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Correlated electronic properties of some graphene nanoribbons: A DMRG study
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The significant electron-electron interactions that characterize the m electrons of graphene nanoribbons
(GNRs) necessitate going beyond one-electron tight-binding description. Existing theories of electron-electron
interactions in GNRs take into account one electron—one hole interactions accurately but miss higher-order
effects. We report highly accurate density matrix renormalization group (DMRG) calculations of the ground-state
electronic structure, the relative energies of the lowest one-photon versus two-photon excitations, and the
charge gaps in three narrow GNRs within the correlated Pariser-Parr-Pople model for 7-conjugated systems.
We have employed the symmetrized DMRG method to investigate the zigzag nanoribbon 3-ZGNR and two
armchair nanoribbons 6-AGNR and 5-AGNR, respectively. We predict bulk magnetization of the ground state
of 3-ZGNR, and a large spin gap in 6-AGNR in their respective thermodynamic limits. Nonzero charge gaps and
semiconducting behavior, with moderate to large exciting binding energies, are found for all three nanoribbons,
in contradiction to the prediction of tight-binding theory. The lowest two-photon gap in 3-ZGNR vanishes in the
thermodynamic limit, while this gap is smaller than the one-photon gap in 5-AGNR. However, in 6-AGNR the

one-photon gap is smaller than the two-photon gap and it is predicted to be fluorescent.
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I. INTRODUCTION

Carbon has come to the fore in the past few decades for
many exciting electronic and magnetic properties with the
discovery of fullerenes in the 1980s to carbon nanotubes
in the 1990s to graphene and graphene nanoribbons in the
past decade [1-3]. In all these systems, we can assume that
the carbon atom is in sp2 hybridization and, hence, these
systems belong to the class of w-conjugated carbon systems.
In recent years, graphene nanoribbons (GNRs) have attracted
considerable attention because of their exotic electronic
properties and plausible applications in nanoelectronics [4-8].
GNRs with different widths can be made using various
techniques like mechanical cutting of exfoliated graphenes
or by patterning epitaxially grown graphenes [9—14]. GNRs
are quasi-one-dimensional forms of graphene, which exhibit
exciting electronic properties because of the confinement
of electrons in low dimension [4,15-18]. These electronic
properties also depend crucially on the geometry of the
edges of the ribbons. The GNRs are classified into two
types based on the edge structures, namely, zigzag and
armchair GNRs (ZGNRs and AGNRs, respectively). Within
the one-band tight-binding theory, ZGNRs are predicted
to be metallic with zero band gap, while AGNRs can be
either semiconducting or metallic, depending upon their
width [15-17,19]; AGNRs with 3p + 2 (with integer p) dimer
bonds between nearest-neighbor carbon atoms across the
ribbon width are metallic and others are semiconducting [17].

The quasi-one-dimensional character of the GNRs leads
to confinement and enhanced electron repulsion between the
7 electrons. Thus extended screening lengths and long-range
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electron-electron interactions are expected in the semiconduct-
ing GNRs, and even in the metallic GNRs which are better de-
scribed as zero-gap semiconductors [16,17]. Electron-electron
interactions in GNRs and single-walled carbon nanotubes have
been considered in the past within the time-dependent density
functional approach [20-22] as well as the GW approximation
accompanied by Bethe-Salpeter corrections [23-25]. These
approaches take into account one electron—one hole (le-
1h) interactions, are equivalent to the single configuration
interaction approximation of quantum chemistry [26-28], and
have successfully predicted the excitonic character of the
lowest optical absorption in the semiconductors. Our goal
here, however, is to probe the consequences of the strong
four-fermion two electron—two hole (2e-2h) interactions. As in
previous work [26-28], we probe the consequences of realistic
electron-electron interactions on the optical and charge gaps
in three narrow GNRs, the ZGNR with three carbon-carbon
bonds across its width (3-ZGNR), and AGNRs with six and
five carbon-carbon bonds across their widths (6-AGNR and
5-AGNR), respectively (see Fig. 1). Beyond this, however, we
also probe their ground-state magnetic character and the spin
gap. We further determine the relative energy orderings of the
lowest one- versus two-photon states in all three nanoribbons.
In the past, the experimental demonstration that the lowest
two-photon state occurs below the optical one-photon state
in linear polyenes [29], in contradiction to the predictions
of tight-binding and Hartree-Fock theories [29], provided
the most convincing demonstration of the strong electron
correlations in these systems. More recently, similar experi-
mental results have also been obtained from nonlinear optical
measurements of graphene nanofragments [30]. Accurate
computational investigation of the relative energy orderings of
one- and two-photon states also requires going beyond existing
techniques. Finally, we compute nearest-neighbor bond orders
(nearest-neighbor charge transfers) to examine the tendency to
structural distortions.
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FIG. 1. Molecular structures of (a) 3-ZGNR, (b) 6-AGNR, and
(c) 5-AGNR. The unit cell for each nanoribbon is indicated by the
square brackets.

For conjugated carbon systems, the Pariser-Parr-Pople
(PPP) model, which assumes o — 7 separability and incorpo-
rates long-range electron-electron repulsions [31], is known
to reproduce ground and excited state properties very well
[32-35]. It has also been demonstrated that the symmetrized
density matrix renormalization group (DMRG) method can
provide highly accurate descriptions of ground and low-lying
excited states within the PPP model [36,37]. We report here
symmetrized DMRG calculations on the three GNRs of Fig. 1.

We briefly mention here existing related works about edge
magnetism in zigzag nanoribbons which was speculated quite
early in the literature and has been studied rather extensively.
Fujita et al. have studied both armchair and zigzag graphene
ribbons with tight-binding approximation and reported the
presence of a flat band and localized edge states near the
Fermi level for zigzag nanoribbons, resulting in high density of
states near the Fermi level [15]. In armchair nanoribbons, these
almost flat bands (which are a consequence of the topology
of the m conjugation) are absent. In the correlated picture,
these almost flat bands result in magnetic states whose spins
are arranged ferromagnetically at the edges [15]. Opposite
edges of the ribbon will have opposite alignment of spins,
making the ribbon nonmagnetic in the thermodynamic limit.
Even in a general nanoribbon which cannot be classified as
either perfectly armchair or perfectly zigzag, a few sequentially
placed zigzag sites can result in a significant density of states at
the Fermi level resulting edge ferromagnetism [16]. Sasaki and
co-workers studied graphene in the continuous model using
the Weyl equation with a special gauge field resulting from the
local deformation in the 7w backbone and confirmed the pres-
ence of localized states at zigzag edges [38]. Consequences of
the presence of these edge states in the quantum Hall effect
in graphene have also been studied within localized [39] and
continuum pictures [40]. Wakabayashi et al. studied electronic
and magnetic properties of GNRs in the presence of a magnetic
field in the tight-binding approximation and proposed that
zigzag nanoribbons will show diamagnetic behavior at high
temperature and paramagnetic behavior at low tempera-
ture [41]. Louie et al. have also showed that the edge-magnetic
nature of ZGNRs can induce half metallicity in the presence of
atransverse electric field across the ribbon width, resulting in a
spin current [42]. The edge magnetism in zigzag nanoribbons
has also been studied using the mean-field Hubbard model
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by Jung and co-workers [43], employing the quantum Monte
Carlo technique by Golor et al. [44] and employing the
renormalization technique by Hikihara e al. [45] and experi-
mentally at room temperature by Magda and co-workers [46].
Instead of the presence of ferromagnetically aligned spins at
the edges, all the above studies predicted a singlet ground state
in ZGNR in the absence of an external field; however, a few
density functional studies predicted a ferromagnetic ground
state in ZGNR on doping [47]. Dutta et al. have studied low-
energy properties of both zigzag and armchair GNRs within the
Hubbard model using the quantum many-body configuration
interaction method and predicted that the ground state of
zigzag GNRs is a high-spin state, while for armchair GNRs the
ground state is a singlet [48]. Spin-density calculations at the
edges of zigzag nanoribbons show the presence of both up- and
down-spin ata given edge instead of predominance of a specific
spin as predicted by tight-binding and density functional the-
ories. This study indicates that the picture can be significantly
different in the presence of long-range electronic correlation.

There are also extensive studies of electronic properties
such as band gaps and quasiparticle energies in GNRs. Ezawa
has studied band gaps in a range of nanoribbons in the Hiickel
picture and predicted the width dependence of the band gaps
in these systems [17]. He has also found that incorporation of
edge effects by changing the transfer term or site energies of the
edge sites has little effect on the band structure. Brey and Fertig
studied the electronic structure of zigzag and armchair nanorib-
bons using the massless Dirac equation and their results are
in agreement with the tight-binding results, except for narrow
nanoribbons [19]. They proposed that the continuum analysis
of graphene can quantitatively predict the properties of these
nanoribbons. Louie ef al. have computed the band gaps for
zigzag and armchair GNRs by employing the first-principles
approach within the local (spin) density approximation [49]
and GW approximation with many-body Green’s function
technique [25] and proposed analytical expressions for band
gaps as a function of GNR widths. They argued all GNRs
to be semiconducting, contradicting earlier tight-binding
predictions. Recently, spin and charge gaps of the armchair
polyacene have been studied within the PPP model [50]. It has
been shown that the ground state of armchair polyacene is a
singlet and the system is an insulator in the ground state.

This paper is organized as follows. In Sec. II, we introduce
the model Hamiltonian and briefly describe the DMRG scheme
which we have employed in our study. In Sec. III, we present
and discuss our results for the three GNRs. In the final section,
we present a comparison of these three GNRs and summarize
our results.

II. THEORETICAL MODEL, THE DMRG SCHEME FOR
GNRS, AND SYMMETRY SUBSPACES

A. PPP Hamiltonian and parameters

The PPP Hamiltonian is written as

i 1
H = Z t,»j(ajaajo + a}oaig) + 5 Z U,'l’li(l’l,‘ — 1)
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where (i,j) are the bonded pair of atoms and 7; is the
corresponding hopping or transfer integral, aja (a;js) is the
creation (annihilation) operator at site  with spin o and n; is the
number operator. U is the Hubbard on-site repulsion and V;; is
the intersite electron-electron repulsion between carbon atoms
i and j. V;; are obtained from the Ohno parametrization [51],

14397\ 77
V,,~=14.397[< i >+r§} , )

i

which is arrived at by interpolating between U at r;; = 0 and
e*/r;j for r;; — oo. In Eq. (2) the distances are in angstroms
while the energies are in electron volts [52]. We have taken the
nearest-neighbor distance between the carbon atoms as 1.42 A
and we fixed parameters 7;; = —2.40 eV and U = 11.26 eV
as in many of the previous studies involving carbon-based
conjugated systems [34,36,37]; the U value chosen [53] is the
sum of the ionization energy and the electron affinity of carbon
and gives the energy change in the process CC — CtC™.

B. The DMRG scheme

We are interested in the properties of the three GNRs of
Fig. 1 in the thermodynamic limit, which is reached from
finite size scaling. Exact studies of the model Hamiltonian are
confined, at best, to about 18 carbon sites and hence cannot
be employed for extrapolation to the thermodynamic limit.
Restricted configuration interaction approaches are not size
consistent and cannot be employed with finite size scaling. The
quantum Monte Carlo approach is also not suitable since we
have long-range interactions in the model. For semiconducting
narrow nanoribbons, the DMRG method is the method of
choice as the area law of entanglement entropy holds and
for the same DMRG cutoff similar accuracy is retained
independent of the length of the nanoribbons [54,55]. In the
case of metallic nanoribbons, gapless low-lying excitations
are present and the area law of entanglement entropy will not
hold. This leads to increasing errors with increasing system
sizes in the DMRG method if we employ a fixed cutoff in the
number of block states (M;) for all system sizes. However, for
finite systems in correlated models, there is always a finite gap
in the excitation spectrum and, by keeping a large number of
block states, we can deduce correct excitation energies. While
our calculations do not reproduce all behaviors of metals, we
believe that the particular properties we are investigating can be
obtained from extrapolations of these excitation energies. It has
also been shown that, for models with diagonal interactions in
the real space such as the PPP model, the entanglement entropy
is similar to those in the Hubbard and the Heisenberg models
in one dimension [56]. Taken together, the above justify the
use of the DMRG approach for PPP calculations of GNRs.

The DMRG method, discovered by White in 1992, divides
a system block into two subblocks [54,55,57,58], generally
referred to as the left subblock (L) and the right subblock
(R), while the wave function of the total system block is
described in the direct product space of these two subblock
basis states. In the DMRG method, the Fock spaces of the
two subblocks are approximated and it has been found that
the best approximations of the subblock Fock spaces can
be obtained by retaining a small number of reduced density
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matrix eigenvectors corresponding to the highest reduced
density matrix eigenvalues. The reduced density matrix of a
chosen subblock is obtained by treating the other block as an
environment block and tracing the density over the states of the
environment block. The reduced density matrix for a subblock
of size [, so obtained, is diagonalized and M; eigenvectors
with the highest reduced density matrix eigenvalues are stored
as column vectors of a M;_;d, x M; matrix where M;_,
is the number of density matrix eigenstates retained at the
(I — Dyth iteration and d,, is the dimension of the Fock space
of the new site added to the subblock at the Ith iteration.
The Hamiltonian of the subblocks is renormalized using this
M;_1d, x M; matrix and the matrices of site operators are
also transformed to this new basis. All terms in the PPP
Hamiltonian including the long-range correlation terms can
be expressed using these renormalized site operators, and the
matrix elements of the system Hamiltonian can be obtained
by taking appropriate direct products. The next step in the
DMRG algorithm involves expanding the system block by
adding a few sites (usually two) to the previous system block.
The Hamiltonian matrix is constructed in the direct product
basis of the retained block states of the two subblocks and
Fock states of the newly added sites. From the Hamiltonian
matrix, desired eigenstates are obtained and the process of
constructing the reduced density matrix, truncating the Fock
space of the augmented system, and expanding the system by
adding two additional sites and again solving for the desired
eigenstate is repeated until we achieve the targeted system
size. The dimension of the Hamiltonian matrix is independent
of the system size as the number of block states retained to
span the Fock space of the subblocks is fixed, independent of
the physical size of the subblock. The method described above
is known as the infinite DMRG method.

In order to obtain the behavior in the thermodynamic limit
using only the infinite DMRG method, we would need to
retain a rather large number of block states (M;) and go
to much larger system sizes which is beyond our current
computational capability. Instead, we have carried out finite
DMRG calculations on systems of moderate sizes to obtain
energy gaps with high accuracy and rely on finite size scaling
to obtain the physical properties in the thermodynamic limit.

The finite DMRG algorithm was introduced by White
to improve the accuracy of finite system calculations. In
the infinite DMRG method, the density matrix of a p-site
subblock is built from the eigenstates of a 2p-site system
block. This leads to errors in the target system of 2N sites
(N > p). In order to correct this error, the p-site density

TABLE 1. Exact versus DMRG ground-state energies (in eV) of
3-ZGNR, 6-AGNR, and 5-AGNR within the noninteracting model
(U =V;; =0). The DMRG cutoff in the number of block states
is 500.

Ground-state energy

System type and size Exact calculation DMRG method
3-ZGNR and 40 sites —137.841 —137.738
6-AGNR and 40 sites —139.503 —139.312
5-AGNR and 40 sites —137.859 —137.813
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FIG. 2. (a) Construction of 3-ZGNR of 16 sites in the infinitt DMRG method starting from a small system (four sites). The number of
bonds between the new and the old sites at the intermediate system sizes are kept close to that in the final system for higher accuracy. At every
step of the algorithm two new sites are added, one to the left subblock (L) and the other to the right subblock (R). The sites in L are denoted by
numbers without primes while those in R are denoted by numbers with primes. The newly added sites are shown by solid squares (ll) while
old sites are denoted by solid circles (o). Solid lines are bonds within a subblock. The broken lines denote the bonds between e and . Bonds
between the two subblocks as well as the bonds between B are denoted by hatched lines. (b) Scheme for sweeping in finite DMRG method for
16-site (2N = 16) 3-ZGNR. In the forward sweep, the left block size increases from N — 1 to 2N — 2 sites as the right block size decreases
from N — 1 to 2 sites; in the reverse sweep, the opposite happens. During finite DMRG sweepings, the total system size remains constant. The
corresponding figures for 6-AGNR and 5-AGNR are shown in Figs. 1-3 in the Supplemental Material [59].
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matrices are iteratively constructed from the eigenstates of the
2N-site target system block, until convergence is achieved.
This procedure is termed “sweeping,” where iteratively the
size of one of the subblocks increases at the expense of the
other, while the total system block size remains unchanged.
At the final step of one full sweep, sizes of the two subblocks
become equal and the same as in the infinite DMRG step. The
finite DMRG procedure for molecular systems is nontrivial
but essential as the energies improve considerably following
the sweeping. We have employed the finite DMRG algorithm
with a block state cutoff (M) of 500 and finite DMRG iteration
of two sweeps to compare the DMRG method results with
the exact calculation results for all three nanoribbons within
the noninteracting model (Table I). The ground-state energies
compare well with the exact nearest-neighbor tight-binding
energies in all cases with a cutoff in the number of block
states M; = 500. For the interacting models, we expect the
DMRG method to be more accurate for the same cutoff
because interacting systems are less entangled. The method
of constructing the GNRs in the infinitt DMRG procedure as
well as the method of finite sweeps are shown in Fig. 2 and
Figs. 1-3 in the Supplemental Material [59].

C. Symmetry subspaces and one- versus two-photon excitations

The GNRs of interest possess C, symmetry along the
axis perpendicular to the plane of the molecule, which we
utilize in our computations as well as characterization of
eigenstates. Eigenstates are labeled A or B depending upon
whether they are of even or odd parity with respect to C,
operation. The PPP Hamiltonian conserves total spin S, but
total spin conservation is difficult within the DMRG scheme
with large cutoff in the block states. We exploit partial spin
symmetry by performing our calculations for the S, =0
sector in which the Hamiltonian has spin inversion symmetry,
corresponding to invariance of the Hamiltonian when all
spins of the system are reversed. This symmetry bifurcates
the S; = 0 space into a subspace with even total spin, i.e.,
S =0,2,4, ... (hereafter designated as “e”) and another with
odd total spin, S = 1,3,5, ... (designated as “0”). Finally, the
exactly half-filled band that we are investigating also exhibits
charge-conjugation symmetry (CCS); eigenstates are labeled
even or odd (hereafter + or —) depending upon the eigenvalue
=41 reached when operated by the CCS operator [60,61]. The
identity, the three symmetry operators, and their products form
an Abelian group of eight elements. Hence, the S, = 0 sector
gets subdivided into eight subspaces.

In general, the ground state is even with respect to all
symmetry operations and lies in the °A™ subspace. Optical
one-photon states are reached by one application of the current
operator j on the ground state,

J=G/m Y tal,ai, —al,a0), 3)

(i.j).0

which clearly changes the parity under C, symmetry while
conserving S,. It can also be shown that the application of
the j changes CCS [60]. Two-photon states are reached by
one application of j on the optical state (or two applications
of the operator on the ground state), thus indicating that they
also lie in ®A™ subspace. In the S, = 1 sector, spin inversion
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FIG. 3. Calculated lowest one-photon (optical) gaps (a, ¢, and e)
and lowest two-photon gaps (b, d, and f) in short 3-ZGNR (left),
6-AGNR (middle), and 5-AGNR (right), plotted against the number
of unit cells for different cutoff values of block states (M;). The
symbols denote the following: black open circle, one-photon gap with
M, ~ 750; red open square, one-photon gap with M; >~ 900; and blue
open triangle, one-photon gap with M; >~ 1000. Corresponding solid
symbols denote two-photon gaps.

symmetry cannot be implemented and the lowest § = 1 state is
in the B* space. Using the symmetrized DMRG method [62]
with a modified algorithm [63], all of these symmetries have
been exploited in our calculations.

In each symmetry subspace, we have calculated a few
low-lying energy states of the Hamiltonian using Davidson’s
algorithm for symmetric sparse matrices. At each step of
the DMRG algorithm, block states are computed from the
average reduced density matrix obtained from these eigen-
states instead of the reduced density matrix of a single
state. The average reduced density matrix is defined by
p =, wrpx where p; are the reduced density matrices
corresponding to eigenstates |k) and wy are the weights of the
corresponding eigenstates [57]. We have taken wy = 1/Ng,
where N; is the number of low-lying eigenstates computed
in the symmetry subspace. In what follows we define all
energy gaps with respect to the ground-state energy (thus
the lowest one- and two-photon gaps are the energy differ-
ences between the corresponding eigenstates and the ground
state).

In order to arrive at the desired cutoff in block states M;
for our calculations, we have calculated the lowest two-photon
gaps and lowest optical gaps with different cutoffs for small
systems of 3-ZGNR, 6-AGNR, and 5-AGNR (Fig. 3). We note
that M; ~ 750 is adequate for comparisons with experiments
in all three GNRs.

III. RESULTS AND DISCUSSION

We have used the unsymmetrized DMRG technique to
calculate the ground-state energies of these nanoribbons within
the PPP model (Fig. 4). The excellent linear fit of the energies
as a function of system size shows that the procedure is stable
and accurate.
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FIG. 4. Ground state energy in eV per unit cell versus 1/N for
(a) 3-ZGNR, (b) 6-AGNR, and (c) 5-AGNR within the PPP model.
Here N is the number of unit cells as depicted in Fig. 1.

A. Spin gaps

As mentioned above, it is difficult to exploit total S
invariance in the DMRG scheme. We have therefore computed
the lowest energy states in the different S, sectors; the total S
are determined from the calculated energy gaps Ay = Eo(S; =
k) — Eo(S; = 0), where Ey(S, = k) is the lowest energy in the
S, = k sector. In the absence of an external magnetic field, the
different z components of a given total S are degenerate; thus
Ay = Oimplies that the ground state lies in the total spin S = 1
subspace. This is true for arbitrary A,, and hence in general
forAj =A;=---=A, =0and A, > 0, the ground state
has spin § = p.

We have shown the dependence of the computed energy
gaps (Ay) on the DMRG cutoff for a moderate-sized 3-ZGNR
system in Table II. We find that keeping ~750 block states is
sufficient for getting accurate gaps. Among all GNRs in this
study, the energy gaps are smallest in 3-ZGNR; hence, we
expect the same cutoff to be adequate for AGNRs also.

In Fig. 5(a) we have plotted spin gaps A as a function of
the inverse of the number of unit cells () for 3-ZGNR. For
N < 14, we find A > 0, indicating that the ground state is a
singlet. For N > 14, S, = 1 and S, = O states are degenerate
(within the DMRG accuracy), which implies that the ground
state has § = 1. A, > 0 in this region, but becomes smaller
as N is further increased. It appears that S = 2 will become
the spin of the ground state for larger N values. Similarly,
the gap between S, = 3 and S, = O states also decreases with

TABLE II. Different A; values in eV calculated for 3-ZGNR
with five unit cells, for different numbers of retained block states.
The changes in the energy gaps for the different cutoff values are not
significant.

Block states cutoff Ay Ay Aj

700 0.290 1.608 4.174
750 0.292 1.610 4.177
800 0.293 1.612 4.180
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FIG. 5. Spin gaps (see text) in eV versus the inverse of the number
of unit cells for (a) 3-ZGNR, (b) 6-AGNR, and (c) 5-AGNR within the
PPP model. Insets: A, — A; (black solid up triangle) and A; — A,
(red solid down triangle), also versus the inverse of the number of
unit cells.

increasing N. The inset in Fig. 5(a) shows the behavior of
A3z — Ap and Ay — Ay, both of which rapidly approach zero
at large N. From these trends in the the spin gaps, we predict
that the ground state of this system is ferromagnetic in the
thermodynamic limit.

The spin gaps Ay for 6-AGNR are shown in Fig. 5(b).
A1 now exhibits weak size dependence and continues to be
nonzero even in the thermodynamic limit. The extrapolated A
in the thermodynamic limit is 1.43 eV, which is actually larger
than the noninteracting tight-binding band gap of 1.19 eV.
This implies that the ground state of this system is a singlet.
Indeed A is larger than that in polyacene which has a spin gap
of ~0.5 eV in the thermodynamic limit [37]. The spin gaps
A, and Aj are also large and weakly size dependent, as are
the differences between the spin gaps A, — Aj and Az — Ay,
plotted in the inset of Fig. 5(b). In general E(S) > E(S’) for
S > S’ here, where E(S) is the lowest energy in the total spin §
subspace, and the corresponding energy differences are large.

For 5-AGNR, the spin gaps between different S, sectors
and S; = 0 are shown in Fig. 5(c). The extrapolated A; in
the thermodynamic limit is 0.15 eV, indicating that the ground
state is spin singlet. From the N-dependent behavior of A,
and Aj (see in particular the inset) it is conceivable that the
energy spectrum above A may be gapless.

Itis instructive to see what is to be expected for the spin gaps
in the noninteracting limit. The energy levels of the frontier
molecular orbitals of the three GNRs are shown in Fig. 6. We
see that in 3-ZGNR, the energy gap between frontier orbitals
approaches zero rapidly, implying that switching on exchange
interaction will lead to a high-spin ground state. In 6-AGNR,
the gap between bonding and antibonding frontier orbitals is
finite for all system sizes. Introduction of electron-electron
interaction will therefore not change the spin of the ground
state and the ground state will always be a singlet. In 5-AGNR,
the gap between the bonding and antibonding frontier orbitals
progressively decreases but remains finite for large system
sizes. The small band gap implies a small spin gap in the
interacting picture.
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FIG. 6. A few energy levels near the Fermi level for (a) 3-ZGNR,
(b) 6-AGNR, and (c) 5-AGNR within the tight-binding model are
plotted as a function of the number of unit cells. The hopping
energy considered is 2.40 eV. The symbol index is the same for
all three panels and are as follows: solid circle, highest occupied
molecular orbital (HOMO) energy level; solid square, HOMO-1
energy level; solid up triangle, HOMO-2 energy level; open circle,
lowest unoccupied molecular orbital (LUMO) energy level; open
square, LUMO+1 energy level; and open up triangle, LUMO+2
energy level.

In summary, the effects of electron-electron interactions on
the three GNRs we have studied are very different and could
not have been anticipated from their tight-binding electronic
structures. The ferromagnetic ground state in 3-ZGNR is
different from the edge-state ferromagnetism found earlier
in wider ZGNRs [15,42,49]. More interestingly, while within
tight-binding theory 5-ZGNR is metallic and is hence expected
to be without a spin gap, we find a small but nonzero spin
gap here, although the spectrum of spin excitations above
the lowest gap may be gapless. As we show in Sec. IIIC,
this system also has a nonzero exciton binding energy for
nonzero electron-electron interactions. In 6-AGNR, which is
a band semiconductor, both charge and spin gaps are expected
within the tight-binding model. Our calculated results indicate
that electron-electron interactions further enhance the spin gap
here. We discuss these effects further in Sec. III B.

B. Excited-state ordering of one- versus two-photon states

As already mentioned in Sec. II C, the occurrence of the
lowest two-photon states below the lowest optical one-photon
states in linear polyenes [64,65] was the strongest evidence
for higher-order Coulomb interaction effects beyond le-1h
interactions. It is therefore of interest to determine the excited-
state ordering in these narrow GNRs we are probing; this is
particularly so because, should the present systems become
available experimentally, the corresponding two-photon states
can be reached by a variety of nonlinear spectroscopic
techniques, and our theoretical predictions tested.

We have obtained the low-lying one- and two-photon
excited states for all three GNRs within the PPP model. We

PHYSICAL REVIEW B 94, 035139 (2016)
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FIG. 7. Lowest optical and two-photon gaps in 3-ZGNR versus
the inverse of number of unit cells. As the ground-state spin value
changes on increasing the number of monomer units, the lowest
optical gaps and lowest two-photon gaps in both S =0 and S =1
sectors are plotted. Symbols represent the following: A, lowest optical
gap in singlet space; [, lowest two-photon gap in singlet space; A,
lowest optical gap in triplet space; and M, lowest two-photon gap in
triplet space. Inset: Magnified plot of the lowest optical gaps and its
extrapolation in 3-ZGNR systems, 11-16 monomer units.

have done calculations starting from 2 units up to a maximum
of 16 units of 3-ZGNR, from 2 units up to a maximum of 8
units of 6-AGNR, and from 1 unit up to 9 units of 5-AGNR,
which correspond to about 100 carbon atoms in the largest
systems studied. For extrapolation of different energy gaps in
all three nanoribbons, we have considered the largest system
sizes, specifically, from N = 10to N = 16 for 3-ZGNR, from
N =5to N =8 in 6-AGNR, and from N =4 to N =9 in
5-AGNR (N is the number of unit cells).

In 3-ZGNR, the lowest two-photon state occurs above the
lowest optical state for system sizes up to three units, but
this energy ordering is reversed in larger systems (Fig. 7).
Similar size dependence has also been observed in linear
polyenes and is expected from theoretical considerations [29].
As pointed out above, the ground state of 3-ZGNR changes
beyond a certain size. We have therefore plotted in Fig. 7 the
lowest optical and two-photon gaps for both S =0and § = 1
ground states. In the Fig. 7 inset, the data points are shown
on an expanded scale and appear to be scattered. However,
the calculated standard deviation [66] for the linear fit is small
(0.036 eV). The extrapolated value of the optical gap in the
thermodynamic limit is found to be 2.25 eV, irrespective of the
ground-state spin, which is in contradiction to the prediction of
a metallic state for this nanoribbon within one-electron theory
(see also Sec. I). Note that for system sizes where the ground
state is a triplet, the singlet optical gap increases with system
size. This is an artifact that is irrelevant for the real system with
a magnetic ground state. As shown in the figure as well as in
the inset, the triplet and singlet optical gaps lie on the same
continuous curve if the data from the artificially large singlet
gaps are ignored. However, the two-photon gaps in both singlet
and triplet spaces extrapolate to zero in the thermodynamic
limit. In linear polyenes, the lowest two-photon state is known
to be a quantum-entangled state of two triplets with overall
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FIG. 8. Lowest one-photon (optical) (A) and two-photon (LJ) gaps
in (a) 6-AGNR and (b) 5-AGNR, versus the inverse of the number
of unit cells. The ground state remains in both cases in S = 0 space.
The extrapolated one-photon and two-photon gaps are also indicated
in the figures.

spin angular momentum of zero. The zero- gap two-photon
state in the present case is to be anticipated, should the same
theoretical description as a triplet-triplet state persist here.

In 6-AGNR, the lowest optical state always remains
below the lowest two-photon state for all system sizes. The
extrapolated one- and two-photon gaps at the thermodynamic
limit are quite distinct [Fig. 8(a)]. The extrapolated value of
the optical gap is 2.45 eV while that of the two-photon gap
is 2.72 eV. The standard deviations of the linear fits of the
optical gaps and the two-photon gaps are 0.032 and 0.026 eV,
respectively. The larger two-photon gap here is a reflection of
the predominantly band semiconductor character of 6-AGNR;
therefore, the one-electron contribution to the optical gap must
be larger than the many-electron contribution. The relative
energy locations of the optical and two-photon states in
6-AGNR suggest that these systems will be fluorescent. In the
case of 5-AGNR, on the other hand, the optical state always
remains above the lowest two-photon state, although the lowest
two-photon gap does not vanish in the thermodynamic limit
[Fig. 8(b)] but saturates at a value of 0.60 eV. The optical gap in
5-AGNR extrapolates to 1.33 eV at the thermodynamic limit.
An optical gap larger than the two-photon gap in 5-AGNR is
a consequence of the former being dominated by Coulomb as
opposed to band contribution.

C. Charge gap

We have calculated the charge gaps in these nanoribbons to
explore the conducting nature in the thermodynamic limit,
in the presence of long-range interactions (Fig. 9). The
charge gap of a system with N unit cells, A.(N), is defined
as the energy required to create a well-separated electron-
hole pair from the ground state of the system: A (N) =
EY(N)+ E~(N) —2E%N), where ET(N) and E~(N) are
the ground-state energies of the cation and anion, respectively,
and E°(N) is the ground-state energy of the neutral system.
In the thermodynamic limit, the charge gaps of 3-ZGNR,
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FIG. 9. Extrapolation of the charge gaps against the inverse of the

number of unit cells, for (a) 3-ZGNR, (b) 6-AGNR, and (c) 5-AGNR,

respectively.

6-AGNR, and 5-AGNR extrapolate to 3.09, 3.58, and 2.46 eV,
respectively. Interestingly, the exciton binding energy (E,p)
of the optical state (Ej,), which is measured as E,, =
E.q — Ejph, is quite small in all the three GNRs compared to
other known organic conjugated systems. The exciton binding
energies are 0.84 eV in 3-ZGNR, 1.13 eV in 6-AGNR, and
1.13eV in 5-AGNR. Hence, these conjugated systems can have
importance in molecular photovoltaics as the electron-hole pair
can be relatively easily disassociated.

D. Bond order

We have calculated bond orders for the ground state and a
few low-lying excited states of the largest systems we studied.
The bond order (p;;) for the (i, j) bond in a given state | R) is
defined as (— %) > (R] (aja ajo + H.c.)|R), and their deviation
from an average value shows the tendency for the bond to
distort. If the bond order is more (less) than the average, we
expect the bond to shorten (lengthen) at equilibrium geometry.
The numbering of bonds in the interior units of 3-ZGNR,
6-AGNR, and 5-AGNR are shown in Fig. 10. The bond orders
towards the ends of the ribbons are normally different from
the bond orders in the interior because of edge effects. In
Table III, the bond orders of the interior unit of 3-ZGNR are
given. In the 3-ZGNR series, we have given bond orders for
two different system sizes: one with 13 monomer units, which
has a singlet ground state, and another one with 16 monomer

FIG. 10. Bond indices for the interior bonds of (a) 3-ZGNR, (b)
6-AGNR, and (c) 5-AGNR.
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TABLE III. Bond orders of an interior unit of 3-ZGNR. Bond orders in systems with <13 monomer units are given in the first row while
those for systems with >13 monomer units are given in the second row.

State 1 2 3 4 5 6 7 8 9 10 11
Ground state 0.54 0.56 0.47 0.47 0.52 0.52 0.52 0.47 0.47 0.56 0.54
0.56 0.54 0.47 0.47 0.52 0.53 0.52 0.47 0.47 0.54 0.56
Optical state 0.54 0.57 0.46 0.46 0.54 0.50 0.54 0.46 0.46 0.57 0.54
0.56 0.54 0.46 0.46 0.51 0.54 0.51 0.46 0.46 0.54 0.56
Two-photon state 0.52 0.58 0.48 0.47 0.50 0.54 0.50 0.47 0.48 0.58 0.52
0.54 0.56 0.47 0.47 0.51 0.52 0.51 0.47 0.47 0.56 0.55
Spin state 0.56 0.53 0.47 0.47 0.52 0.53 0.52 0.47 0.47 0.53 0.57
0.54 0.55 0.47 0.47 0.53 0.52 0.53 0.47 0.47 0.55 0.54

units with a triplet ground state. In both systems, the bond order
differences between edge bonds in the ground state are small,
implying almost uniform geometry of the edges. The rung
bond orders are slightly smaller than the edge bonds, implying
longer rung bonds than edge bonds at equilibrium geometry.
The ground state, the optical state, and the lowest spin state
all have similar geometries. The bond orders in the singlet and
triplet two-photon states are similar away from middle of the
ribbon. However, in the middle of the ribbon, the triplet two-
photon state has marked single- and double-bond character in
the top and bottom edge bonds (bonds 1, 2, 10, and 11).

The bond orders in 6-AGNR systems show somewhat
different behavior (see Table IV). In the ground state, bonds
on the ring and on the exterior of the edge (bond 13) show a
tendency to contract, while bond 3 on the edge which is on
the interior shows a tendency to expand. There appears to be
a period (short-short-short-long) on one edge and out of phase
by two bonds on the opposite edge. In the two-photon state,
the bond orders remain almost the same as those in the ground
state. In the one-photon state, there is considerable deviation
in the bond orders in the central region of the nanoribbon, but
the effect decreases towards the ends. However, in the triplet
state it appears that this distortion is much more pronounced.
Thus, the equilibrium geometries of the excited states are quite
different from that in the ground state and we may expect larger
Stokes shifts in the spectra of 6-AGNR compared to 3-ZGNR.

The bond orders on the edges of the 5S-AGNR are similar
to those in the 6-AGNR (see Table V). Except for the bonds
which have rather large and small bond order values, all other
bonds have nearly equal bond orders. So the distortion is
expected more on the edges than in the interior. In all excited
states, the interior bonds remain almost unperturbed. The edge
bond structure in the central region of the nanoribbon shifts
from short-long-short-short modulation to long-long-long-
short modulation, while being unchanged towards the ends of
the nanoribbon. The extent of distortion in the central region

is highest in the two-photon and triplet states as compared to
the one-photon state.

IV. CONCLUSION

We have studied correlated electronic properties of 3-
ZGNR, 6-AGNR, and 5-AGNR within the PPP Hamiltonian
with long-range Coulomb interactions. In all three cases the
ground-state as well as excited-state behaviors are qualitatively
different from the predictions of tight-binding theory, as
summarized below.

We find 3-ZGNR to be a magnetic semiconductor with a
Mott-Hubbard optical gap and a substantive exciton binding
energy. The lowest two-photon state is gapless. The semi-
conducting behavior of 3-ZGNR is not entirely unanticipated,
as similar Mott-Hubbard semiconducting behavior was previ-
ously predicted from correlated-electron calculations [67,68]
and also experimentally demonstrated [69] in narrow single-
walled carbon nanotubes which would be metallic within
one-electron theory. As with 3-ZGNR, 5-AGNR is expected
to exhibit metallic behavior within tight-binding theory, but it
is also found to be a Mott-Hubbard semiconductor here, with
now, however, a singlet ground state with small spin gap. The
two-photon state is again below the optical gap. 5S-AGNR thus
resembles an idealized trans-polyacetylene strand, where bond
dimerization leads to a spin gap, and where the occurrence of
the two-photon state below the one-photon optical gap is be-
lieved to be a signature of greater Mott-Hubbard contribution
to the optical gap than the contribution due to the Peierls bond
dimerization [35]. In 6-AGNR, the one-electron optical gap is
enhanced by Coulomb interactions, there occurs a large spin
gap, and the two-photon state occurs above the optical gap. The
overall behavior is reminiscent now of the conjugated poly-
mers poly-paraphenylene and poly-paraphenylenevinylene,
where the optical gap is dominated by the one-electron gap
expected in systems with unit cells containing an even number

TABLE IV. Bond orders of an interior unit of 6-AGNR.

State 1 2 3 4 5 6 7 8 9 10 11 12 13

Ground state 0.58 0.59 0.37 0.57 0.56 0.44 0.45 0.51 0.57 0.56 0.58 0.58 0.66
Optical state 0.49 0.50 0.48 0.53 0.50 0.48 0.50 0.51 0.53 0.50 0.49 0.50 0.72
Two-photon state 0.57 0.57 0.38 0.54 0.54 0.47 0.47 0.50 0.55 0.54 0.56 0.58 0.65
Triplet state 0.48 0.48 0.50 0.52 0.48 0.48 0.51 0.51 0.52 0.48 0.47 0.48 0.73
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TABLE V. Bond orders of an interior unit of 5-AGNR.

State 1 2 3 4 5 6 7 8 9 10 11 12 13
Ground state 0.60 0.39 0.60 0.63 0.51 0.51 0.52 0.51 0.51 0.61 0.39 0.60 0.63
Optical state 0.57 0.42 0.57 0.67 0.51 0.51 0.51 0.51 0.52 0.57 0.42 0.57 0.67
Two-photon state 0.50 0.48 0.51 0.72 0.52 0.52 0.49 0.52 0.52 0.51 0.48 0.50 0.71
Triplet state 0.52 0.47 0.51 0.72 0.52 0.52 0.50 0.52 0.52 0.52 0.47 0.51 0.72
of carbon atoms [33]. The three GNRs we have studied ACKNOWLEDGMENTS

thus span the full range of behavior expected in quasi-one-
dimensional correlated-electron systems. Conversely, the ap-
parent similarities between these narrow GNRs and conjugated
polymers reflect the deep and fundamental universality that
exists among low-dimensional correlated-electron systems.
Experimental tests of our theoretical predictions will provide
fresh insight on the role of electron-electron interactions in
carbon nanostructures. It is also of interest to determine how
these features evolve upon controlled increase in the widths of
GNRs. This is a topic of future research.
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