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Commensurability is of paramount importance in numerous strongly interacting electronic systems. In the
fractional quantum Hall effect, a rich cascade of increasingly narrow plateaux appear at larger denominator
filling fractions. Rich commensurate structures also emerge, at certain filling fractions, in high temperature
superconductors and other electronic systems. A natural question concerns the character of these and other
electronic systems at irrational filling fractions. Here we demonstrate that quasicrystalline structures naturally
emerge in these situations, and trigger behaviors not typically expected of periodic systems. We first show that
irrationally filled quantum Hall systems cross over into quasiperiodically ordered configuration in the thin-torus
limit. Using known properties of quasicrystals, we argue that these states are unstable against the effects of
disorder, in agreement with the existence of quantum Hall plateaux. We then study analogous physical situations
in a system of cold Rydberg atoms placed on an optical lattice. Such an experimental setup is generally disorder
free, and can therefore be used to detect the emergent quasicrystals we predict. We discuss similar situations in
the Falicov-Kimball model, where known exact results can be used to establish quasicrystalline structures in one
and two dimensions. We briefly speculate on possible relations between our theoretical findings and the existence
of glassy dynamics and other features of strongly correlated electronic systems.
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I. INTRODUCTION

The effects of commensurability appear in an extensive
set of strongly correlated systems that, among many oth-
ers, includes the high-temperature cuprate superconductors
[1–6] and the fractional quantum Hall systems [7,8]. These
effects often arise from an intricate interplay between the
inherent length scales of the system and restrictions, e.g.,
those concerning magnetization or total particle number.
Depending on such externally imposed constraints, distinct
phases may arise. This dependence may have strong conse-
quences for the nature of excitations and criticality in such
systems.

To motivate the quintessential physics investigated in this
work, consider N strongly interacting particles placed on the
sites of a periodic lattice of M sites. In a continuum rendition
of such a theory (i.e., one in which the particles do not
need to occupy lattice sites), when the interactions are long
ranged and repulsive, homogeneous Wigner-crystal type [9]
structures will be energetically preferred; the periodicity of
such a Wigner lattice will be set by the particle density and
interactions.

In this study, the particles will be constrained to reside on
the discrete sites of another spatial structure—the underlying
periodic crystal. The latter lattice defining the theory may be
incommensurate relative to the basic periodicity of the ideal
Wigner lattice. The mismatch between the externally imposed
lattice spacing and the energetically favored Wigner lattice
length scale may spawn complex superlattice structures, which
may spontaneously break the original lattice translational
symmetries (as well as rotational and other point group
symmetries).

In systems where the average number (f = N/M) of
particles per site is irrational, simple periodic order is
prohibited. Nevertheless, long-range interactions may still
favor the formation of structures with some form long-range
correlations, even in the absence of periodicity.

As the above arguments hint, strongly interacting systems
at irrational filling fractions may exhibit rich structures (and
ensuing physical characteristics). Indeed, even deceptively
simple-looking Ising and other models [10–20] harbor a
plethora of highly nontrivial ground states and dynamics [21]
with devil staircase structures. Frustration effects between
incommensurate length scales were additionally shown to
induce incommensurately modulated crystals in various clas-
sical systems [22,23]. It was further demonstrated experimen-
tally that similar effects stabilize incommensurate composite
crystals [24–26]. Additionally, it was recently shown [27]
that one-dimensional (1D) quasicrystals may emerge due to
the coupling between two incommensurate charge ordered
subsystems. Related effects appear also in quantum systems,
e.g., the frustration between the lattice and magnetic length
scales in the Hofstadter problem [28] gives rise to a fractal
spectrum [29].

As we will describe in this work, naturally occurring
strongly correlated electronic systems and other quantum
theories having only ubiquitous kinetic hopping, Coulomb,
and spin exchange interactions may, quite generally, exhibit
largely unexplored emergent quasicrystalline structures for
irrational filling fractions (without spin-orbit terms explored
in interesting recent studies [30–33]). For instance, as we
will demonstrate, even on periodic one- and two-dimensional
ionic lattices, interactions may render the underlying electronic
structures to be quasicrystalline. The peculiar phenomenon
of emergent quasicrystals (QCs) may trigger behaviors not
typically expected of translationally invariant systems.

These predicted emergent electronic (and other) quantum
quasicrystalline structures notably differ from quasicrystals
discovered long ago in metallic alloys [34–36] and intensely
studied in the decades since. In the celebrated metallic alloy
quasicrystalline systems, the underlying ionic structure is, on
its own, already quasiperiodic and may be further stabilized,
in some cases, by electronic effects [37]. By contrast, in the
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FIG. 1. A finite patch of the electronic quasicrystal that emerges
in the two-dimensional Falicov-Kimball model. Notice that while
the particles reside on a periodic lattice, the resulting structure must
be aperiodic due to the irrational filling of the system. However,
the strong interactions trigger a long-range ordered quasiperiodic
structure, as revealed by the pointlike diffraction pattern. Our results
indicate that such quasicrystalline structures appear quite broadly in
clean strongly correlated systems which exhibit the type of irrational
frustration we describe.

systems studied here an effective quasicrystalline electronic (or
other) structure emerges on periodic ionic or optical lattices
(see, e.g., Fig. 1).

In general, QCs are aperiodic structures with well defined
Bragg peaks [34–36]. The Fourier transform of the density
takes the form

ρ(k) =
∑

G

ρGδ(k − G), (1)

where the reciprocal vectors are combinations of D basis
vectors, G = ∑D

i=1 mibi , and the coefficients mi are integer
valued. QCs differ from periodic crystals in that D exceeds
the spatial dimension d [38,39].

A direct consequence of the above is that these struc-
tures have D global U (1) symmetries, ρ(G) → ρ(G)e2πiχ (G),
satisfying χ (G = ∑D

i=1 mibi) = ∑D
i=1 miχ (bi). Rigid trans-

lations are described by d linear combinations of χ (bi). The
remaining (D − d) independent phases describe additional
global rearrangements that generate distinct QCs with identical
statistical characteristics. These symmetry operations, having
no analogs in periodic crystals, are called phason symmetries
[40]. Phason symmetries will play a key role in our investiga-
tion.

II. QUANTUM HALL SYSTEMS AT IRRATIONAL FILLING
FACTORS

To concretely describe our results, we first study the
quantum Hall effect at an irrational filling and demonstrate
the emergence of quasiperiodic structures. We predict that
while these states are unstable against disorder, as evident
from the observation of quantum Hall plateaux, one may,
nonetheless, see signatures of the underlying quasiperiodic
structure by looking at increasingly cleaner samples. Fur-
thermore, as we will explain, similar phenomena appear in
a system of cold Rydberg atoms, where disorder is absent

and emergent quasicrystalline structures can be more crisply
observed.

We focus on the so called “thin-torus limit,” in which the
planar quantum Hall (QH) system is mapped onto a one-
dimensional (1D) classical problem [41–46]. The original two-
dimensional (2D) fractional quantum Hall (FQH) Hamiltonian
admits a natural 1D description within the guiding center
representation, in which the single-electron wave functions
ψk(�r) are labeled by a single momentum momentum index
k. In the Landau gauge, for example, the momentum k

in the x direction controls the average position in the y

direction.
Remarkably, when placing the FQH system on a torus for

which the circumference associated with one of its directions
(the “y direction”) far exceeds the system size along the
other transverse (“x”) direction, the overlap between adjacent
wave functions is small and the 1D model becomes classical.
Specifically, the remnant nonvanishing terms lead to

H =
∑
j1j2

V (j1 − j2)nj1nj2 , (2)

where the natural numbers nj denote the occupancies of
respective states ψ 2πj

Lx

. The projected interactions take the form

V (j1 − j2) = 1

2

∫ ∫
d2r1d

2r2[|ψ 2πj1
Lx

(�r1)|2Vc(�r1 − �r2)

× |ψ 2πj2
Lx

(�r2)|2], (3)

where Vc(�r1 − �r2) is the Coulomb interaction.
Notwithstanding the formal simplicity of Eq. (2), much

nontrivial physics is captured by this classical Hamiltonian.
Fortunately, a general solution for this problem exists. As-
suming a general repulsive interaction V (j ) which satisfies
V (j + 1) + V (j − 1) � 2V (j ) and vanishes as j → ±∞,
a prescription for generating the ground state configuration
corresponding to any rational filling f = p

q
was presented

in Ref. [47]. This general recipe illustrates that the ground
states are periodic, with a unit cell of size q. Examples of the
ground state configurations corresponding to various rational
filling fractions f are provided in Table I, the third column of
which presents the pattern of consecutive nj values in a unit

TABLE I. The ground state configurations corresponding to
1D systems whose filling factors are given by the sequence fa =
Fa/Fa+2, where Fa is the ath Fibonacci number. The first and second
columns present the index a and the corresponding value of fa . The
third column presents the unit cell of the ground state configurations
in the occupation basis, and the fourth column presents these in the
compact notation S = 10 and L = 100.

a fa Configuration Sequence

1 1
2 = 0.5 10 S

2 1
3 = 0.3333 . . . 100 L

3 2
5 = 0.4 10100 SL

4 3
8 = 0.375 10010100 LSL

5 5
13≈ 0.38461 . . . 1010010010100 SLLSL

6 8
21≈ 0.38095 . . . 100101001010010010100 LSLSLLSL
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FIG. 2. The Fourier transform of the occupation in the ground
state configuration corresponding to a = 15, whose unit cell is of size
1597. For comparison, the squares represent the Fourier components
of the Fibonacci quasicrystal.

cell. We observe that in general, FQH states cross over into
classical periodic states as we approach the thin-torus limit.
Remarkably, some of the topological properties of the original
FQH states, such as the fractional charges, are encoded in those
periodic structures [41–46].

Thus far we largely reviewed the properties of the ground
state in the thin-torus limit. We now explicitly turn in more
detail to our results associated with irrational filling factors f .
As an illustrative example specifically associated with Table I,
we set f equal to an archetypal irrational number f = 1 − τ =
3−√

5
2 ≈ 0.38197, where τ is the reciprocal of the golden ratio

τ =
√

5−1
2 .

A sequence of rational numbers that converges to (1 − τ ) is
provided by fa = Fa

Fa+2
, where Fa is the ath Fibonacci number

(Fa = Fa−1 + Fa−2 with F1 = F2 = 1). Using the general
prescription of Ref. [47], we may then generate the periodic
ground state configurations for any such fraction. The unit
cells corresponding to a = 1,2, . . . ,6 are presented in Table I.
Perusing Table I, one observes that two adjacent occupied sites
(sites j at which nj = 1) are always separated by either one
or two empty sites (nj = 0). We verified that this persists for
higher values of a as well. The ground state configurations
can therefore be compactly encoded by combinations of the
strings S = 10 and L = 100 as presented in the last column of
Table I.

Interestingly, we find that the (a + 1)th unit cell may
be iteratively generated from the ath cell via the inflation
rules S → L, L → SL. Remarkably, these are the very same
inflation rules defining the Fibonacci QC [48,49]. To verify that
the ground state configuration tends to that of the Fibonacci
QC in the irrational fa limit, we numerically compute the
Fourier transform of the function n(j ) corresponding to a = 15
(for which the unit cell is of length 1597). In Fig. 2 these
Fourier weights are contrasted with the Fourier components
of the Fibonacci QC (whose Bragg peaks are located at
k = 2π [(τ l)mod1], where l is an integer, and Fourier weights
can easily be calculated analytically [50]). Aside from small
amplitude fluctuations, which asymptotically tend to zero as a

increases, the two diffraction patterns coincide to a very good
approximation.

The above numerical evidence indicates that in the a →
∞ limit, the ground state configuration coincides with the
Fibonacci QC. The realization of a QC structure has immediate
physical consequences. This is so as QCs exhibit the earlier
noted continuous U (1) phason symmetries. These symmetries
become transparent when writing the Fourier components of
the density in the form

n(k) =
∞∑

l=−∞
δ(k − 2πlτ )nle

2πilχ , (4)

where the phason symmetry is manifest as a U (1) invariance
under changes of the phase χ .

We now describe the low lying excitations about QC ground
states for disparate potentials V . Such excitations result from
effective long-range spatial variations of the phase χ . However,
as χ is a globally defined quantity, any such description
poses a fundamental difficulty. Heuristically, however, we may
partition the system into large patches whose linear spatial
size is still much smaller than the scale associated with the
change of χ . As χ is essentially a constant on the scale of
a single patch, it can be defined locally by calculating the
Fourier transform of the density in that region. This intuitive
idea can be implemented formally with the aid of the local
Fourier transform (LFT) [50],

n(k,j ) = 1

A

∑
m

wσ (j − m)n(m)e−ikm, (5)

where wσ (m) is a weight function that is equal to unity in a
region of linear size σ centered around the origin, and vanishes
otherwise. The parameter A is defined as A = ∑

j wσ (j ).
Pictorially, n(k,j ) indeed describes the Fourier transform of
n(j ) inside a patch of size σ , centered around the point j . In
terms of the LFT, we can write the low energy excitations as

n(j,k) =
∞∑

l=−∞
δ(k − 2πlτ )nle

2πilχ (j ), (6)

where χ (j ) is a slowly varying function σ∂xχ � 1. Writing
the Hamiltonian in terms of the local Fourier components, and
invoking Eq. (6), we obtain

H =
∑
m

V (m)
∑
l,j

|nl|2e2πiml[∂j χ(j )+τ ]. (7)

Here we approximated χ (j + m) − χ (j ) = m∂jχ (j ). The
sum over l can be performed analytically, as shown in the
Supplemental Material [51].

For a given interaction V , the energy associated with the
low-energy configurations can be evaluated directly from
the resulting expression. To illustrate this, we plot in Fig. 3 the
energy corresponding to V (m) = V0m

−3. For this interaction
(and other potentials of the form V (m) = V0m

−α [51]), we
obtain, for small ∂jχ , a nonanalytic energy dependence of the
form

H =
∑

j

|∂jχ (j )|{a + b�[∂jχ (j )]}. (8)
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FIG. 3. Phason excitation energies as a function of ∂xχ , for
V (m) = V0m

−3.

Thus, in the limit of strong interactions the system is gapless,
in agreement with the Goldstone theorem.

As our primary model is one dimensional, the quantum
fluctuations caused by inflating the torus inhibit sponta-
neous breaking of the continuous phason symmetry. Instead,
the system may exhibit algebraic correlations of the form
〈e2πi[χ(j )−χ (0)]〉 ∝ |j |−η. Such a behavior was observed nu-
merically in Ref. [50] in an analogous 2D classical system.

More generally, as our results indicate that the FQH states
at irrational filling are gapless, these states are unstable to
disorder. Such an instability is consistent with the existence
of quantum Hall plateaux. In fact, we can easily use the
above framework to establish the hierarchy of quantum Hall
states, in which the gap (and therefore, the region of stability)
of quantum Hall states of filling ν = p/q monotonically
decreases with q. This is shown in details in the Supplemental
Material [51].

Despite the above instability with respect to disorder, it
is clear that as the quality of samples improves, additional
quantum Hall plateaux emerge, serving as approximants to
the underlying quasicrystalline patterns.

III. QUASICRYSTALS IN AN ULTRACOLD ATOMIC
SYSTEM

Following Refs. [52,53], we now study a system of cold
Rydberg atoms placed on an optical lattice (of arbitrary spatial
dimensionality). These disorder free systems are natural can-
didates for observing the emergent quasicrystalline structures
that we find. We assume that each site contains exactly one
particle. Using an external laser, a transition from the ground
state to an excited Rydberg state is enabled, making each lattice
site a two-level system. We note that a realization of such a
setup was reported in Ref. [54], where the authors use 87Rb
atoms, and the excited Rydberg state is the 43S1/2 state.

We label the states by a pseudospin Sz =↑ / ↓ (where ↓
represents the ground state and ↑ represents the excited state).
In terms of the spin-1/2 degrees of freedom, the Hamiltonian

can be written in the form [52]

H =
∑
R,R′

J (|R − R′|)
(

Sz
R + 1

2

)(
Sz

R′ + 1

2

)

− J⊥
2

∑
〈R,R′〉

(S+
R S−

R′ + H.c.) +
∑

R

(
�Sx

R − �Sz
R

)
. (9)

Here � is the Rabi frequency, � is the detuning, J (|R|) = J0
|R|α

represents the repulsive interactions between excited atoms
(which can be, e.g., of the van der Waals type, for which
α = 6), and the parameter J⊥ quantifies the hopping of
excitations. Remarkably, the strength J0 of van der Waals
interactions scales as n11 [55], where n is the principle quantum
number [56]. This makes the van der Waals interactions
between two Rydberg atoms a dominant effect over length
scales as large as a few micrometers.

As indicated above, in realistic experimental setups the
largest scale is J0, prompting us to start by neglecting all
other terms. Once we do that, it is clear that the ground state is
polarized, with Sz

R = −1/2 for all R. If we introduce a nonzero
positive �, it becomes energetically preferable to have a finite
density of up-spins.

In fact, for any rational number f = p/q, we can find a
finite range of � for which the density of up-spins is f in
the ground state. Notice, however, that the size of this range
diminishes as q increases. Taking the long-range interactions
into account, and starting from the 1D situation for simplicity,
the considerations used to study quantum Hall systems can be
replicated mutatis mutandis, showing that the up-spins form
periodic structures with a unit cell of size q (see Table I).

In particular, specializing in the sequence fa of densities,
the resulting unit cell is of size Fa+2, and converges again
to the Fibonacci quasicrystal as the index a increases. For
any value of a, there are Fa+2 distinct ground states differing
by translations. For convenience, the different ground states
are labeled by the parameter χ ≡ (d Fa+1

Fa+2
)mod1, where d is

an integer describing the translation with respect to some
reference ground state. The parameter χ can take the values
0, 1

Fa+2
, 2
Fa+2

, . . . ,
Fa+2−1
Fa+2

, and uniformly covers the segment
[0,1) in the limit a → ∞. This notation is useful as in the limit
a → ∞, the parameter χ represents the phason symmetry
of the Fibonacci quasicrystals. We represent a ground state
configuration as u

χ
a u

χ
a u

χ
a u

χ
a u

χ
a u

χ
a · · · , where u

χ
a is the unit cell

(for example, for f = 1/2, we get u0
1 = 10 and u

1/2
1 = 01).

For any finite a, the low energy excitations include configu-
rations that differ from a ground state by a set of domain walls.
These can generally be represented as u

χ1
a u

χ2
a u

χ3
a u

χ4
a u

χ5
a · · · ,

where the label χ varies in space. Following Eq. (8), we model
the energy of such a configuration as HC = ∑

n φ(χn − χn+1),
where φ is a periodic function which coincides with Eq. (8) for
small changes. Next, we can consider the effects of quantum
fluctuations induced, e.g., by a nonzero J⊥.

We verified numerically that the smallest change in χ within
a unit cell is reduced in real space to an exchange of spin
between adjacent sites. Consequently, the term multiplying
J⊥ connects states of different χ . Assigning a state written in
the basis {|χ = 0〉,|χ = 1

Fa+2
〉,|χ = 2

Fa+2
〉, . . . ,|χ = Fa+2−1

Fa+2
〉}

in each unit cell, we get a term of the form HQ = J⊥
2

∑
n σn +
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H.c., where the operators σn are defined such that σn|χn〉 =
|(χn + 1

Fa+2
)mod1〉. We refer to the resulting 1D model (given

by HC + HQ) as a modified quantum Fa+2-state clock model,
in which the energy associated with spatial variations of the
spin is determined by the function φ.

This model is in the universality class of the 2D classical
clock model, which evolves into that of the 2D classical
XY model in the limit a → ∞. We conclude that arbitrar-
ily weak quantum fluctuations demote the quasicrystalline
ground state into a quasi-long-range ordered phase with
algebraic correlations of the form 〈exp [2πi(χn − χn+m)]〉 ∝
m−η(J⊥,J0). However, following the numerical results presented
in Ref. [50], we may speculate that η is typically parametrically
small. Therefore, while true quasicrystalline long-range order
cannot exist in 1D, Bragg peaks can still be observed in small
systems.

In higher spatial dimensions (D > 1), quasicrystalline
long-range order is expected to survive the introduction of
quantum fluctuations. Indeed, in what follows we turn to study
the Falicov-Kimball model, in which exact results may be used
to demonstrate the validity of our arguments beyond 1D.

IV. THE FALICOV-KIMBALL MODEL

We now use similar considerations to study the irrationally
filled Falicov-Kimball model. The Hamiltonian [57]

H = −t
∑

〈R,R′〉
(f †

RfR′ + H.c.) + U
∑

R

c
†
RcRf

†
RfR (10)

portrays interactions between spineless itinerant and localized
electrons. Here fR (cR) is the annihilation operator of itinerant
(localized) electrons at site R. Alternatively, the c (or f )
fermions may portray positively (negatively) charged ions
(electrons) with an attractive (i.e., U < 0) interaction. We
assume that the total electron and ion numbers are equal and
fixed, 1

N

∑
R f

†
RfR = 1

N

∑
R c

†
RcR = f .

In the limit of large negative U , the second term drives
localized electron-ion bound states. The second term, on the
other hand, favors electron delocalization, and therefore acts
qualitatively as repulsive interactions between bound states. In
1D, for any rational f = p/q, and sufficiently large |U | [58],
the ions form a periodic lattice with a unit cell of size q [59].
In two dimensions (2D) [60,61], a periodic arrangement of
diagonal stripes emerges for rational f ∈ [ 1

3 , 2
5 ], wherein the

stripe locations assume configurations identical to those in the
corresponding ground states of the 1D system. A prescription
for constructing the 1D ground state configurations was
provided in [59].

These earlier rigorous results pave the way for our exact
study of the irrationally filled model in 1D (and 2D). As before,
we set 1

3 < f = (1 − τ ) < 2
5 in the large |U | regime [62].

Approximating f with high denominator elements of the ratio-
nal number sequence {fa}, as we have in the systems described
above, and invoking the results of Ref. [59] (and [60,61]), we
discover structures identical to those found in the Fibonacci
QC. Putting all of the pieces together, quasicrystalline type
order may emerge for large denominator approximants to
irrational particle densities f , in two-dimensional electronic
systems. A sketch is provided in Fig. 1.

As we argued above, in this case, quantum fluctuations
are not expected to destabilize the quasicrystalline nature of
the model. Thus, the electronic structure may, similar to a
periodic crystal, reveal sharp Bragg peaks for momenta parallel
to the direction of the stripes and concomitantly exhibit more
intricate quasicrystalline features for momenta transverse to
the stripe direction. If quantum and/or thermal fluctuations or
disorder partially suppress the quasicrystalline features then
the resulting momentum space patterns may be qualitatively
similar to those anticipated for “electronic liquid crystals” (in
particular for those of the nematic type) [63,64].

V. CONCLUSIONS

We demonstrated that QC type ground states and associated
gapless excitations appear in a broad set of one- and two-
dimensional strongly interacting systems. Clearly disorder,
fluctuations, and other effects may stabilize more standard
commensurate orders (or destroy these altogether). One
may, nevertheless, expect to find imprints of the underlying
quasiperiodic structures even when these are destroyed, e.g.,
in the form of stable approximants with a finite (but large)
unit cell as experimentally appears elsewhere [65]. Alterna-
tively, these effects may result in nonhomogeneous systems
containing puddles of approximate quasiperiodic structures.

As an immediate consequence of our results, we expect
these systems to be associated with slow dynamics, due to
the exceptionally long relaxation of the phason degrees of
freedom. In particular, one may postulate that the very slow
dynamics observed in some correlated electronic systems via
NMR and NQR [66–68] may be rationalized by phason-type
excitations.

In general, quasicrystals may exhibit certain features similar
to those of structural glasses such as stretched exponential
type dynamics [69]. Specifically, the structural relaxation in
an equilibrated quasicrystal is composed of an initial rapid
(so-called β type) relaxation, which is followed by a slower
(α type) relaxation with a stretched exponential behavior as
in glasses. This behavior is generally associated with the
phason degrees of freedom. In particular, when supercooled
from high temperatures, a system that is a quasicrystal in
equilibrium might become quenched into a glass just as more
common supercooled liquids do. Furthermore, in metallic
liquids, compositions that lead to glasses and quasicrystals
often lie in close proximity to each other [70,71]. In fact,
certain theories consider glasses to be aperiodic crystals [72].

Taken together, all of the above suggest that systems
exhibiting quasicrystalline ground states may be unstable
to (i) commensurate lock-in effects (possibly to high order
approximants in clean systems) or, as underscored above,
(ii) an inherent susceptibility towards glassy dynamics and
aperiodic structures. Indeed, in certain strongly correlated
electronic and disorder free magnetic systems, stretched
exponential decay and other features of glassy (or possible
other extremely slow) dynamics appear [66,73–76].

The fate of the emergent quasicrystals that we found
theoretically and imprints thereof including, notably, possible
relations between our prediction of electronic and atomic QCs
to experimental findings remain to be tested by numerics.
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D. Shahar, Sci. Rep. 5, 13503 (2015).

035131-7

http://dx.doi.org/10.1088/0305-4470/25/4/012
http://dx.doi.org/10.1088/0305-4470/25/4/012
http://dx.doi.org/10.1088/0305-4470/25/4/012
http://dx.doi.org/10.1088/0305-4470/25/4/012
http://dx.doi.org/10.1023/A:1026504524149
http://dx.doi.org/10.1023/A:1026504524149
http://dx.doi.org/10.1023/A:1026504524149
http://dx.doi.org/10.1023/A:1026504524149
http://dx.doi.org/10.1023/A:1023023230602
http://dx.doi.org/10.1023/A:1023023230602
http://dx.doi.org/10.1023/A:1023023230602
http://dx.doi.org/10.1023/A:1023023230602
http://dx.doi.org/10.1038/31177
http://dx.doi.org/10.1038/31177
http://dx.doi.org/10.1038/31177
http://dx.doi.org/10.1038/31177
http://dx.doi.org/10.1073/pnas.1406297111
http://dx.doi.org/10.1073/pnas.1406297111
http://dx.doi.org/10.1073/pnas.1406297111
http://dx.doi.org/10.1073/pnas.1406297111
http://dx.doi.org/10.1103/RevModPhys.65.213
http://dx.doi.org/10.1103/RevModPhys.65.213
http://dx.doi.org/10.1103/RevModPhys.65.213
http://dx.doi.org/10.1103/RevModPhys.65.213
http://dx.doi.org/10.1103/PhysRevLett.85.642
http://dx.doi.org/10.1103/PhysRevLett.85.642
http://dx.doi.org/10.1103/PhysRevLett.85.642
http://dx.doi.org/10.1103/PhysRevLett.85.642
http://dx.doi.org/10.1103/PhysRevLett.87.127206
http://dx.doi.org/10.1103/PhysRevLett.87.127206
http://dx.doi.org/10.1103/PhysRevLett.87.127206
http://dx.doi.org/10.1103/PhysRevLett.87.127206
http://dx.doi.org/10.1103/PhysRevB.92.165116
http://dx.doi.org/10.1103/PhysRevB.92.165116
http://dx.doi.org/10.1103/PhysRevB.92.165116
http://dx.doi.org/10.1103/PhysRevB.92.165116
http://dx.doi.org/10.1016/0022-3093(95)00425-4
http://dx.doi.org/10.1016/0022-3093(95)00425-4
http://dx.doi.org/10.1016/0022-3093(95)00425-4
http://dx.doi.org/10.1016/0022-3093(95)00425-4
http://dx.doi.org/10.1016/j.jnoncrysol.2003.11.052
http://dx.doi.org/10.1016/j.jnoncrysol.2003.11.052
http://dx.doi.org/10.1016/j.jnoncrysol.2003.11.052
http://dx.doi.org/10.1016/j.jnoncrysol.2003.11.052
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
http://dx.doi.org/10.1146/annurev.physchem.58.032806.104653
http://dx.doi.org/10.1103/PhysRevLett.94.017002
http://dx.doi.org/10.1103/PhysRevLett.94.017002
http://dx.doi.org/10.1103/PhysRevLett.94.017002
http://dx.doi.org/10.1103/PhysRevLett.94.017002
http://dx.doi.org/10.1073/pnas.1511006112
http://dx.doi.org/10.1073/pnas.1511006112
http://dx.doi.org/10.1073/pnas.1511006112
http://dx.doi.org/10.1073/pnas.1511006112
http://dx.doi.org/10.1209/0295-5075/93/67001
http://dx.doi.org/10.1209/0295-5075/93/67001
http://dx.doi.org/10.1209/0295-5075/93/67001
http://dx.doi.org/10.1209/0295-5075/93/67001
http://dx.doi.org/10.1038/srep13503
http://dx.doi.org/10.1038/srep13503
http://dx.doi.org/10.1038/srep13503
http://dx.doi.org/10.1038/srep13503



