we describe the normal leads that attach to the
nanowire to create the normal-superconductor (NS) junction
(see Fig. 1) for tunneling measurements, we first comment on
an important quantity that can be calculated from the system
Hamiltonian. It is known that MZMs contribute a local density
of states (LDOS) zero-bias peak in the topological phase [41].
LDOS not only probes the presence of zero-energy modes, but
also whether the zero-energy mode is localized close to the
edge of the wire. In fact, computing or measuring the LDOS
is the simplest probe to test the presence or absence of MZMs
in the system. LDOS at a given energy ε and site i is given by

LDOS(ε,i) =
∑

n

(|un↑(i)|2 + |un↓(i)|2

+ |vn↑(i)|2 + |vn↓(i)|2)δ(ε − εn), (6)

where ψn(i) = (un↑(i),un↓(i),vn↑(i),vn↓(i))T is the ith com-
ponent of eigenvector ψn of the Hamiltonian matrix H dis

sys
with eigenvalue εn. u’s and v’s are eigenvector components in
particle and hole space, respectively. To calculate the tunneling
conductance, we must attach leads to the Rashba nanowire. We
assume the leads to be translationally invariant semi-infinite
normal leads. The lead Hamiltonian is given by

Hlead =
(

− 1

2m∗ ∂2
x + iαRσy∂x − μlead

)
τz + μ0Bleadσx.

(7)

The above lead Hamiltonian is discretized as

H dis
lead =

∑
nnn

[−t(|n + 1〉〈n| + H.c.)τz

+ iα(|n + 1〉〈n| − H.c.)σyτz

+ (2t − μlead)|n〉〈n|τz + μ0Blead|n〉〈n|σx]. (8)

Following the Delft experiment [1], a finite applied
magnetic field Blead is assumed to exist so as to have
two nondegenerate conducting channels because of the spin
splitting induced by Blead. Having a finite magnetic field in the
lead also helps us to avoid the numerical challenge to identify
and separate various channels to compute the S matrix. We
emphasize, however, that our keeping a finite Blead is actually
consistent with the experimental situation (and not just a matter
of computational convenience).

The potential barrier defining the NS junction at the lead-
nanowire interface (see Fig. 1) is simulated by modulating the
hopping amplitude t ′ between the nanowire and the lead. For
higher (lower) tunnel barrier, the hopping amplitude t ′ is lower
(higher). The new system Hamiltonian H dis

sys −→ H
′dis
sys has the

form

H ′dis
sys =

NNN∑
nnn=2

[−t(|n + 1〉〈n| + H.c.)τz

+ iα(|n + 1〉〈n| − H.c.)σyτz

+ (−μ + 2t)|n〉〈n|τz

+ VZ|n〉〈n|σx + �0|n〉〈n|τx]

− (
t ′|2〉〈1| + H.c.

)
τz + iα′(|2〉〈1| − H.c.)σyτz

+ (2t − μlead)|1〉〈1|τz + μ0Blead|1〉〈1|σx. (9)
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In this setup, t ′ and α′ correspond to hopping and spin-orbit
coupling between the lead and the nanowire, respectively.
t ′ � t would correspond to a high tunnel barrier or weak
lead-nanowire coupling. When t ′ ∼ t , the tunnel barrier is low
or equivalently, the lead-nanowire coupling is strong (i.e., the
barrier is almost transparent). The lead-nanowire tunneling t ′
introduces a broadening (�L) to be discussed later in the paper
[cf. Eq. (11)]. A strongly coupled (i.e., large t ′) lead-nanowire
system will have strongly broadened conductance peaks,
whereas a weakly coupled lead-nanowire system will have
weakly broadened sharp peaks. Narrow resonances appearing
from states that are weakly coupled to the lead (as a result
of being localized far away from the end) are removed by
broadening the energy eigenstates by introducing an on-site
imaginary term in the Hamiltonian, i.e., H

′dis
sys −→ H

′dis
sys + b,

where

b =
NNN∑

nnn=2

(−J i)|n〉〈n|1. (10)

Here, J is the parameter controlling the intrinsic broadening,
�, in the conductance profile. The two are related by, � = 2J .
We note that this intrinsic broadening is again incorporated
in the theory to be consistent with the experimental situation
(and not just for computational efficacy) since the measured
tunneling conductance spectra do not reflect sharp resonant
structures even at the lowest temperatures. Obviously, an
environment-induced dissipative broadening (parametrized by
� in our theory) plays a role in the experiment. We emphasize
that broadening plays a key role in our theory converting
the topological quantum phase transition into a crossover and
providing a visibility for the braiding measurements.

LDOS is calculated by numerically diagonalizing the
system Hamiltonian. Throughout all our calculations, the
following set of parameters (unless specified otherwise) is
used: α = 1.79 K, μ = 0 K, t = 12.5 K, �0 = 3 K, L =
1.5 μm, and a = 54 nm. For reasons motivating the choice of
the parameter set, we refer the reader to Ref. [41]. We believe
these parameters to be a reasonably realistic description of
the experimental situation in Ref. [1], at least at a qualitative
level. As discussed in Appendix A, the conductance and TV
are calculated from the scattering matrix that is obtained using
“KWANT”—a quantum transport and simulations package in
Python developed principally by Groth et al. [78].

III. RESULTS: CONDUCTANCE AND
TOPOLOGICAL VISIBILITY

A. Role of broadening versus splitting

While the TV and conductance will be determined by all
the microscopic parameters discussed in the last section, we
now argue that the qualitative behavior can be understood
in terms of a few effective parameters, which in turn are
determined by the full set of microscopic parameters in a
simple way. For example, as seen from the calculated local
density of states plotted in Fig. 2, one of the relevant scales that
affects the topological properties, the splitting of the MZMs
(δ), is relatively independent of the other scales such as lead
coupling, but sensitively determined by small variations in
the microscopic Zeeman field VZ in an oscillatory fashion

FIG. 2. LDOS for clean nanowire with L = 1.5 μm and Zeeman
field strengths (a)–(d), VZ = 4.2, 4.3, 4.5, and 5.0 K. The correspond-
ing Majorana splitting (a)–(d) are δ = 0.012, 0.036, 0.094, and 0.18 K
respectively clearly vary strongly with VZ .

[36–39]. We note that δ is a key parameter determining the
topological content of the system in the sense that when this
quantity is (exponentially) small, the system is by definition
non-Abelian, whereas by contrast, when δ is comparable to
the superconducting energy gap, the system is manifestly not
topological.

The topological properties of a one-dimensional supercon-
ductor such as a semiconductor nanowire crucially depend
on the various relevant sources of broadening, such as the
lead coupling and inelastic scattering, of the quasiparticle
excitations. The width of the ZBCP, which is a key signature
of topological superconductivity, depends on the broadening,
�L, which is controlled by tuning the lead tunneling t ′
discussed in the previous section. Furthermore, the TV, Q,
[66], which characterizes the topology of nanowires with
open boundary conditions, is necessarily nontopological (i.e.,
Q = 1) [66] because any calculation of TV in the presence
of finite δ (which must always be true in any finite wire)
and no broadening must necessarily give Q = 1 (i.e., a
nontopological trivial system) since the MZM is not located
precisely at zero energy for any finite length wire! Typically,
this is circumvented by computing the TI at an energy
arbitrarily shifted slightly away from zero by the splitting
of the MZM, δ. A similar behavior is noticed [34] in the
low-bias conductance G(V ) = dI/dV , which characterizes
MZMs through a quantized value G(V → 0) = G0 = 2e2/h

[15,16,32,33]. For a finite system, the conductance G(V � δ)
approaches the quantized value G(�L 
 V � δ) → G0. On
the other hand, as V truly approaches zero (i.e., |V | � δ),
the conductance in the tunneling limit approaches zero [34],
giving a vanishing ZBCP (since the Majorana is not located
precisely at zero energy in a finite length wire).

Therefore both the TV (Q) and the zero-bias conductance
(G) cannot be evaluated strictly at zero-energy for a finite
wire to determine the topological phase of the wire. In
this work, motivated by the goal of understanding finite
rate dynamical processes such as braiding, we avoid this
problem by introducing an intrinsic quasiparticle decay rate
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(i.e., dissipative broadening), �, which we believe to be the
realistic experimental situation. The broadening � is controlled
in our calculations by choosing the parameter J discussed
in Sec. II. The introduction of such a scale allows us to
discuss the conductance (G) and TV (Q) in a meaningful
way at exactly zero energy. The intrinsic decay rate, �, apart
from representing the uncertainty in energy resulting from
the finite braiding rate, likely also exists in semiconductor
wires from interactions and phonons (and unknown dissipative
coupling to the environment invariably present in all solid
state systems). Moreover, since the conductance and the
TV are determined by the scattering properties of electrons
from an external lead, the coupling to the lead, which is
parametrized by the broadening �L, quantitatively affects these
topological properties. Finally, the superconducting gap � that
protects topological properties themselves must play a role
in determining the topological properties. In the following
sections, we will study the interdependence of the conductance
and the TV on these energy-scales, namely, δ, �, �L, and �.
We emphasize that the problem is highly complex because
these are four completely independent energy scales (and in
real experimental systems there are at least two additional
energy scales associated with finite temperature and disorder
neglected in the current work).

B. Topological phase

We start by discussing the zero-bias conductance and TV
deep in the topological phase where the intrinsic quasiparticle
broadening � is much smaller than the topological gap � 
 �

so that the gap � is well-defined. We choose the nanowire to
be sufficiently long, in this subsection, so that the Majorana
splitting δ and the broadening of the MZMs from the lead are
much smaller than the gap (i.e., δ,�L � �).

Since the topological gap � is much larger than the
parameters relevant to the MZMs namely, the splitting δ, the
broadening of the MZM due to coupling to the lead, �L, and
the (intrinsic) broadening of the far end MZM (away from
the lead), �, both the zero-bias conductance G(V = 0) and
the TV Q, is a function only of δ, �L, and �. Note that the
broadening of the MZM at the far end is the same as the
intrinsic quasiparticle broadening �, since it is not coupled to
the lead. Since the absolute energy scale cannot matter, the
conductance G(V = 0) and the TV, Q, can be studied as a
function of dimensionless parameters �L/� and δ/� (in this
large � limit).

Consider first the limit where δ/� 
 1, i.e., the broadening
is much smaller than the Majorana splitting. As seen from the
conductance plot in Figs. 3(c) and 3(d) (red dashed curve),
if the lead coupling also weak i.e., �L � δ, the conductance
profile G(V ) shows a pair of resonances at energies E = ±δ/2
with broadening of order (� + �L). The height of these peaks
would be substantially below the quantized value. As seen
from the solid blue curve in Figs. 3(c) and 3(d) and consistent
with previous work [34], increasing the lead coupling so that
�L 
 δ, increases the height of the zero-energy peak so as
to approach the quantized value G(V ∼ 0) ∼ G0. However,
the splitting δ now appears as a dip in the conductance,
which reduces the conductance G(V = 0) at strictly zero bias.
Thus the zero-bias conductance G(V = 0) is suppressed from

FIG. 3. Conductance plot corresponding to the LDOS splittings
for �L/� = 10 (blue solid curve) and 0.25 (red dashed curve).
(a)–(d) The parameter δ/� = 0.27, 0.71, 1.74, and 3.27, respectively.
The TV (Q) values (a)–(d) are (−0.80, − 0.75, − 0.46,0.12) and
(0.44,0.58,0.82,0.93) for blue solid and red dashed curves, respec-
tively. The conductance peaks split for large δ/� and the conductance
decreases for small �L/�.

the quantized value, and as expected from the connection
between conductance and TV [33], we find the TV Q to be
nontopological (i.e., positive in this parameter regime).

The conductance G(V ) in the opposite limit, where δ/� �
1, is shown in Figs. 3(a) and 3(b) and shows an unsplit ZBCP.
The conductance in the �L 
 � (blue curve) shows a nearly
quantized conductance, while the conductance is suppressed
in the opposite limit. However, this limit (i.e., �L � �) (red
dashed curve) still shows a ZBCP, albeit substantially smaller
than the quantized value even though the corresponding TV
is nontopological. On a technical note, varying the Zeeman
field between the different panels in Fig. 3 changes �. To
mitigate any parametric dependence of the calculated ZBCP
and TV on �, in this subsection the broadening � is adjusted
in each case to hold �/� = 52 fixed (remembering that the
gap � depends on the Zeeman field). The lead broadening �L

is varied through varying t ′ [see Eq. (11) below] to keep the
ratio �L/� fixed.

The TV is strongly affected by the splitting of the MZMs
δ relative to the broadening �. In Fig. 4, we find that the TV
is an increasing function of δ/�. The nanowire effectively
becomes nontopological if the MZM splitting δ exceeds the
broadening �, even when the wire parameters and the strong
lead coupling �L favor the topologically nontrivial phase.
Furthermore, consistent with the conclusion in Fig. 3, the small
values of �L/� lead to nontopological values for the TV.

The combination of Figs. 3 and 4 suggests a correlation
between the presence of a quantized ZBCP and a topologically
nontrivial value of the TV close to Q = −1. This correlation
between TV and conductance suggested by Figs. 3 and 4 is
made explicit in Fig. 5. We find that TV is a decreasing function
of the ZBCP value. The TV approaches −1(+1) as ZBCP
approaches 2e2/h(0). Note that the decreasing behavior of TV
with increasing ZBCP is independent of the tuning parameter
chosen to vary the zero-bias conductance, evidenced by the fact
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FIG. 4. TV for δ/� values corresponding to Fig. 3 for coupling
parameter �L/� = 10 (blue dots) and 0.25 (red plus). The TV is an
increasing function of δ/�, i.e., the system tends to become non-
topological as δ/� increases.

FIG. 5. (Top) Plot of the TV as a function of ZBCP for δ/� =
0.16 (blue dot) and 2.43 (red plus). Conductance is varied by varying
�L/�. (Bottom) TV vs ZBCP for �L/� = 10 (blue dot) and 0.25 (red
plus). Conductance is varied by varying δ/�. The TV is a decreasing
function of the ZBCP.

that both top and bottom plots in Fig. 5 manifest a decreasing
behavior for the TV as a function of ZBCP regardless of
whether �L/� (top subfigure Fig. 5) or δ/� (bottom subfigure
Fig. 5) is tuned to vary ZBCP.

C. Topological phase transition

Let us now consider the behavior of conductance and
TV as we approach the TPT by tuning the Zeeman field
VZ . In this case, when the intrinsic broadening � and the
lead-induced broadening �L are small, sufficiently close to
the phase transition, the topological gap � will become
smaller than � � � (since at the TPT, the gap must vanish).
Therefore, for infinite length systems, the ratio �/� can be
used to determine the distance to the quantum critical point.
For conventional quantum critical points [79], there are two
dimensionless parameters that characterize the distance to a
quantum critical point, which are L/ξ and �/T characterizing
spatial and imaginary time correlations in the system. Here ξ

is the coherence length of the system, � is an energy scale,
T is the temperature, and L is the length of the system.
In our discussion, � is analogous to temperature T in the
quantum critical phase (although we are actually at T = 0
throughout). Since � is always finite in our system, the TPT
is always a crossover even at zero temperature! The fact
that our calculated TV value in Figs. 4 and 5 is continuous
between Q = +1 (trivial phase) and Q = −1 (topological
phase) is a clear indication that the presence of dissipative
broadening in the theory (and the associated nonunitarity) has
rendered the TPT into a crossover with Q > (<)0 defining
the nontopological (topological) phase with finite visibility.
The presence of dissipation makes some additional changes
to the topological transition that we mention in passing.
Traditionally in disordered systems the topological transition
is often accompanied by a Griffiths like phase populated by
weakly split low-energy Majorana modes [80]. The presence of
dissipation could change some of these weakly split Majorana
modes into poles of the now nonunitary S matrix with exactly
zero energy but different imaginary parts [31]. Such physics,
which is exactly included in our theory, would alter the nature
of the low-energy density of states near the transition.

The relationship between �L and � is not straightforward
because as the system approaches the TPT, the bound states
become delocalized away from the lead due to the diverging
coherence length ξ . In the limit of small lead-tunneling, t ′, the
broadening �L induced by the lead is related to the imaginary
part of the lead self-energy [81] and can be written as

�L ∼ t ′2|ψ(0)|2, (11)

where ψ(0) is the value of the nanowire wave function at the
lead-nanowire NS contact at the given tunneling energy. The
localized Majorana wave function can be approximated by

ψ(x) ≈ 1√
ξ
e−x/ξ , (12)

where ξ is the superconducting coherence length. This implies

�L ∼ t ′2�. (13)

Therefore, in the vicinity TPT, �/�L ∝ t ′2 (with the pro-
portionality factor related to the normal phase density of
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FIG. 6. Plot of the lowest Andreev bound state energy (top) and
bulk quasiparticle energy gap (bottom) as a function of Zeeman field
strength for different physical lengths of Majorana nanowire. The
bulk TPT is at VZ = 3 K. In the topological phase, (VZ > 3 K), lowest
Andreev bound state energy is the Majorana splitting.

states) approaches a constant and can be used as a parameter
to characterize the TPT. Note that although �L is in some
sense proportional to the gap �, the two quantities are still
independent parameters of the theory by virtue of the lead
tunneling matrix element t ′.

As seen in Fig. 6, the TPT is approached by tuning the
Zeeman field VZ , which leads to the variation of both the
Majorana splitting δ (lowest Andreev bound state energy) in
the upper panel and the bulk gap � (next highest Andreev
bound state energy) in the lower panel. The minimum in the
gap � occurs at VZ = 3 K indicating a transition at this value
of the Zeeman potential. For a finite system, the minimum gap
is determined by the length of the system L. In the case where
the wires are shorter than the dephasing length lφ ∼ v/� (for
the chosen �), where v is the Fermi velocity of the system,
the MZMs split before entering the TPT region � � �. As
a result, the system enters a nontopological phase with a TV
close to Q = 1 similar to the δ � � case discussed in the last
subsection. Therefore, in this section, we focus on a broadening
� that is larger than the finite size gap, i.e., � � v/L.

Let us now consider the conductance shown in Fig. 7 as
the Zeeman field is varied towards the topological transition.
Figure 7(a) shows a nearly quantized peak (blue solid) deep
in the topological phase where the MZM splitting δ is also

FIG. 7. Conductance plot for �L/� = 0.20 (blue solid curve)
and 0.005 (red dashed curve). Broadening � is chosen so that
δ/� = 0.16 is held fixed for all panels with �/� (a)–(d) being
19.33, 0.90, 0.28, −12.1, respectively. The TV (Q) values (a)–(d)
are (−0.75,0.34,0.56,0.98) and (0.51,0.95,0.97,1.0) for blue solid
curve and red dashed curve, respectively.

small relative to the broadening �. The corresponding TV
is also seen to be nearly topological in Fig. 8 as expected.
As the Zeeman field is decreased, the height of the ZBCP
(above the background) decreases as one approaches the
topological transition where �/� → δ/� becomes small in
Fig. 7(c). However, it should be noted that the peak remains
unsplit in contrast to the short wire case with L � lφ . Despite
the presence of a small zero-bias peak in Figs. 7(b) and
7(c), the corresponding TV values in Fig. 8 are positive
(nontopological). This is consistent with Figs. 3 and 4 from
the previous subsection where a small coupling �L � � led to

−15 −10 −5 0 5 10 15 20 25
∆ /Γ

−1.0
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FIG. 8. TV for �/� values corresponding to Fig. 7 for coupling
parameters near TPT with �L/� = 0.20 (blue dots) and 0.005 (red
plus), respectively. δ/� = 0.16 is held fixed. The TV is an decreasing
function of �/� with Q −→ 1 as �/� −→ 0, i.e., the system tends
to become non-topological (topological) as the system tends to small
(large) topological gap and the TV tends to +1 as the gap completely
closes (system approaches TPT).
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small nontopological ZBCP. Finally, as one crosses over to the
nontopological regime, a nontopological gap appears in the
conductance. As mentioned before, the TPT is parameterized
by �L/�, which remains relatively constant near the phase
transition. The red dashed plots in Fig. 7 show that the
conductance is systematically suppressed in the regime of
small �L/�. The corresponding TVs are seen to be positive
(nontopological) in Fig. 8.

Before concluding this section, we comment on an obvious
point, which might confuse a nonalert reader. One may think
that the TV can have only unit magnitude with Q = −1(+1)
characterizing the topological (trivial) phase. This is indeed so
in the infinite system as originally introduced by Kitaev. But
our finite system must have a broadening (otherwise the TV
calculated at zero energy is always +1 because of Majorana
splitting), and this broadening allows the TV (i.e., Q) to be
a continuous function of system parameters going from +1
deep in the trivial phase to −1 deep in the topological phase.
This continuous evolution of Q between +1 and −1 is the
finite system crossover transition whereas the corresponding
infinite system would have a sharp transition from +1 to
−1 precisely at the TPT (with the ZBCP value changing
from zero to 2e2/h sharply at the TPT too). The new idea
in the current work is to connect this crossover transition to
braiding experiments with the claim that our finding a value of
Q < 0 corresponds to a topological phase with the visibility of
the braiding measurements being large (small) depending on
whether the magnitude of Q is close to unity (zero). We believe
that our finding a negative (positive) value of Q corresponds
to the corresponding braiding experiment manifesting (not
manifesting) non-Abelian statistics.

IV. BRAIDING AND TUNNELING CONDUCTANCE

In a 1D system, MZMs appear as a pair of zero-energy
modes (i.e., precisely at mid-gap assuming no Majorana
splitting, i.e., no overlap between the two MZM wave
functions) localized spatially at the two wire ends. N such
pairs of localized MZMs form a 2N dimensional degenerate
zero-energy subspace within the Hilbert space of the system.
A possible braiding process involving two MZMs via a so
called trijunction [64] is depicted in Fig. 9. Let γ̂1,2 and γ̂ ′

1,2
represent the Majorana operators, associated with the localized
Majorana modes γ1,2 and γ ′

1,2 depicted in the Fig. 9(a).
The ground state is initialized as a direct product state of
left and right Majorana pairs, |PL〉1|PR〉2, where γ̂1 and γ̂ ′

1
operate on kets with subscript 1 and γ̂2 and γ̂ ′

2 operate on
kets with subscript 2. PL, PR denote the fermionic parity of
the left and right subsystem of the initial state, respectively.
Majorana modes represented by γ1 and γ2 are braided around
each other adiabatically via a sequence Majorana moves
involving a third Majorana pair as shown. For example, the
configuration in panel (b) is attained from configuration in
panel (a) by adiabatically decreasing the tunneling strength
between Majorana modes γ3 and γ ′

3 and at the same time
increasing the tunneling strength between γ3 and γ2, which
effectively leads to γ2 moving to the new position as shown
by the arrow in (b). Assuming the system remains in the
ground state throughout the braiding process, the braiding is

(a) (b)

(c) (d)

FIG. 9. A schematic diagram for braiding a pair of Majoranas
using a trijunction. The system is initialized (a) such that γ ′

1, γ1, γ ′
2,

and γ2 are four localized Majorana modes and (γ ′
3,γ3) Majorana pair

is paired into a Dirac fermion. Paired Majorana modes are depicted
as green discs paired by enhanced wave-function overlap over the
region depicted by pink oval. At every move an unpaired Majorana
mode is moved from one position to another. The movement of the
Majorana resulting from the move resulting in each configuration
(b)–(d) is shown by a dashed arrow.

accomplished by the unitary operator

U12 = exp
(
±π

4
γ̂1γ̂2

)
, (14)

where +/− sign in the unitary operator depends on the
microscopic details of the system [64]. Considering a more
complicated setup one could imagine braiding any two Ma-
joranas independently of the other two. The unitary operators
affecting the braiding operation between any two Majoranas
do not form a commuting set. Hence MZMs are said to have
non-Abelian braiding statistics which offers immense potential
for topological quantum computation [17,24].

However, any realistic braiding experiment must take into
account a few prominent departures from the idealized set of
implicit assumptions made above in our schematic description
of perfect Majorana braiding. First, any finite system hosting
MZMs will have a finite Majorana wave-function overlap,
splitting the Majorana modes by an energy δ, away from zero
energy due to the hybridization between the two MZM wave
functions from the two wire ends [34]. Obviously, a large
overlap (as would happen in shorter nanowires or in systems
with small superconducting gaps leading to large coherence
lengths) would completely destroy all non-Abelian topological
properties since the Majorana excitations in that situation
are simply the electron-hole quasiparticle excitations of the
superconducting nanowire with the Majorana splitting being
comparable to the superconducting energy gap. Including this
Majorana splitting in the formalism is an important ingredient
of our theory. Second, “adiabatic” braiding process takes place
over a finite time scale δtB (i.e., with a finite braiding velocity),
which is associated with the energy uncertainty of the system
δEB by

δtBδEB ∼ �. (15)

We note that this braiding-induced energy uncertainty δEB

must be much larger (smaller) than the Majorana splitting
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(superconducting gap) for the braiding operation to manifest
any topological non-Abelian behavior. One can loosely iden-
tify this energy uncertainty as an effective dissipation term
arising from the finite velocity braiding process. Including an
energy broadening or a dissipative term is a key ingredient of
our theory. Such dissipation could arise from the energy uncer-
tainty associated with braiding as discussed above, but in the
specific context of the tunneling conductance measurements, it
arises from intrinsic dissipation of strength �, which might be
present in the experimental situation. In the case of braiding,
we will refer to this intrinsic dissipation as �′ and use � to
represent the total effective dissipation � = �′ + δEB , that
also includes the energy uncertainty δEB . Note that � is finite
in the braiding process even when intrinsic dissipation (i.e.,
�′) is absent since δEB is necessarily finite. One may think
that it is in principle possible to make δEB vanish by carrying
out the braiding process infinitely slowly (i.e., δEB = 0), but
this is not allowed (even as a matter of principle) since the
Majorana splitting is always finite in any finite wire, and
δEB must always surpass Majorana splitting for the system
to act non-Abelian. This is equivalent to our earlier statement
that a finite wire can never have a true Majorana-induced
zero-bias conductance peak because of Majorana splitting, and
the presence of various energy broadening mechanisms (e.g.,
dissipation, temperature, coupling to the leads) is essential
in producing the ZBCP in finite wires even in the nominal
topological phase. Thus braiding success and ZBCP are
conceptually connected with dissipation playing a central role.

While one might argue that braiding experiments differ
fundamentally from conductance experiments since the latter
depends on �L and the former does not, the existing braiding
proposals [51–65] requires the presence of Majorana fermion
tunneling in a key way. The Majorana tunneling enters
through the trijunctions in the Majorana braiding proposals.
In fact, the energy gap (i.e., Majorana splitting) between
Majorana modes at the trijunction is generated by tunneling
and takes the place of the tunnel broadening �L in the
conductance experiment. Thus inclusion of energy broadening
� ∼ δEB + �′ (to represent finite braiding velocity as well
as any intrinsic broadening), tunneling broadening �L, and
Majorana splitting δ are essential ingredients in the braiding
process as much as they are in the tunnel conductance
experiments. The TV calculations discussed in the last section
thus are fundamentally relevant to the braiding experiments
as they are to the conductance experiments since braiding is
an operational way of measuring the TI of the system, which
we have argued gets converted to TV in finite wires with
dissipation.

Let us now discuss if the qualitative dependence of the
braiding properties on the parameters (�,�L,δ) is similar
to their counterparts in the case of conductance. Analogous
to the tunneling case, the proper topological movement of
MZMs (i.e., the MZMs remaining localized on the time-scale
of the braiding operation) requires that the velocity-induced
broadening of Majoranas satisfy δ � � since any braiding
must involve an actual physical movement of MZMs around
each other. Similarly, �L limits the speed of braiding so
that for sucessful braiding we require �L 
 � = (δEB + �′).
Furthermore, to ensure the presence of MZMs at the ends
of the topological set-up, the finite-size Majorana splitting

δ must be smaller than broadening, i.e., �L 
 δ. We have
assumed here (for the sake of this discussion without any loss
of generality) that we are deep in the topological phase so that
all parameters (�L,�,δ) � �, i.e., the topological gap is large,
which is necessary for adiabaticity in braiding any way.

We therefore see a one-to-one correspondence between the
parameters determining braiding and tunneling measurements
with the TV showing up in both measurements as the key
quantity determining the topological behavior of the circuit.
The braiding properties of the system might be characterized
by Pbraid, which we define to be the probability of success
of non-Abelian braiding. The probability of successful non-
Abelian braiding, directly related to the TV discussed in the last
section, is a function of the amount of nonuniversal broadening
� present in the braiding experiment (i.e., the sum of the energy
uncertainty δEB and the intrinsic broadening due to coupling
to the environment �′), the Majorana splitting (δ), the tunnel
coupling �L and the topological gap (�). Furthermore, since
braiding is presumably a topological property, we expect the
probability of success of braiding to be determined by the TV
since the topological phase for the infinite system is defined
by the TI.

Based on these considerations we conjecture that the
success rate of non-Abelian braiding for a given braiding speed
in an experiment (Pbraid) is related to probability of TV being
−1 (or very close to it), i.e.,

Pbraid(δEB + �′,�L,δ,�) ∼ 1 − 〈Q(�,�L,δ,�)〉
2

, (16)

where 〈Q〉 is the average of TV over disorder realizations for a
given disorder strength, and �′ is the environment-induced
intrinsic broadening in the braiding experiment. �L in a
tunneling conductance experiment represented in the RHS of
Eq. (16) is the lead broadening as discussed in the previous
sections. However, �L appearing in the LHS of Eq. (16)
represents the induced tunnel gap as a result of strongly
coupled adjacent Majorana modes forming a Dirac fermion
(strong Majorana pairing regions depicted by pink ovals in
Fig. 9). The role played by lead induced broadening for
conductance experiment is now played by the energy gap
induced by coupling adjacent nanowire edge modes forming a
Dirac fermion in the braiding experiment, and therefore for the
sake of brevity, we have chosen to represent it with the same
symbol �L on both sides of Eq. (16) although the �L appearing
in conductance and braiding experiments arises from different
tunneling mechanisms.

From the previous section, we know that whether the
average TV 〈Q〉 is nearly topological (i.e., a negative number
with magnitude close to unity), which [according to our
conjecture Eq. (16)] would correspond to successful braiding,
is directly correlated with the presence of a ZBCP value
close to the topological value G(V ∼ 0) ∼ G0. Such a nearly
quantized ZBCP, which can be tested for through existing
experimental setups [1,8,10–13], can only occur in a much
smaller parameter regime � 
 �L 
 � 
 δ. Furthermore,
temperature, which provides a fifth independent energy scale
through the thermal energy kBT (which we take to be zero)
must be small as well. It is only in this topological parameter
regime that one expects braiding to be reasonably successful.
We believe that this parameter regime can be diagnosed from
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the much simpler conductance quantization measurements
carried out on the same or similar samples (i.e., with similar
values of � and �L in both cases).

Our results (see Fig. 5) in Sec. IV indicate that a ZBCP value
around half of the quantized value (i.e., ZBCP ∼ e2/h) should
be adequate to produce a negative TV value. The negative TV
would correpond to the topologically nontrivial phase with a
TI of −1. Based on this, we conclude that braiding experiments
would succeed (perhaps with rather low visibility) as long as
the corresponding ZBCP is around e2/h (or larger) in the
same nanowire sample with identical system parameters. We
believe that for systems with ZBCP much lower than e2/h, the
braiding experiments are unlikely to succeed in manifesting a
purely topological phase with a TV value of −1. This is an
important predicted experimental consequence of our theory.
We therefore believe that braiding measurements should only
be attempted on nanowire samples with the largest possible
ZBCP values, and perhaps, braiding in samples with ZBCP
values much lower than e2/h is unlikely to manifest non-
Abelian statistics (even with low visibility—see our Fig. 5).

V. CONCLUSION

In this work, we ask whether a theoretical connection
can be established between the tunneling conductance and
the topological visibility of realistic spin-orbit coupled semi-
conductor nanowires in the presence of proximity induced
superconductivity and Zeeman splitting, assuming the system
parameters (Zeeman splitting, chemical potential, supercon-
ducting energy gap) to be in the topological phase so that
the wire carries Majorana zero modes localized at the wire
ends. The question takes on special significance because
of the putative non-Abelian braiding properties of MZMs
enabling fault tolerant quantum computation. In particular,
direct braiding experiments, which are typically very hard,
establishing the non-Abelian nature of MZMs have not yet
been carried out in semiconductor nanowires although many
proposals to do so exist in the theoretical literature. [Such
experiments do exit in the fractional quantum Hall context for
the so-called 5/2 fractional quantum Hall state, but the results
are difficult to interpret and have remained controversial (see
Ref. [82] and references therein).] On the other hand, several
groups have carried out tunneling conductance measurements
in semiconductor nanowires following specific theoretical pre-
dictions that MZMs should manifest as zero-bias conductance
peaks in such experiments. The observation of such ZBCPs has
so far been hailed as the evidence for the predicted existence
of MZMs in these nanowires, but doubts remain about how
topological such systems are (even if the observed ZBCP
signal indeed arises from MZM-related physics and is not
some spurious effect), particularly in view of the disturbing fact
that the measured ZBCP values are substantially lower than
the quantized conductance value (i.e., 2e2/h) expected from
the perfect Andreev reflection by the Majorana modes. Even
assuming that the system is in the topological phase as far as
parameter values go, serious issues arise from the finite length
of the wires, which, coupled with the expected long coherence
length because of the small induced superconducting gap [83],
leads to questions regarding the overlap between the MZMs
localized at the two wire ends. Such MZM hybridization
would lead to large Majorana energy splittings, and the

MZMs would be shifted from zero-energy, becoming instead
finite energy resonances in the gap. If the Majorana energy
splitting is comparable to the energy gap itself, then obviously
there can be no non-Abelian braiding statistics since these
split Majorana modes are essentially electron-hole pairs. The
quantitative technical question now becomes whether such
approximate (or almost)- MZMs, which are split and thus
shifted from zero energy, could still lead to non-Abelian
statistics although the ZBCP associated with them is below
the quantized conductance 2e2/h. We address this question in
great detail by calculating both the tunnel conductance and the
TV of the same realistic nanowire (i.e., using exactly the same
parameter values) and comparing them carefully.

The TV in the ideal situation is +/−1 with the negative
(positive) sign corresponding to the topological (trivial) phase,
just as the tunnel conductance in the ideal situation is 2e2/h (0)
for the topological (trivial) phase. But, in real measurements,
the existence of Majorana splitting in finite wires plus various
dissipative broadening mechanisms invariably present in real
systems could lead to a value of the TV with a magnitude
less than unity, just as the ZBCP magnitude could be less than
2e2/h from the same physics. Correlating the two quantities
in realistic wires would tell us whether braiding experiments
are likely to succeed in realistic nanowires currently being
studied in various laboratories. One aspect regarding Majorana
nanowires is that a naive calculation of the ZBCP in the
presence of Majorana splitting in finite wires always leads
to zero conductance at zero energy since the finite energy split
Majorana resonances have no spectral weight at zero energy.
This of course changes in the presence of any energy broaden-
ing which must invariably be present in real systems. This is
quite analogous to the situation of purely adiabatic braiding,
where braiding at a rate much smaller than the Majorana
splitting δ would also produce purely nontopological results.
Our work explicitly includes this energy broadening effect in
order to comment on real systems of experimental interest. We
believe that our calculated TV in realistic systems provides the
actual visibility of future braiding measurements through the
inclusion of broadening processes, i.e., our finding a TV dif-
fering in magnitude from unity has one to one correspondence
with the corresponding averaged braiding experiment runs
over many measurements (where the average will differ from
unity in magnitude although each run itself will give a value of
+/ − 1). We note that indeed the calculated TV is negative or
positive (but always < 1 in magnitude), depending on whether
the system is approximately topological or trivial, respectively.
The exact value of our calculated topological visibility predicts
the outcome of braiding experiments—closer our results are
to −1 more non-Abelian is the system, but any negative value
for the topological visibility could be construed as predicting
the system to be in the non-Abelian topological phase, albeit
with a low visibility if the value of the topological visibility
is far from −1. On the other hand, our finding of a positive
topological visibility indicates that the corresponding system
is nontopological.

Our work shows that the topological quantum phase
transition separating the trivial phase (a TV value of 1 and a
ZBCP value of zero) from the topological phase (a TV value of
−1 and a ZBCP value of 2e2/h) is a crossover in real systems
(even at zero temperature) because of the presence of the
broadening terms �, tunneling �L and the Majorana splitting
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(δ). The inclusion of the dissipative broadening processes,
which must invariably be present in real systems, is a key
ingredient of our theory—in fact, without any broadening, the
ZBCP is always zero at zero energy by virtue of the Majorana
splitting in all finite wires. We find that the ZBCP evolves
from a quantized peak deep in the topological phase into a
much smaller peak on a large background near the transition,
quite similar to some of the experimental results [1,8,10–13].
Unfortunately, the corresponding TV in this case is invariably
nontopological as long as the ZBCP value is small. In braiding
experiments the broadening is to be interpreted as the energy
uncertainly associated with the finite braiding time, which
should be large compared with the Majorana splitting for
braiding to succeed (i.e., � > δ must apply for the TV to
be negative). For braiding to succeed, of course, one must
always be deep in the topological gap so that the topological
gap is much larger than the Majorana splitting (δ), and intrinsic
broadening (�). Furthermore, the Majorana coupling energy
�L must be large enough to overcome the splitting δ to lead to
a large conductance and also for the trijunctions in a braiding
protocol to lead to non-Abelian statistics.

We find that it is possible for the system to be topological
(i.e., negative value for the TV) even when the corresponding
zero-bias conductance value is suppressed from 2e2/h—in
particular, a factor of 2 suppression of the ZBCP would
still lead to the existence of non-Abelian braiding statistics
(with somewhat low visibility). On the other hand, we believe
that systems with ZBCP values factors of 10 (or more)
suppressed from 2e2/h are unlikely to ever manifest non-
Abelian statistics, and such systems are better considered as
nontopological systems because of the very large Majorana
splitting in spite of there being a small ZBCP peak. Our
most important qualitative conclusion is the finding that it
is indeed possible for a finite wire with split MZMs (and
a correspondingly suppressed ZBCP value compared with
2e2/h) to manifest non-Abelian braiding statistics with the
visibility of braiding (averaged over many runs) decreasing
with decreasing value of the corresponding ZBCP. How small
the ZBCP can be and still reflect an underlying non-Abelian
braiding statistics depends on many details (most importantly
the ratio of the Majorana splitting energy to the topological gap
which should typically be less than 0.2 for braiding to succeed)
including the energy broadening in the system arising from
many nonuniversal mechanisms. One important conclusion
following from our extensive numerical simulations is that
braiding experiments are perhaps likely (unlikely) to succeed
in nanowires manifesting ZBCP values at least around e2/h

(much less than e2/h) since we find that the calculated
topological visibility crosses over from being negative to
positive for the corresponding tunneling ZBCP value crossing
over respectively from being >e2/h to being <e2/h. Of
course, real braiding experiments would obviously not be
carried out in the tunneling configurations with leads to normal
contacts for measuring tunneling currents, but our results
indicate that braiding should focus on nanowires manifesting
ZBCP values not much less than e2/h for a reasonable chance
of any success in the observation of non-Abelian braiding
statistics. We mention that braiding experiments still involve
aspects of tunneling (i.e., a finite �L), which must arise from
the finite Majorana tunneling at wire junctions (in contrast to

NS junctions in the conductance measurements) necessary to
make the MZMs go around each other in order to accomplish
braiding.

Finally, we note that we have neglected finite temperature
and disorder effects in our theory, assuming clean nanowires at
zero temperature in order to consider the best case scenarios.
We have assumed zero temperature for simplicity and to avoid
introducing extra parameters, even though it is rather simple
to introduce finite temperature effects into the conductance
calculations. This is because finite temperature conductance of
a noninteracting system can be obtained simply by broadening
the conductance traces by a fermi function. The result of such
a broadening is easy to surmise from the zero temperature plot.
The most important effect of introducing temperature would
be to potentially suppress the zero-bias conductance peak and
generally eliminate sharp features, quite similar to the broad-
ening � that we have introduced. However, this is significant
only if the temperature T is large enough (i.e., T � �). This
limit is easy to detect in experiments since the width of the
peak should correspond to temperature. Therefore our results
focus on the limit where temperature is low enough so as to be
smaller than the width of the peak as in the recent experiments
[35]. Additionally, finite temperature does not invalidate our
conjecture regarding braiding since T must also be smaller
than �L (related to the gap) for successful braiding. Since
nanowire conductance and braiding experiments are carried
out at very low temperatures (∼20−50 mK) any way, our
neglect of finite temperature is not a serious problem. Including
disorder effects is also straightforward and only increases
the computational time substantially (without introducing any
theoretical complications), which is why they are left out. We
emphasize that our conclusion remains completely unaffected
by finite temperature and disorder. Finite temperature only
reduces the visibility, thus further reducing the magnitude of
the ZBCP and the TV, without affecting the topological or
not question at all. Thus the braiding experiment should be
performed at the lowest possible temperatures to maximize the
visibility. Disorder complicates matters only because it shifts
the condition for obtaining the topological phase (i.e., the TPT
point), but it cannot affect the basic physics at all since the
induced topological superconductivity arises from an interplay
among the s-wave superconductivity, spin-orbit coupling, and
Zeeman splitting—all of which are immune to disorder. The
fact that disorder does not suppress the topological phase (but
does shift its location on the phase diagram compared with
the clean parameters) is already well-known in the literature
[67], and we therefore refrain from providing finite disorder
results since this will only complicate the presentation with
no additional conceptual or theoretical understanding. The
situation with very strong disorder is, however, disastrous for
the manifestation of topological properties since the strongly
disordered nanowire will manifest Griffiths phase physics with
many MZMs localized randomly along the wire [70,80], and
this situation must obviously be avoided at all costs for all
braiding experiments. We have ensured numerically that all
our conclusions in this paper remain unaffected in the presence
of finite temperature and (weak) disorder as asserted above.
Similarly, multisubband occupancy of the nanowire [84,85]
does not change any of our conclusions either, as long as an
odd number of spin-split subbands are occupied in the system,
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and the appropriate microscopic parameters (i.e., δ, �, �L,
�, chemical potential) are all modified to take into account
the multisubband occupancy in the nanowire. Of course, the
relative values of the various parameters may be modified by
multisubband occupancy, which must be incorporated in the
theory appropriately, but the theory itself remains exactly the
same as long as an odd number of subbands are occupied in the
nanowire and various parameters are appropriately modified
to reflect the multisubband occupancy of the system.

The new important concept introduced in this work is of
topological visibility, which is essentially the “nonunitary”
version of the well-known “topological invariant” extensively
used to characterize topological superconductivity. Whereas
the topological invariant is a topological index, being +1 or
−1 corresponding to trivial and topological superconductors
respectively, the topological visibility by contrast corresponds
to a continuous variable (varying between +1 and −1) relevant
for finite systems where a naive computation of the topological
invariant will always indicate a trivial phase by virtue of
the Majorana energy splitting always being finite in finite
systems. The topological visibility is a physical (and practical)
generalization of the mathematical concept of topological
invariant to realistic finite nanowires in the laboratory, where
some Majorana splitting is inevitable because of the wave-
function overlap between the Majorana zero modes localized
at the two ends of the finite wire. The physical mechanism
enabling the existence of topological visibility is dissipation
or level broadening invariably present in all real systems. In
particular, this broadening must exceed the Majoana energy
splitting for the system to behave “topologically” (i.e., for the
topological visibility to be negative). However, this dissipative
broadening also suppresses the value of ZBCP below the
canonically quantized value of 2e2/h in the topological
phase and reduces the magnitude of the topological visibility
below unity. For braiding experiments of the future, a part
of this dissipation arises from the finite speed of braiding
itself which gives rise to an energy broadening, and this
broadening must exceed the Majorana splitting energy for
the system to behave as a non-Abelian system. Although our
numerical results (when compared with tunnel conductance
measurements) indicate that some dissipative broadening must
be present in the real systems, we do not investigate in the
current work the possible physical mechanisms producing
such dissipation. At this stage, our inclusion of dissipative
broadening in the theory is phenomenological, and future
experiments will have to determine the source of such broad-
ening in real systems. One possibility is that the combination
of disorder and magnetic field in the s-wave superconductor
leads to subgap fermionic states at the interface. Such subgap
fermionic states, at finite temperature and in the presence
of electron phonon coupling can lead to the creation of a
fermion bath that would have the same form assumed in this
paper.
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APPENDIX A: TUNNELING CONDUCTANCE AND
TOPOLOGICAL VISIBILITY FROM S MATRIX

Tunneling conductance is a local measurement at the
normal lead-superconducting nanowire (see Fig. 1) junction,
and one may calculate it theoretically by assuming both
the lead and nanowire to extend semi-infinitely and coupled
together at the so-called normal metal-superconductor (NS)
junction via a tunnel barrier.

The knowledge of the reflection matrix at the NS junction
is sufficient to calculate the tunneling conductance. The
reflection matrix has the form

r =
(

ree reh

rhe rhh

)
, (A1)

where ree and reh are the normal and Andreev reflection
amplitudes, respectively. Here, the reflection matrix is ex-
pressed in the basis of electron and hole scattering channels,
which is called the particle-hole basis. Such a convenient
decomposition in normal and Andreev reflection amplitudes
is possible whenever the lead Hamiltonian, Hlead [see Eq. (7)],
is diagonal in the particle hole basis, i.e., [Hlead,τz] = 0.
For a single conducting channel, the tunneling conductance
to a superconductor in the NS junction is given by the
Blonder-Tinkham-Klapwijk (BTK) formula [86] (in the units
of e2/h)

G = 1 − |ree|2 + |reh|2. (A2)

With N conducting modes in the lead, ree and reh acquire a
matrix structure, and the BTK formula is generalized to

G = N − Tr(reer
†
ee − rehr

†
eh).

For a periodic translationally invariant spinless p-wave
superconductor described by a Hamiltonian H (k) in k space,
Kitaev [14] defined the TI as

QKitaev = sgn(Pf(iH (0))Pf(iH (π ))), (A3)

where Pf denotes Pfaffian operation on a matrix. QKitaev = −1
implies that the system is in a topological phase, i.e., if the
same Hamiltonian were to describe a finite chain with an open
boundary condition, the system edges will host non-Abelian
Majorana zero modes. For an open finite wire geometry,
Akhmerov et al. [66] provided the following generalization
for the TI in terms of the reflection matrix:

Q0 = sgn(det(r)). (A4)

It was argued in the main body of the paper that in presence of
dissipation, a more useful quantity to characterize topological
properties of the system is TV—a quantity closely related to
scattering matrix TI (A4), defined as

Q = det(r). (A5)

To justify this expression for the TV, which we use in our
numerical work, consider the particle-hole symmetry of the
superconducting Bogoliubov-de Gennes (BdG) Hamiltonian,
i.e.,

�HBdG�−1 = −HBdG, (A6)

where � = τxC with C being the complex conjugation
operator. This leads to the following constraint on the reflection
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matrix:

τxrτx = r∗, (A7)

which implies

det(r) = det(r)∗. (A8)

Note that we have implicitly assumed the voltage bias V to be
zero. For finite V , the particle-hole constraint on the voltage-
dependent reflection matrix r(V ) takes the form τxr(V )τx =
r(−V )∗. When the voltage bias is less than the superconducting
gap (eV < �), the transmission through the nanowire is zero
as there are no extended states. Therefore the reflection matrix
r is unitary, i.e., rr† = 1. This implies

Tr(reer
†
ee + rehr

†
eh) = Tr(rhhr

†
hh + rher

†
he) = N, (A9)

and that the absolute value of the determinant of reflection
matrix satisfies

| det(r)| = 1. (A10)

Combined with the particle-hole symmetry constraint of r ,
we get det(r) = ±1. In other words, we have shown that
whenever reflection matrix r respects unitarity and particle-
hole symmetry, the TI [defined as sgn(det(r))] is equal to TV
[defined as det(r)], i.e., Q0 = Q. An ideal system with MZMs
is characterized by det(r) = −1 [and nontopological trivial
phase is characterized by det(r) = 1] and also is associated
with quantized ZBCP at 2e2/h. The only way to change
the value of det(r) is to break the unitarity by closing the
topological gap. Note that by substituting Eq. (A9) in Eq. (A3)
and using the unitarity of the reflection matrix one can show

G = 2Tr(rehr
†
eh), (A11)

Tr(rehr
†
eh) = Tr(rher

†
he). (A12)

Moreover, particle-hole symmetry of r implies

reh(V ) = r
†
he(−V ). (A13)

Finally, using Eqs. (A13) and (A12), we arrive at

G(V ) = G(−V ). (A14)

So the unitarity and particle-hole symmetry of r guarantee that
the in-gap conductance is symmetric about zero bias. For a
finite system, any MZM would be split in energy by δ because
of the inevitable MZM overlap from the two ends (which
could be exponentially small, but never zero for a finite wire).
Strictly, at zero energy, there would be no BdG eigenstate in the
nanowire rendering an incoming electron to be totally reflected
with det(r) = 1. We would infer, based on this argument, that
all finite systems irrespective of whether they host MZMs
or not are nontopological. This is similar to the statement in
an entirely different context that no finite system can have a
phase transition, which is only a property of the infinite volume
thermodynamic limit. In reality, other (nonuniversal) cutoffs
in energy and length scales of the problem become important
as the system size increases, and eventually finite and infinite
systems behave in the same manner. For the nanowire MZM
problem, this arises from the energy broadening inherent
in any realistic system, which renders the split hybridized
non-zero-energy peaks into a broadened midgap peak with a

finite weight at zero energy. Thus the split resonances at sharp
nonzero energies become a broad peak around zero energy
with a finite width. Without such a dissipative broadening
process, the splitting of the MZMs invariably present in
any real system with finite wire length will always lead to
precisely zero conductance at zero energy since the MZMs
are now always shifted from zero energy due to Majorana
splitting.

We account for finite lifetime of the quasiparticle due to
various inelastic scattering mechanisms such as phonons and
magnetic moments through an onsite imaginary term in the
Hamiltonian. We emphasize that without this broadening, a
finite wire can never have a true zero-energy mode, and the
system is by definition always in the trivial phase! The resultant
broadening due to the onsite imaginary term in the Hamiltonian
is given by �.

APPENDIX B: NUMERICAL CALCULATION
OF TOPOLOGICAL VISIBILITY

To calculate the TV, we numerically compute the real part
of the determinant of the reflection matrix r and discard the
small imaginary part of the determinant, which is a numerical
artifact as can be seen from the fact that the particle-hole
symmetry forces the determinant of the reflection matrix to be
real, which was pointed out in Appendix A. For all calculations
involving the leads, the following set of parameters are chosen:
μoBlead = 2 K and μlead = 6.9 K.

Special care must be taken in calculating the TV. When
the submatrices of the reflection matrix (ree, reh, rhe, and rhh)
are called in KWANT, the individual submatrix outputs do
not satisfy the particle-hole constraint given by Eq. (A7). The
particle-hole symmetry was restored in the following way in
our calculations. Since the lead parameters were chosen to
have two incoming and two outgoing modes at zero energy, in
every lead for each participating mode m1,m2 at zero energy,
incoming and outgoing wave functions have a generic two
component structure

� =
(

ψ1

ψ2

)
.

We compute α = max(ψ1,ψ2) at the end site of the lead
and define the phase of the wave function to be φ = α/|α|.
The arbitrary phase of the reflection matrix is rectified by
multiplying det(r) by the following string of phases:

φ
m1
in,eφ

m2
in,eφ

m1
in,hφ

m2
in,hφ

m1
out,eφ

m2
out,eφ

m1
out,hφ

m2
out,h, (B1)

where in and out stand for incoming and outgoing modes,
e and h stand for electron and hole, and m1 and m2

are the two modes. These subtle numerical manipulations
are essential in ensuring that the mode functions used
by KWANT are particle-hole symmetric. The particle-hole
symmetry of the basis is key to ensure the particle-hole
symmetry of the scattering matrix that is required for
the proper evaluation of the scattering matrix topological
visibility.
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