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Theory of finite size effects for electronic quantum Monte Carlo calculations of liquids and solids
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Concentrating on zero temperature quantum Monte Carlo calculations of electronic systems, we give a general
description of the theory of finite size extrapolations of energies to the thermodynamic limit based on one- and
two-body correlation functions. We introduce effective procedures, such as using the potential and wave function
split up into long and short range functions to simplify the method, and we discuss how to treat backflow wave
functions. Then we explicitly test the accuracy of our method to correct finite size errors on example hydrogen
and helium many-body systems and show that the finite size bias can be drastically reduced for even small
systems.

DOI: 10.1103/PhysRevB.94.035126

Quantum Monte Carlo (QMC) methods allow us to calcu-
late the energy per particle EN of a finite system containing
N particles, with N � 103 for almost all simulations of
electronic systems [1,2]. However, for extended systems, we
are often interested in scaling to the thermodynamic limit,
E∞; this scaling is one of the major sources of bias in
quantum Monte Carlo calculations of electronic structure.
In practice, extrapolation is often performed numerically by
assuming simple functional forms for EN as a function of
1/N , often inspired by results of approximate theories, such
as Kohn-Sham DFT [3–5] or from the behavior of approximate
many-body calculations, e.g., from RPA calculations [6].
These heuristic extrapolations can be dangerous and introduce
a possible systematic bias, as the exact ground state energy, as
well as other properties, are in general not a simple analytic
function of 1/N . In fact, the scaling function will depend
on the electronic state, for example, it will be different in a
metal and an insulator, and can depend on the form of the trial
wave function underlying the QMC calculation. In addition,
within variational approaches, the amount that the variational
energy is above the exact energy may depend on the system
size because of the values of the variational parameters. This
introduces a further source of error in a purely numerical
extrapolation. Projection methods can reduce this bias, since
they are closer to the true ground state energy, but in practice
it can be a difficult problem to ensure a uniform convergence
concerning projection time or population size with respect to
the system size [7].

In this paper we present a general theory for understanding
the finite size bias of QMC calculations. Although we concen-
trate on electronic systems where finite size effects represent
one of the major limitations, our approach applies equally
well to other quantum systems with different interactions and
dimensionality, including bosonic ones. As we will show, the
leading order size effects can be understood by looking at the
analytical structure of the trial wave function [8,9] which is—at
least partially—determined by singularities of the Hamiltonian
and/or the boundary conditions [10–12]. Different types of

wave function will, in general, have different types of size
effects. In particular, we show that backflow wave functions
give rise to kinetic energy corrections which have not been
considered previously.

Size effects depend on the observable we are interested
in. In this paper we focus on one of the most fundamental
quantities, the total energy [8,13–15]. However, the ideas can
be generalized to determine the finite size effects of different
observables such as the momentum distribution [16–19].

The paper is organized as follows. Section I is a general
introduction to finite size effects of quantum systems. Focusing
on electronic calculations we systematically discuss the origins
of size effects for the kinetic and potential energies. In Section
II we propose robust procedures to estimate the finite size bias
in electronic structure calculations. In Section III, we apply
our method to QMC calculations of b.c.c. solid hydrogen with
different underlying trial wave functions and calculations of
liquid hydrogen and hydrogen-helium mixtures. Conclusions
are presented in Sec. IV. Technical aspects concerning the
long-range character of the Jastrow potential, the backflow
corrections, and details of the split-up of the long and short-
range part of the potential energy via the Ewald potential are
given in the Appendices.

I. INTRODUCTION TO FINITE SIZE ESTIMATION

Consider Na particles of species a = 1, . . . M with mass
ma described by the Hamiltonian H = T + V where

T = −
M∑

a=1

Na∑
i=1

�
2

2ma

∇2
ia

(1)

V =
∑

a

∑
ia<ja

vaa(ria − rja
) +

∑
a<b

∑
ia ,jb

vab(ria − rjb
) (2)

are kinetic and potential energy operators. Here, ria are the
coordinates of species a, vaa (vab) are the intra (inter) species
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potentials. The energy per particle is then

EN = 〈H 〉0/N (3)

where 〈. . . 〉0 denotes its expectation value in the state �0(R).
Here, R indicates the coordinates of all particles and we take
the normalization N to be the total number of electrons, N =
Ne, but it must be proportional to the volume, �; one takes the
thermodynamic limit so that the density is fixed in the limit of
N → ∞.

Since the Hamiltonian only involves single and two-body
potentials, we can express the total energy in terms of the
reduced single particle and two-particle density matrices of
�0: ρ(1)

a (r; r′) and ρ
(2)
ab (r1,r2; r′

1,r
′
2) (in the latter we will only

need the diagonal components r1 = r′
1 and r2 = r′

2). We write
the reduced density matrices in Fourier space in terms of the
momentum distribution na

k and the structure factor Sab(k)

na
k = 1

�

∫
dr

∫
dr′eik·(r−r′)ρ(1)

a (r; r′) (4)

Sab(k) = δab + 1

N

∫
dr

∫
dr′eik·(r−r′)ρ

(2)
ab (r,r′; r,r′)

= 1

N

〈
ρa

kρb
−k

〉
, (5)

where ρa
k = ∑

ia
exp[ik · ria ] are collective density fluctua-

tions. Here, and in the following, we use the convention

v(r) = 1

�

∑
k

vke
ik·r (6)

vk =
∫

dr e−ik·rv(r) (7)

for discrete Fourier transforms of periodic functions inside a
volume �. The kinetic and potential energy per particle can
then be expressed as

TN = 1

N

∑
a

∑
k

�
2k2

2ma

na
k (8)

VN = 1

2�

∑
a,b

∑
k

vab
k [Sab(k) − Na/Nδab]. (9)

These expressions are our basis for understanding the
size effects in periodic boundary conditions. To simplify the
notation, we restrict to a single component system and consider
the momentum distribution nN

k and the structure factor SN (k)
for a finite system of N particles in a cube of linear extension
L. With periodic boundary conditions, both functions are
given on a discrete grid in Fourier space of spacing 2π/L. In
the thermodynamic limit these functions attain their limiting
forms: nN

k → n∞
k and SN (k) → S∞(k). Assuming a smooth

behavior of nN
k and SN (k) as a function of k, their interpolation

ñN
k and S̃N (k), to all k values, should provide the best estimate

of the finite system values to n∞
k and S∞(k). Note that special

care is warranted in the interpolation near nonanalytic values
of k such as k = 0 or at the Fermi surface of a metal. Then there
are two different ways finite size errors can arise: (i) changes in
the correlation functions as a function of N , differences of ñN

k
and S̃N (k) from their values in the thermodynamic limit; (ii)
differences resulting from a summation of k points on a finite
mesh in reciprocal space rather than an integration. Changes

(i.e., the first way) in the correlation functions are expected for
system sizes smaller than a characteristic correlation length. In
particular, close to phase transitions, the correlation length can
get large or even diverge, and finite size extrapolation methods
based on additional scaling assumptions have been developed
for these cases in the field of critical phenomena [20,21]. For
fermionic, and in particular electronic matter, important finite
size effects remain even in the case the system size exceeds the
characteristic correlation length because of the second reason;
this paper exclusively deals with methods to eliminate this
finite size bias: The errors in the kinetic and potential energy
are simply quadrature errors due to the discrete underlying
mesh in Fourier space and can be expressed as

�TN = T∞ − TN = 1

ρ

[∫
dk

(2π )d
− 1

�

∑
k

]
�

2k2

2m
ñN

k

(10)

�VN = �V∞ − VN =
[∫

dk
(2π )d

− 1

�

∑
k

]
vk

2
S̃N (k),

(11)

where ρ = N/� is the density and d is the spatial dimension.
In order to actually apply these formulas, we need a method

to interpolate nN
k and SN (k) from the grid where we have

simulation data to the continuum. For local functions such
as the structure factor, it would seem easy to interpolate
SN (k). However, since the momentum distribution is a non-
local quantity, this direct procedure fails. Indeed proper size
extrapolation of the momentum distribution is slightly more
involved [9,16,17] as we have to express first the momentum
distribution in terms of local correlation functions which can
be interpolated more safely. As long as one is only interested
in the kinetic energy, it is easier to express the kinetic energy
in terms of a different—purely local—estimator and discuss
size effects using them.

Shell effects usually dominate finite size bias of the kinetic
energy; they can be drastically reduced by employing twist
averaged boundary conditions [22]. For an effective single
particle Hamiltonian, e.g., in Kohn-Sham density functional
theory (DFT), quantities in the thermodynamic limit can be
obtained by k-point averaging, and twist averaged boundary
conditions can be regarded as the extension of k-point
averaging to a many-body wave function. For electronic
systems, the leading order size corrections of the potential
and kinetic energy [8] beyond shell effects are determined by
the Coulomb singularity, vk = 2(d − 1)πe2/k2 for k → 0 (e
is the electron charge). However, for typical system sizes, the
leading order expressions may not be accurate enough [13]. To
go beyond leading order, one has to understand the behavior
of the ground state wave function.

In the next section, we give a detailed discussion of size
effects of electronic systems and develop a robust numerical
procedure for thermodynamic limit extrapolation of kinetic
and potential energy, independent of the particular system
under study and optimal for generic calculations.
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II. ENERGY SIZE CORRECTIONS

In this section we will explicitly discuss the finite size
error and correction schemes for electronic energies in the
Born-Oppenheimer approximation where the ions only act as
a static external potential. Let us assume that for a given ionic
configuration the electronic ground state can be described with
the Slater-Jastrow form

�T = De−U , (12)

where D ensures the antisymmetry of fermions (usually by
a Slater determinant) and U is a many-body symmetric
function (for electrons). Having in mind that the electrons
feel an external potential created by classical ions, we can
simplify the notation to that of a one-component system. We
will further assume a spin-polarized system, the extension
to spin-unpolarized system based on two determinants is
straightforward.

The corresponding “local energy” is:

EL = H�T

�T

= −
∑

i

�
2

2me

[∇2
i D

D
− ∇2

i U + (∇iU )2 − 2
∇iD

D
∇iU

]
+V, (13)

where V is the potential energy of the N -electron system and
me is the mass of the electrons. The total energy per particle for

this trial state, EVMC
N , is then given by EVMC

N = 〈EL(R)〉T /N

where 〈. . . 〉T = ∫
dR . . . �2

T /
∫

dR�2
T , and R = (r1, . . . ,rN )

are the electronic coordinates. Performing a partial integration
we get

EVMC
N = 1

N

〈
−

∑
i

�
2

2me

[∇2
i D

D
− (∇iU )2

]
+ V

〉
T

. (14)

The trial energy provides an upper bound to the true ground
state energy which can be improved by projector Monte Carlo
methods. Due to the sign problem, it is in general impossible
to project out precisely the exact fermion ground state, but
within the fixed-node approximation, we can find the best
energy within the nodes of the trial function. The fixed-node
ground state can be written

�FN = De−UFN , (15)

where UFN is an optimal symmetric many-body function.
Whereas the pure distribution can be obtained by reptation
Monte Carlo methods [23], diffusion Monte Carlo algo-
rithms (DMC) sample only the mixed distribution �FN�T ,
〈. . . 〉DMC = ∫

dR . . . �T �FN/
∫

dR�T �FN, and the (unbi-
ased) estimator of the fixed-node DMC energy corresponding
to Eq. (14) can be shown to be given by:

EFN
N = 1

N
〈EL(R)〉DMC = 1

N

〈
−

∑
i

�
2

2me

[∇2
i D

D
−(∇iU )2 − ∇iU∇i[UFN−U ]

]
+V

〉
DMC

. (16)

In the following we will analyze separately the different terms
in Eq. (14) and Eq. (16) according to their underlying single or
two-particle character. Shell effects due to the occupation of
the orbitals in the Slater determinant are mainly contained in
the term involving ∇2D, whereas the other terms of the kinetic
energy have a two-body character similar to the potential
energy.

A. Single particle corrections—Shell effects

Let us assume that the orbitals in the Slater determinant are
determined from a single particle Schrödinger equation, e.g.,
from Kohn-Sham DFT calculations. Writing the determinant
of the many-body wave function

D = det
in

ϕni, (17)

where ϕni ≡ ϕn(qi) is the square matrix formed from orbital
functions ϕn evaluated at generalized electron coordinates qi .
For wave functions which do not include backflow, qi = ri .
We assume that the N orbitals ϕn are solutions of a Schrödinger
equation [

−�
2∇2

2me

+ veff(r)

]
ϕn(r) = εnϕn(r) (18)

for some effective potential veff(r). It follows that

− �
2

2meD

∑
i

∇2
i D =

[∑
n

εn −
∑

i

veff(ri)

]
. (19)

In the thermodynamic limit, the discrete summation over
energy levels will be replaced by an integral over the density
of states

1

N

∑
n

εn → 1

ρ

∫ εF

0
dε ενeff(ε). (20)

Here, νeff(ε) = (2π )−d
∑

n

∫
dkδ(ε − εnk) is the density of

states of the effective Schrödinger equation, εF is the single
particle Fermi energy, and ρ = N/�.

For metallic systems, when νeff(ε) is nonvanishing for
ε ≈ εF , the sharp edge of the integration at the Fermi level will
give rise to large size effects, the so-called shell effects. They
can be reduced by using twist averaged boundary conditions,
�(. . . ,ri + L, . . . ) = eiϑL�(. . . ,ri , . . . ), where ϑ is a phase
vector with −π/L < ϑ � π/L in each direction [22]. The
single particle energies in Eq. (19) then depend on ϑ and
only N orbitals with lowest energies are occupied, e.g., only
plane waves of smallest wave vectors ki + ϑ are occupied
for an isotropic Fermi gas. By averaging the final values
over all twist angles the sum becomes approximately equal
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to
∫

dε obtained in the thermodynamic limit. More generally,
imposing the twist in the single-particle Schrödinger equation
shifts the energies of the orbitals, and twist averaging reduces
the oscillatory behavior in the kinetic energy by more than an
order of magnitude. Furthermore, it restores isotropy in the
mean value of other observables such as the electron-electron
interaction, leading to a more regular behavior in those quan-
tities. However, in the case of a many-body calculation, twist
averaged boundary conditions (TABC) do not automatically
introduce a sharp Fermi surface for metallic states since only
the N orbitals with lowest single particle energies for any twist
are used, so that the thermodynamic limit of noninteracting
electrons is not exactly reproduced.

In order to obtain the exact single particle energy we
can use grand-canonical TABC (GC-TABC) [8,16]. There,
we occupy only orbitals below the Fermi energy εF in the
Slater determinant εn(ϑ) � εF , but the number of electrons
will then depend on the twist angle. GC-TABC not only
reproduces exactly the noninteracting kinetic energy, but also
the noninteracting static structure factor at all reciprocal lattice
vectors commensurate with the simulation box. Knowledge of
the single particle Fermi energy is needed for GC-TABC to
determine the mean density. The occupation of orbitals can be
obtained by imposing the Fermi surface on the single particle
energies of the effective Schrödinger equation. This Fermi
energy (and therefore the mean density) is obtained purely by
the single particle effective Schrödinger equation converged
in the number of twist angles (or k points).

To implement grand-canonical twist averaging for QMC
calculations of charged fermions, we have to add an additional
homogeneous background charge to ensure charge neutrality
of the total system for any given twist angle ϑ . Of course,
after twist averaging the system would be neutral, but adding
a neutralizing charge is a bookkeeping exercise needed if only
a finite number of selected twist angles is used.

In order to reproduce the sharp Fermi surface within GC-
TABC, a very fine mesh of twist angles has to be used. In a
system with translation symmetry such as the uniform electron
gas, finite mesh errors can be completely avoided by noting that
for any finite number of particles, changes of the twist angle
within a finite region, a so-called “pocket,” only introduces a
phase shift in all orbitals corresponding to a change of the total
momentum, �ϑ+δϑ (R) = �ϑ (R)eiδϑ ·∑j rj . Since the sampling
weight ∝ |�ϑ (R)|2 is unaffected by this change, any property
inside one pocket can be calculated from the calculation of a
single twist angle in the pocket with a weight proportional to
the volume of the pocket [8]. These weights can be computed
prior to the actual many-body simulation. We can also use
this technique for periodic solids. As in the fully translational
invariant system, the pockets are defined by the regions where
the phase of the wave function changes continuously. However,
computing the different pockets introduces some overhead in
the calculation, and in the following we will discuss a simpler
but equally effective reweighting method to reduce the error
of using a finite mesh of twist angles.

For TABC calculations with a fixed number of particles and
given mesh size, performing calculations with neighboring
twist angles via reweighting amounts in leading order to
correcting the single particle kinetic energies. Therefore,
the difference between a TABC calculation done with fixed

number of twist angles Nθ and the integration over all twists
will be dominated by the single particle expression

[∫
ddϑ − 1

Nϑ

∑
ϑ

]
N∑

n=1

εn(ϑ). (21)

As long as one uses a fixed particle number for all twists, these
corrections remain smooth. Similarly, we can correct for the
mesh error of GC-TABC calculations by imposing the single
particle Fermi surface. In practice, the sharp Fermi surface
dominates the size effects, so that we should correct the TABC
results by imposing a sharp Fermi surface giving a single
particle energy correction of

�TTABC = 1

ρ

∫ εF

0
dε ενeff(ε) − 1

NϑN

∑
ϑ

∑
n

εn(ϑ), (22)

where the summation on the r.h.s. goes over all wave vectors of
the plane wave orbitals in the TABC or GC-TABC determinant.
Adding �TTABC to energies obtained from TABC calculations
at fixed N , one rapidly approaches the mesh-corrected GC-
TABC results as shown in the examples below.

For electrons in an external periodic potential created by
the crystal ions, one should expect that the effective potential
will have the same periodicity as the lattice. However, in
the case of a disordered potential, e.g., a two component
liquid [24], the potential will not be periodic. At any given
system size N , periodic or twisted boundary conditions still
impose a periodicity due to the finite size of the simulation
box. To estimate thermodynamic limit corrections, the use
of TABC or GC-TABC is nevertheless useful and often
essential.

Indeed for electrons in a disordered medium [25,26], the
Fermi surface is, in general, destroyed by the external potential,
such that the lifetime of quasiparticle states remains finite
even at the Fermi surface. As a result, the sharp discontinuity
of the momentum distribution at the Fermi surface gets
smeared out. Although remaining continuous, the momentum
distribution may still have a pronounced change in the slope
very close to the Fermi surface, in particular if the disorder
only weakly affects the electronic properties. The resulting
oscillations in real space will eventually decay exponentially
at a length scale of the mean free path of the electrons. For
a disordered metallic system, this length scale can exceed the
correlation length of the external disorder potential by orders
of magnitudes. Nevertheless, the calculation of the mean-field
path does not necessarily require large system sizes, apart from
situations where one may be close to a continuous, localization
driven metal-insulator transition. This surprising result can be
understood considering simple potential scattering: Scattering
phase shifts can be reliably calculated in finite systems that
are much smaller than what is needed to resolve a very sharp
slope in the momentum distribution due to Fermi statistics.
Stated differently, twist averaging can greatly reduce size
effects even in disordered systems as long as the modification
of the density of states due to disorder remains sufficiently
smooth.
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B. Corrections arising from two-particle correlations

1. Potential energy correction

Let us start considering the interaction energy in Eq. (14),
again, for simplicity, written down for a one component system

〈VN 〉 = 1

2�

∑
k �=0

vk[SN (k) − 1]. (23)

The finite size error of the potential energy is[
lim

N→∞
〈VN 〉] − 〈VN 〉 = 1

2

∫
dk

(2π )d
vk[S∞(k) − 1]

− 1

2�

∑
k �=0

vk[SN (k) − 1]. (24)

Note that we have assumed that vN
k = v∞

k ; we use Ewald image
method for the potentials for periodic boundary conditions
[27]. If the integrand were an analytic function for all k,
the finite size error would vanish exponentially with system
size [28] (see appendix A). In the rest of this section we
explicitly consider the case of the 3D Coulomb potential,
but the method can be extended to different interactions and
systems of reduced spatial extensions.

Assuming S(k → 0) = 0, the leading order size correction
is given by the Madelung constant, �vM ,

�vM = −
⎡⎣∫

d3k
(2π )3

− 1

�

∑
k �=0

⎤⎦vk

2
. (25)

For the 3D Coulomb potential, we have �vM ∼ N−1/3 where
the proportionality factor depends only on the geometry of the
simulation box. For a multicomponent, charge-neutral system,
this term vanishes, but it must be considered in the case of
GC-TABC where a homogeneous background charge may be
needed to assure charge neutrality. The remaining term of the
potential energy corrections is

�VN = 1

2

∫
dk

(2π )d
vkS∞(k) − 1

2�

∑
k �=0

vkSN (k). (26)

Nonanalytical points of the integrand will give rise to
slowest convergence of the integration. Potential nonanalytical
behavior is around singularities of the potential, edges of the
integration region, k → 0 and k → ∞ and values k = nkF

with integer n. From the local energy, we can see that
the singular behavior at k = 0 also determines the limiting
behavior of the Jastrow potential and the structure factor,
in particular, S(k) ∼ u−1

k ∼ v−1
k ∼ k2 in d = 3 dimensions

[10,11]. The next-to-leading order corrections beyond the
Madelung corrections are then related to the long wavelength
plasmon excitation �VN = �VLO + o(N−1) with [8]

�VLO ≡ 1

N

�ωp

4
, (27)

where ωp = (ρvkk
2/m)1/2 is the plasma frequency [29]. Half

of the plasmon zero point energy, �ωp/2, is actually potential
energy, the missing other half is recovered from the kinetic
energy [30]. Subleading corrections [8,13,16,17] may also be
deduced by integrating asymptotic expansions of the structure
factor around k = 0, taking only into account the contributions

from the volume element around the origin in Eq. (26). In the
following, we will go beyond such an asymptotic analysis,
proposing a general and practical method to evaluate Eq. (26)
for the thermodynamic limit estimation using only results for
a calculation at a finite size.

Our best a priori choice for S∞(k) consists of interpolating
the values of SN (k) from the discrete grid in k space to all k

values. From this interpolated function we can calculate the
difference between summation and integration. However, since
vk is a slowly decaying function, this is not straightforward.
Since the noise of the structure factor is amplified by the
volume element at large wave vector, one has to confine the
integration to medium or small wave vectors. Technically,
this can be achieved by splitting the potential into short and
long-range parts: vk = vsr

k + vlr
k . Assuming an isotropic short

range potential with vsr (r � rc) = 0 for some cutoff radius rc,
the long-range contribution is then given by vlr

k = vk − vsr
k ,

where vsr
k = ∫

dre−ik·rvsr (r). This splitting can be done for
arbitrary potentials in an optimal way [31,32], such that vlr

k

is a rapidly vanishing function for increasing k. In the case
of Coulomb interaction, the short and long-range part can
also be separated using the method introduced by Ewald
[27,33]. Note that in the following section we will also use this
procedure on the Jastrow factor, also a long-ranged function.
The optimal split-up is routinely used in the QMC algorithms
in order to compute rapidly the potential and kinetic energy of
long-ranged interactions and wave functions during the Monte
Carlo random walk.

Let us write the potential energy per particle in terms of
this breakup

〈VN 〉 = ρ

2

∫ rc

0
drvsr (r)[gN (r)−1]+ 1

2�

∑
k �=0

vlr
k [SN (k) − 1],

(28)
where we have introduced the pair correlation function of the
N -particle system

gN (r) = 1 + 1

N

∑
k �=0

e−ik·r[SN (k) − 1]. (29)

The natural extrapolation of the pair correlations to the thermo-
dynamic limit is by assuming g∞(r) 
 gN (r) for r � rc and
interpolating SN (k) to a dense grid in k space, S∞(k) 
 S̃N (k).
The remaining size corrections for the potential energy are then
exclusively expressed in terms of long-range contributions

�Vlr =
⎡⎣∫

dk
(2π )d

− 1

�

∑
k �=0

⎤⎦vlr
k

2
S̃N (k). (30)

By construction, the integration and summation of the r.h.s.
of Eq. (30) do not depend on the upper integration/summation
limit as vlr

k is zero for large k by construction. In practice,
we use rc = L/2 together with a cubic spline interpolation
of SN (k) to continue the values on the discrete k grid to
the continuum to obtain S̃N (k). For a multicomponent system
interacting only via Coulomb forces, only the charged structure
factor is needed for the potential energy and we impose the
boundary conditions: S(0) = (dS/dk)0 = 0.

Notice that for the derivation of Eq. (30) we have assumed
that the short range part of the pair correlation function remains
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unchanged in the thermodynamic limit. This would be the case
if the structure factor was an analytical function of k which is in
general not the case. Although S(k) ∼ k2 for 3D, nonanalytic
behavior ∼k3 is expected beyond leading order giving rise
to additional corrections of order N−2 which we neglect in
the following [34]. In appendix D we describe how to go
beyond this assumption to include subleading corrections due
to nonanalyticities in the structure factor involving also the
short-range part of the potential and explicitly show how to
perform the calculations with the Ewald potential for cases
where the optimized potentials are not available.

2. Kinetic energy correction

Let us now consider the kinetic energy contribution involv-
ing the Jastrow correlations, the remaining term of Eq. (14),

TU = 1

N

〈∑
i

�
2

2mi

[∇iU ]2

〉
. (31)

Again, we analyze the expression in terms of the Fourier
components. Restricting to a single component system with
U = 1

2�

∑
k ukρkρ−k, we have

TU = − �
2

2meN

1

�2

∑
k �=0,k′ �=0

(k · k′)ukuk′ρk+k′ρ−kρ−k′ (32)


 1

�

∑
k �=0

�
2k2

2me

ρuku−kSN (k), (33)

where we have neglected all terms with k �= −k′ correspond-
ing to the RPA approximation which becomes exact in the long
wavelength limit [35].

In order to analyze the finite size corrections for the energy
we interpolate the Jastrow potential, u(k), from its values
at discrete k points to all values of k. As with the potential
energy, the kinetic energy error from pair correlations, �TU =
[limN→∞〈TU 〉/N ] − 〈TU 〉/N , reduces to an integration error.
The nonanalytical behavior of the integrand around k = 0
for Coulomb systems gives rise to slow convergence of
the integration; the leading order is given by the plasmon
contribution [8].

�T LO
U = �VLO = 1

N

�ωp

4
(34)

To go beyond leading order, we split the long-range from the
short-range part of the Jastrow potential, uk = usr (k) + ulr (k),
so that we arrive at the following expression

�T lr
U =

⎡⎣∫
dk

(2π )d
− 1

�

∑
k �=0

⎤⎦�
2k2

2me

ρulr (k)

× [2uk − ulr (k)]S̃N (k). (35)

As the integrand on the r.h.s. vanishes rapidly with k, we only
have to interpolate the structure factor at small k and work out
the corrections similar to those for the potential energy.

3. Backflow corrections

The above corrections are for a Slater-Jastrow wave
function. Backflow wave functions considerably improve

the accuracy of QMC calculations [12,36–40] and have
been generalized to systematically approach the ground state
energies [41]. Let us consider that the orbitals ϕni = ϕn(qi)
inside the Slater determinant, Eq. (17), are built using general
backflow coordinates qi = ri + ηi , where ηi is a function of
all other coordinates. The derivatives of ηi will then give rise
to additional terms of the kinetic energy with corresponding
finite size corrections which we have not discussed so far.
Using RPA-like arguments, we can estimate the dominating
terms in the laplacian of the kinetic energy (see appendix C)〈

− �
2

2me

∇2D

D

〉
≈

[
1 + 1

�

∑
k

sN (k)

]〈
− ∇2

qD

2meD

〉

=
[

1 + 1

�

∑
k

sN (k)

]

×
[∑

n

εn −
〈∑

i

veff(qi)

〉]
(36)

with

sN (k) = k2yk

d
[2 + ρk2yk − (2 − ρk2yk)SN (k)], (37)

where d is the spatial dimension, and the backflow poten-
tial yk is related to the quasiparticle coordinates [42] via
ηi = 1

�

∑
k kyk(eik·ri ρ−k − 1).

As before, we can now derive the size corrections of the
kinetic energy due to backflow, �TBF, using

�TBF 
 t

⎡⎣∫
dk

(2π )d
− 1

�

∑
k �=0

⎤⎦̃sN (k) (38)

t = 1

N

[∑
n

εn −
〈∑

i

veff(qi)

〉]
, (39)

where s̃N (k) is given by Eq. (37) where the long-range part
of yk and y2

k together with an interpolation of the structure
factor is used as was done with the previous kinetic energy
corrections without backflow. From the long-range limit of the
electron electron backflow [12], we can estimate the leading
order size effects of backflow for a metallic system in 3D

�T LO
BF = − t

3N
, (40)

where t is the single particle kinetic energy t 
 3k2
F /10me for

a system with an isotropic Fermi surface.

C. Projection Monte Carlo methods and mixed estimators

Starting from a trial wave function, the true ground state
wave function can be sampled using projector Monte Carlo
methods. Using the fixed-node approximation for fermions to
circumvent the sign problem, the optimal ground state wave
function constrained by the nodes of the given antisymmetric
Slater determinant D, is determined Eq. (15). When using
twisted boundary conditions for TABC and GC-TABC, we
replace the fixed-node procedure with the fixed phase ap-
proximation [43]. Extrapolating the calculations imposing the
nodes/phases obtained from the same effective potential will
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therefore lead to identical single-particle size corrections as
within VMC, Eq. (22), as these shell corrections are due to the
behavior of the phase of the many-body wave function which is
unaffected by the restricted random walk of the projection. Al-
though reweighting does not generally apply to fixed node cal-
culations, it still converges within each pocket where the sam-
pling weight remains constant and the phase of the wave
function changes continuously. Equation (22) accounts for the
effects of a sharp Fermi surface for the single particle orbitals.
However, projection may modify the effective Fermi surface
and one should regard εF , used in the underlying VMC wave
function as a variational parameter characterizing the nodes of
GC-TABC converged projector Monte Carlo calculation.

Concerning the two-particle corrections, size corrections
beyond shell effects are directly related to the bosonic long
wavelength modes, so that projection may lead to essential
changes. Within projection Monte Carlo methods [1,23], the
total energy of the system is most easily obtained by commut-
ing the Hamiltonian to one end of the path where the energy
can be obtained from the mixed estimator, Eq. (16). In the case
where the exact long-range behavior of the Jastrow function is
already imposed in the trial wave function, we can neglect size
effects of the term involving UFN − U , and two-particle size
effects for the total energy are corrected by adding potential
and kinetic energy corrections, Eq. (30) and Eq. (35), where S̃N

is obtained from the mixed estimator of the structure factor.
Whereas the total energy estimator is unbiased, separating
potential from kinetic energy contributions may be biased in
this procedure.

Unbiased calculation of the structure factor can be done
using reptation Monte Carlo [23], so that we can directly apply
the VMC formulas for potential and kinetic energy corrections,
Eq. (30) and Eq. (35), respectively, as long as the exact long-
range behavior of the Jastrow is contained in the trial wave
function. Although reptation Monte Carlo can be extended to
obtain unbiased estimators for off-diagonal quantities such as
the momentum distribution [17], it is simpler to determine the
kinetic energy as the difference of the total energy and the
potential energy.

In cases where the trial wave function does not contain
the correct long-range behavior, the term involving UFN − U

becomes relevant for the size extrapolation. To estimate this
correction, we can use a quite general relation between the
structure factor and the effective Jastrow [10], ueff(k), valid in
the long wavelength limit

S−1(k) = S−1
0 (k) + 2ρueff(k), (41)

where S0(k) is the ideal gas structure factor (see appendix B).
For metallic systems, its contribution to the effective Jastrow
factor is negligible, e.g., for the DMC mixed estimator of the
structure factor, we have

SDMC(k) = 1

ρ[uFN(k) + u(k)]
, k → 0 (42)

and we can obtain uFN(k) from the mixed DMC estimator, as
the Jastrow factor of the trial wave function u(k) is known.
Knowledge of uFN allows us to calculate the two-particle size
corrections of the total energy from Eq. (30) and Eq. (35)
together with a similar term to take into account the corrections
involving UFN − U in Eq. (16).

Let us discuss explicitly the common practice of using a
short range function for the electron-electron Jastrow factor.
In this case the long-range part of limk→0 u(k) → const

compared to the exact one which diverges as k−2. Whereas
the kinetic energy contribution, Eq. (35), remains negligible,
the potential energy contribution with the use of the mixed es-
timator SDMC 
 [ρuFN(k)]−1 is twice as large as that obtained
by using the exact structure factor S(k) 
 [2ρuFN(k)]−1. We
see that the leading order corrections for the total energy are
indeed correctly obtained by the mixed estimator, however, the
true potential energy as obtained by the use of the unbiased
estimator contributes only half of this correction. The other half
comes from the kinetic energy. Notice that the exact structure
factor also agrees with the one obtained from the extrapolation
formula S(k) 
 SEXTR(k) ≡ 2SDMC(k) − SVMC(k) as long as
uFN(k) − u(k) is small. In practice, for calculations based on a
short range electron-electron Jastrow, we can use the interpola-
tion of SDMC(k) in the potential energy extrapolation to obtain
the total energy size corrections and that of SEXTR(k) to obtain
the potential energy corrections. From the difference we can
estimate the kinetic energy corrections without knowledge of
the exact long-range Jastrow correlations.

Therefore, although it is not necessary to include the
correct long-range behavior into the trial wave function,
the long-range correlations affect the size extrapolation of
DMC energies. Correct sampling of these long wavelength
correlations requires long projection times, since the projection
time scales as L2 = N2/3, and long projection times require a
larger population of walkers to remain unbiased.

Size extrapolations are frequently based on VMC energies,
only. Without including long-range contributions to the
Jastrow, there is no guarantee that these size extrapolations
can be transferred to the DMC energies. Still, as long as
the range of the short range Jastrow potential used in the
trial wave function grows proportional to the system size,
the optimization of a sufficiently flexible functional form
will converge to the correct long-range behavior and allow a
correct estimation of the size corrections.

D. Extension to inhomogeneous densities

The above formulas have been derived for the case of
a homogeneous one-component system. Here, we briefly
discuss how they should be used for inhomogeneous electronic
densities. Define ρk ≡ 〈ρk〉 and separate the mean values
from the fluctuating quantities, δρk ≡ ρk − ρk, in the structure
factor, SN (k) = SN (k) + δSN (k) with

SN (k) = 1

N
ρk ρ−k (43)

δSN (k) = 1

N
〈δρkδρ−k〉. (44)

Extensions of SN (k) to the thermodynamic limit needed for
the size corrections should be done separately for SN (k)
and δSN (k). Whereas extensions of both quantities may be
needed for the potential energy corrections, Eq. (30), only
δSN (k) enters the kinetic energy, Eq. (35) and Eq. (38).
However, SN (k) will have the periodicity of the unit cell for
crystal structures and only δSN (k) enters the potential energy
corrections. In the following examples we will refer to δSN (k)
as the fluctuating structure factor.

035126-7



MARKUS HOLZMANN et al. PHYSICAL REVIEW B 94, 035126 (2016)

TABLE I. Energy corrections in Hartrees per electron for b.c.c. hydrogen at rs = 1.31 vs number of electrons N with various size correction
estimates. Energies are computed with VMC and using a Slater-Jastrow trial function with plane waves orbitals. TABC: twist-averaged
boundary conditions, GC-TABC: grand-canonical twist average boundary conditions. The number of twists in each dimension was M ,
�ELO = �TLO + �VLO: leading order energy size corrections (plasmon formula), �Elr = �Tlr + �Vlr size correction using fit of Sk to
compute all long-range corrections where Eq. (35) is used for the kinetic energy correction �T lr

U and Eq. (30) for potential energy correction
�Vlr . The a priori best estimate for E∞ using only quantities in the N -particle system, denoted by E∞(TABC) = ETABC + �TTABC + �Elr

for TABC and, similar, E∞(GC-TABC) for GC-TABC. Linear extrapolation of ETABC (EGC-TABC) using the data for 54 � N � 250 is given
beneath the lines of N = 54–250. Statistical errors in the last digit are given in parentheses.

N M ETABC �TTABC �ELO �T lr
U �Vlr �Elr E∞(TABC)

16 161 − 0.510358(3) − 0.001817 0.036100 0.013667 0.014393 0.028059 − 0.484115(3)
54 161 − 0.491779(6) − 0.001377 0.010696 0.004440 0.004455 0.008895 − 0.484261(6)
128 161 − 0.48764(2) − 0.000602 0.004512 0.002035 0.002021 0.004056 − 0.48419(2)
250 161 − 0.486525(4) − 0.000013 0.002310 0.001195 0.001150 0.002345 − 0.48417(3)
lin.extrap. − 0.4851(1)
N M EGC-TABC �TGC-TABC �ELO �T lr

U �Vlr �Elr E∞(GC-TABC)
16 161 − 0.512739(4) − 0.000034 0.036100 0.013744 0.014473 0.028217 − 0.484556(4)
54 161 − 0.493581(6) − 0.000027 0.010696 0.004424 0.004441 0.008865 − 0.484743(6)
128 161 − 0.488484(3) − 0.000003 0.004512 0.002009 0.001996 0.004005 − 0.484483(3)
250 81 − 0.48658(2) 0.000012 0.002310 0.001171 0.001131 0.002302 − 0.48426(2)
lin.extrap. − 0.48476(2)

III. EXAMPLES

In the following, we provide examples of the finite
size errors using the correction schemes discussed above.
In general, we have performed calculations averaging over
twisted boundary conditions, where the twist angles, θα ∈
] − π/L,π/L] (α = x,y,z), are chosen on a linear grid
with Md discretization points, θα = (m/M − 1/2)2π/L, m =
1,2, . . . M . Bare results for the total energy per electron using
TABC or GC-TABC are denoted by ETABC and EGC-TABC,
respectively. We then give the remaining shell corrections,
�TTABC, or �TGC-TABC, obtained from Eq. (22).

The leading order two-particle energy correction for static
ions, assuming the correct long-range behavior of the elec-
tronic Jastrow function, is given by the plasmon zero-point
energy, �ELO = �ωp/2N = √

3r
−3/2
s /(2N )Ha, independent

of the shape of the supercell used. Here and in the following,
rs = (4πρea

3
B/3)−1/3 is the Wigner-Seitz density parameter, ρe

is the electronic density, and aB = �
2/mee

2 is the Bohr radius.
Corrections beyond leading order �Elr ≡ �T lr

U + �Vlr are
calculated by using the optimized long-range part of the
corresponding potentials in Eq. (30) and Eq. (35), and
interpolating SN (k) using cubic splines and assuming that
SN (0) = S ′

N (0) = 0.

A. Crystalline hydrogen: Perfect crystal

Here we consider b.c.c. hydrogen at a density of rs = 1.31,
and we neglect the zero point motion of the protons. We
present first VMC calculations with the simplest orbitals in
the Slater determinant (spherical Fermi surface), φn(r) = eikn·r
with k � kF where kF is the Fermi wave vector and fully
analytical potentials including long-range parts for the many-
body backflow and Jastrow potential. We separately study the
influence of backflow coordinates on the size extrapolation. We
then present DMC results using realistic DFT-band-structure
orbitals without backflow including only short-range Jastrow
functions. The reptation Monte Carlo method is used to obtain
pure estimates of the potential energy in the latter case.

1. Slater-Jastrow wave function with spherical Fermi surface

The simplest trial wave function is a Fermi liquid state,
where the Slater determinant is formed from plane waves
filling the Fermi sea up to an isotropic Fermi wave vector
kF . We have used an expression (analytic in k space) based
on the RPA [11,12] for the Jastrow factor. Then the trial wave
function for various values of N is guaranteed to approach
the large N limit very smoothly. (Optimized Jastrow factors
could have an additional noisy component.) The VMC results
are given in Table I and Fig. 1; we can see that convergence
of the energy per particle to less than 1 mHa can be reached
already with N = 16 electrons. For TABC, extrapolation with
M is smooth, but the use of the shell corrections, �TTABC, to
mimic the sharp Fermi surface at kF is essential to reach a high
precision comparable to GC-TABC results.

Kinetic and potential energy corrections are given sepa-
rately. Interestingly, kinetic and potential energy corrections
stemming from the two particle correlations remain equal to
high precision beyond leading order and approach the leading
order expression from below.

2. Backflow wave function with spherical Fermi surface

In Table II we show the results for the same system as
before but including backflow coordinates to evaluate the
orbitals [12]. Whereas potential energy corrections work as
well as in the case without backflow (see Fig. 2), the explicit
backflow corrections derived above, �TBF, clearly improve the
extrapolation (see Fig. 3). Still, the underlying approximations
in their derivation introduce a larger error than for the Slater-
Jastrow trial function.

3. Slater-Jastrow wave function with DFT band structure

Next, we consider orbitals obtained from a density func-
tional theory calculation inside the Slater determinant using
QMCPACK [44,45]. Single particle orbitals were obtained
from Quantum Espresso using the PBE functional [46]. The

035126-8



THEORY OF FINITE SIZE EFFECTS FOR ELECTRONIC . . . PHYSICAL REVIEW B 94, 035126 (2016)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

 N
-1

-0.51

-0.5

-0.49

-0.48

 E
/N

 (
a.

u.
)

       TABC: EN

                   E∞
 GC-TABC: EN

                    E∞

0 0.02 0.04 0.06

0.74

0.745

0.75

FIG. 1. Energy per atom for b.c.c. hydrogen at rs = 1.31 using a
Slater-Jastrow wave function with plane wave orbitals occupied up
to the Fermi surface for various system sizes N . We show the uncor-
rected twist averaged results, ETABC and EGC-TABC, together with the
size corrected ones, E∞(TABC) = ETABC + �TTABC + �T lr

U + �Vlr

and E∞(GC-TABC) = EGC-TABC + �TGC-TABC + �T lr
U + �Vlr . In

the inset we show the corresponding values of kinetic energy.

orbitals were generated on an 8 × 8 × 8 shifted Monkhorst
pack grid using a plane-wave cutoff of 200 Ry. A hard
Troullier-Martins pseudopotential with a cutoff of rc = 0.5a0

was used to eliminate the 1/r divergence in the DFT
calculation.

We used a Slater-Jastrow type trial wave function without
backflow. The Jastrow factor consisted of a sum of radially
symmetric short-ranged one- and two-body terms without
long-range contributions. The cutoff radius for the short-
ranged terms was chosen to be the Wigner-Seitz radius of each
simulation cell. A fully optimizable b-spline form was used for
all Jastrow terms, which we optimized with variational Monte
Carlo using the linear method.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
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/N
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-1.24
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FIG. 2. Energy per atom for b.c.c. hydrogen at rs = 1.31 us-
ing a backflow wave function with plane wave orbitals occu-
pied up to the Fermi surface for various system sizes N . We
show the uncorrected twist averaged results, ETABC and EGC-TABC,
together with the size corrected ones, E∞(TABC) = ETABC +
�TTABC + �T lr

U + �Tbf + �Vlr and E∞(GC-TABC) = EGC-TABC +
�TGC-TABC + �Tbf + �T lr

U + �Vlr . In the inset we show the corre-
sponding values of potential energy.

For the QMC calculations, we considered supercells with
N = 16,128,1024 atoms. Twist averaging was used to obtain
all reported quantities. To generate the twists, we used the same
Monkhorst-Pack grid as used for orbital generation. Reptation
Monte Carlo (RMC) was used for the N = 16,128 supercells
to compute both mixed and pure energy estimates. For the N =
1024 supercell, we used diffusion Monte Carlo to calculate the
total energy. In all calculations a time step of τ = 0.0075Ha−1

was used. In the RMC calculations, a projection time of β =
4.5Ha−1 was used.

Results are summarized in Table III and Fig. 4. The total
energy corrections were obtained by the mixed estimator

TABLE II. Energy corrections in Hartrees per electron for b.c.c. hydrogen at rs = 1.31 for different number of electrons N with various
size correction estimates. Energies are computed with VMC using a Slater-Jastrow trial function where plane waves orbitals contain backflow
coordinates. Additional kinetic energy corrections due to backflow are denoted by �T LO

BF for the leading order formula, Eq. (40), and �TBF

from the interpolation of the static structure factor together with Eq. (39). The other symbols are defined in the caption of Table I.

N M ETABC �TTABC �T LO
BF �ELO �TBF �T lr

U �Vlr �Elr E∞(TABC)

16 161 −0.522611(2) −0.001817 −0.013414 0.036100 −0.012354 0.016964 0.018167 0.035132 −0.501651(2)
54 81 −0.50494(1) −0.001385 −0.003975 0.010696 −0.004075 0.006429 0.006448 0.012877 −0.49752(1)
128 81 −0.50071(1) −0.000604 −0.001677 0.004512 −0.001464 0.002712 0.002698 0.005410 −0.49737(1)
250 81 −0.49929(4) −0.000191 −0.000858 0.002310 −0.000740 0.001382 0.001395 0.002777 −0.49745(4)
lin.extrap. −0.49765(4)
N M EGC-TABC �TGC-TABC �T LO

BF �ELO �TBF �T lr
U �Vlr �Elr E∞(GC-TABC)

16 161 −0.524814(3) −0.000034 −0.013414 0.036100 −0.012344 0.017050 0.018254 0.035304 −0.501888(3)
54 161 −0.506684(7) −0.000027 −0.003975 0.010696 −0.004078 0.006389 0.006409 0.012797 −0.497991(7)
128 81 −0.50147(2) −0.000005 −0.001677 0.004512 −0.001463 0.002732 0.002718 0.005450 −0.49749(2)
250 81 −0.49948(2) 0.000012 −0.000858 0.002310 −0.000734 0.001456 0.001131 0.002915 −0.49728(2)
lin.extrap. −0.4976(1)
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FIG. 3. Kinetic energy per atom for b.c.c. hydrogen at rs = 1.31
using a backflow wave function with plane wave orbitals occupied
up to the Fermi surface for various system sizes N . We show the
uncorrected twist averaged results, TTABC and TGC-TABC in the main
figure, the size corrected ones are presented in the inset, T∞(TABC) =
TTABC + �TTABC + �T lr

U + �Tbf and T∞(GC-TABC) = TGC-TABC +
�TGC-TABC + �Tbf + �T lr

U with and without backflow corrections.

for the fluctuating structure factor whereas the potential
energy corrections �Vlr have been calculated from the pure
estimator using RMC. The kinetic energy corrections �Tlr

then result from the difference of total and potential energy
corrections.

We see that the finite size error after corrections in this
case of more realistic orbitals is comparable to the previous
calculations using the simple plane wave determinant, even
without including long-range components in the Jastrow
potential. However, the use of “exact” estimators was essential
to reach this precision for kinetic and potential energy
separately.

B. Liquid atomic and molecular hydrogen at high pressure

We have used coupled electron-ion Monte Carlo (CEIMC)
to study high pressure hydrogen in the vicinity of the
liquid-liquid, insulator-to-metal transition [26,47]. Here, the
protonic configurations are sampled according to the clas-
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FIG. 4. Energy per atom for b.c.c. hydrogen at rs = 1.31 using
a Slater-Jastrow wave function with DFT orbitals for various system
sizes N . We show the uncorrected twist averaged results, EN , together
with the size corrected ones, E∞ = EN + �T lr

U + �Vlr . In the inset
we show the corresponding values of kinetic energy. We also show the
linear fits to the uncorrected data and the corresponding extrapolated
values in the thermodynamic limit.

sical Boltzmann distribution ∝ exp[−βEBO] where EBO is
the Born-Oppenheimer energy of the protonic configuration
determined from an electronic QMC estimate [48–50]. The
nuclear configuration space was sampled using the VMC
energy. The trial function consisted of a Slater determinant
of single electron orbitals for each spin component and a
correlation part with single, two, and three body Jastrows. The
single electron orbitals are from self-consistent Kohn-Sham
theory [46], dressed by a backflow transformation. Analytical
expressions from RPA for both correlation and backflow
functions are employed [12,24,51,52] which exactly enforce
the cusp conditions between all pairs of charges as well as the
correct long-wavelength behavior of the charge oscillations.
These are complemented by empirical expressions which
preserve the correct short and long distance behavior and
introduce few variational parameters that need to be optimized
[24,51].

TABLE III. Finite size corrections for b.c.c. atomic hydrogen (rs = 1.31) at zero temperature using DFT orbitals in the Slater determinant.
The potential energy per electron V was obtained using the pure estimator within RMC, whereas the kinetic energy was calculated via
T = E − V . From the extrapolated results of the DMC calculations using the mixed estimatorVEXTR = 2VDMC − VVMC, we conclude that the
mixed estimator introduces a bias of 3mHa which is likely to increase with system size. Therefore, we do not consider kinetic and potential
energies separately for N = 1024 where only DMC calculations were performed. All energies per electron are given in units of Ha.

N M ETABC TTABC VEXTR V �T �V �E T∞ V∞ E∞

16 8 −0.53009(3) 0.7581(3) −1.2894(3) −1.2882(3) 0.00274 0.02205 0.02479 0.7608(3) −1.2662(3) −0.50530(3)
128 4 −0.50774(2) 0.7607(1) −1.2714(1) −1.2685(1) 0.00081 0.00254 0.00335 0.7615(1) −1.2660(1) −0.50439(2)
1024 2 −0.50507(1) 0.000641 −0.50443(1)
lin.extrap. 0.7611(3) −1.2657(3) −0.50465(1)
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TABLE IV. Finite size corrections for liquid atomic and molecular hydrogen at T = 1200K . The kinetic energy corrections �T =
�TTABC + �TBF + �T lr

U sum up all contributions, whereas the total potential energy corrections are �V ≡ �Vlr . All size corrections correspond
to energies per electron in Ha.

rs Ne ETABC �TTABC �TBF �T �V �E

1.34 54 −0.51591(7) −0.000492 −0.003912 0.000020 0.005250 0.005270
54-128 −0.0005(10) 0.006(1) 0.0058(1)

1.44 54 −0.53679(8) −0.000008 −0.00363 −0.000035 0.00444 0.00441
54-128 0.003 (1) 0.003(1) 0.0056(2)

In addition to the energy per particle, pressure correc-
tions can be obtained from the kinetic and potential energy
corrections using the virial theorem. The calculations were
performed using TABC on a 4 × 4 × 4 grid for N = 54 and
N = 128 hydrogen atoms. We have used Eq. (22) to correct for
finite size effects of the single particle kinetic energy imposing
the DFT Fermi surface. The potential energy can be written
entirely in terms of the charged structure factor

Sc(k) = 1

Ne

〈
ρe

kρ
e
−k + ρ

p

k ρ
p

−k − 2ρe
kρ

p

−k

〉
(45)

averaged over electronic and protonic configurations, and we
have used the potential energy corrections, Eq. (30), with
S̃N (k) replaced by a cubic spline interpolation of Sc(k). The
formula for the kinetic energy correction stemming from the
Jastrow cannot be simplified in terms of the charged structure
factor only, but has been extended to include electron-electron
and electron-proton components of the Jastrow; their correct
long range are imposed in the VMC wavefunction [53]. The
two-body backflow correction, Eq. (39), only involves the
electron-electron structure factor, and t has been obtained
by calculating the kinetic energy of the backflow-free Slater
determinant.

In Table IV, we illustrate size effects of the energy on two
different systems. At the higher density, the system is in the
atomic phase with a metallic character, whereas the lower
density is molecular and expected to be insulating. Since the
structure factor has a higher peak for the molecular system
around k ≈ 2.5, the interpolation of it becomes less accurate
and introduces a larger uncertainty in the size extrapolation
than in the atomic liquid.

C. Hydrogen-helium mixtures

We now analyze some snapshot configurations of helium-
hydrogen mixtures at high density, rs = 1.10 and rs = 1.34,
generated from an ab initio quantum molecular dynamics
simulations [54]. For fixed nuclei positions, we have calculated
the electronic energy using the QMCPACK [44,45] simulation
package based on a single Slater-Jastrow wave function with
single particle orbitals obtained from Quantum espresso [46]
using the PBE functional (see Refs. [54,55] for further details).

Using a long-range optimized uk we can fit the long-
range behavior of the electron-electron Jastrow uee(k) = αk−2

and the fluctuating electronic structure factor δSee(k) = βk2

(using the pure estimator). We then obtain the leading order
corrections corresponding to the extrapolation of k → 0 in
Eq. (33)

�T LO
U = lim

k→0

�
2k2ρeu

2
ee(k)δSee(k)

2meV
= �

2ρ2
e α

2β

2me

1

N
(46)

and similar for the leading order potential energy corrections

�VLO = lim
k→0

vkδSee(k)

2V
= 2πρee

2β

N
. (47)

In Table V we show the leading order size corrections and
compare them to �Vlr obtained from interpolating only the
pure estimator for the fluctuating structure factor as described
in Sec. II D. The kinetic energy corrections �Tlr were obtained
from the difference of the total energy corrections using the
mixed estimator for the structure factor and the potential
energy corrections from the pure estimator using a trial wave
function without long-range components. We compare our size
effects with calculations of a 2 × 2 × 2 supercell with frozen
positions of the ions.

TABLE V. Finite size corrections for snapshop configurations of a hydrogen-helium mixture at different densities rs and different helium
concentrations xHe = NHe/(NHe + NH ). We give the size corrections based only on the Ne = 64 electron system together with a linear
extrapolation of the single particle (�TTABC) corrected energies using a 2 × 2 × 2 tiling of unit cell, denoted by Ne = 64 − 512. All size
corrections correspond to energies per electron in units of Ha.

rs xHe Ne �TTABC �T LO
U �VLO �T lr

U �Vlr �Elr

1.10 6.7% 64 −0.00059 0.00125 0.00470 0.00143 0.00591 0.00735
64-512 0.0014(5) 0.0069(9) 0.00816(3)

21% 64 −0.00024 0.000273 0.00452 0.00130 0.00569 0.00700
64-512 −0.0009(10) 0.0095(10) 0.00859(2)

1.34 12% 64 −0.00011 0.000178 0.00343 0.00103 0.00426 0.00530
64-512 0.0017(8) 0.0047(8) 0.00632(3)

21% 64 −0.00008 0.000750 0.00332 0.00097 0.00410 0.0051
64-512 0.0018(7) 0.0046(7) 0.00640(2)
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IV. CONCLUSIONS

In this paper, we have discussed in detail the origin of finite
size effects in quantum Monte Carlo calculations for electronic
structure in extended systems. Based only on information on
the wave function and the Hamiltonian, we have explicitly
shown the origin of size effects having either single particle
or many-body character. We have proposed robust and a
priori methods to reduce finite size errors without the need of
performing calculations of different sizes nor relying on size
extrapolations based on approximate calculations. Our meth-
ods do not assume any underlying symmetry of the unit cell and
have comparable residual errors for solid and liquid structures.
Although we have used cubic supercells as a benchmark for
our calculations, noncubic systems can be treated as well.

Most of the explicit results are given for Slater-Jastrow wave
functions, with or without backflow orbitals, underlying most
of the quantum Monte Carlo calculations for condensed matter.
However, we want to stress that our approach is more general
and can be extended to many other situations not explicitly
discussed, e.g., Bose and Fermi systems at zero and finite
temperature [57,58].

In particular, our method based on the interpolation of the
static structure factor can be directly applied to any system
with pair-wise interaction to reduce the finite size error in the
potential energy without any further assumption on the trial
wave function or the density matrix. More delicate are correc-
tions of the two-body kinetic energy which require knowledge
of the long wavelength behavior of the effective potentials of
the underlying wave function, e.g., of the effective two-body
Jastrow factor uk or the effective backflow potential yk . We
also discussed and tested the method when such information
was not explicitly available.

Our analysis of size corrections are also useful to judge
the validity of different size extrapolation schemes [3–5].
However, as we have shown in the case of backflow wave
functions, size effects, in general, can depend on the form of
the wave function, an aspect usually not taken into account by
heuristic approaches. Our theory of finite size extrapolation is
based on reasonable assumptions of the correlation function
which can be verified by additional calculations. Although our
discussion was based on quantum Monte Carlo calculations,
our theory of finite size extrapolation should be applicable also
to different computational methods, e.g., full configuration
interaction quantum Monte Carlo (FCIQMC) [59].
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APPENDIX A: FINITE SIZE ERROR IN TERMS OF
ANALYTIC PROPERTIES OF FOURIER TRANSFORM

Let us consider the general form of finite size error

�F =
[∫

dk
(2π )d

− 1

�

∑
k

]
f̃k, (A1)

where f̃k is obtained from the expression of the observable in
Fourier space. Assuming the existence of the Fourier transform
f (r) of f̃k , we have

�F = lim
r→0

[
f (r) −

∑
n

f (r + nL)

]
=

∑
n �=0

f (nL), (A2)

where n is a d-dimensional vector with integer components.
We see that for large systems, the finite size error is directly
connected to the long range behavior of f . Although all
considerations also apply to systems of reduced dimension-
ality, e.g., quasi-two-dimensional systems [60], we restrict the
discussion in the following to the most common case where
the functions f and f̃ are isotropic for r → ∞, and k → 0,
respectively, We then have f (r) ∼ ∫

dkkd−1
∫

d�df̃ke
ik·r and

f̃k ∼ ∫
drrd−1

∫
d�df (r)eik·r, where �d denotes the angular

part of the volume integration.
From the existence of the nth derivative of f̃k with respect

to k = |k|, we see that |f (r)| must decay faster than r−d−k+1

for r → ∞, and �F = O(N−1−(k−1)/d ). If f̃k is an analytical
function, it must be a regular function of k2, its Fourier
transform f (r), and therefore also �F , decay exponentially
with system size. Odd powers of k at the origin indicate
nonanalytical behavior [28]; we can reduce the finite size
error by making the observable as smooth as possible, e.g.,
separating these nonanalytical points from the integrand. In
the case of long range (Coulomb) potentials, the original
summations involved in energy or potential energy exclude
the term with k = 0. However, since limk→0 f̃k remains in
general finite, the inclusion of this term already improves the
convergence to the thermodynamic limit. It can be further
accelerated by separating out the nonanalytic behavior around
k = 0 to make the reminder in the integrand more regular. The
difficulty is to find a general way to split part of f̃k around
k = 0 without introducing additional, artificial irregularities
in the integrand.

For a classical Lennard-Jones potential, we can in general
assume that f decays at least as fast as the potential, f (r) ∼
v(r) ∼ r−6 for large r , and Eq. (A2) directly leads to a finite
size error of order N−2 in the potential energy for three
dimensional systems. For quantum systems, even in the case of
short-range potentials, phase fluctuations introduce long-range
behavior in the correlation functions giving rise to nonan-
alytical terms in potential and kinetic energy, independent
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of the statistics of the particles (bosons or fermions). The
sharp Fermi surface in a metallic state further introduces a
discontinuity in the momentum distribution leading to slowly
decaying oscillations in direct space, the origin of the shell
effects in the kinetic energy.

APPENDIX B: THE EFFECTIVE JASTROW POTENTIAL
AND LONG-RANGE STRUCTURE FACTOR

Assume a quite general many-body wave function �(R),
R ≡ (r1,r2,..rN ). The mean value of any observable O(R) is
given by

〈O〉 =
∫

dRO(R)|�(R)|2∫
dR|�(R)|2 (B1)

which we can rewrite as

〈O〉 =
∫

d�O(�)�̃2(�)∫
d��̃2(�)

, (B2)

where � ≡ (ρk1 ,ρk2 ,...ρkm
), ρk ≡ ∑N

j=1 eik·rj , and

�̃2(�) ≡
∫

dR
m∏

n=1

δ

⎛⎝ρkn
−

∑
j

eikn·rj

⎞⎠|�(R)|2. (B3)

It is now natural to introduce an effective action Seff ≡
− log |�̃|, with a functional form which respects the symmetry
of the problem. The simplest effective action which respects

translational invariance is given by

Seff 
 1

2�

∑
k �=0

ũeff(k)ρkρ−k − 1

�2

∑
kq

w(k,q)ρk+qρ−kρ−q . . .

(B4)
and reduces to a simple Jastrow functional form in leading
order. Note that fermion effects are correctly included in this
effective Jastrow factor. Using the simplest effective action
where we neglect the second term on the rhs of Eq. (B4) we get

S(k) ≡ 1

N
〈ρ−kρk〉 (B5)


 �

2Nũeff(k)
= 1

2ρũeff(k)
(B6)

which is exact for k → 0 whenever the mode-coupling terms
of higher order, e.g., w(k,q), can be neglected. The validity of
this assumption can be explicitly checked by calculating the
expectation values of higher moments of ρk and quantified
by their deviations from those obtained assuming gaussian
statistics.

Applying this result to noninteracting fermions described
by a single Slater determinant, we see that the effective Jastrow
potential of the Slater determinant [2ρS0(k)]−1 is completely
determined by the corresponding noninteracting structure fac-
tor S0(k). For a general Slater-Jastrow wave function, we then
obtain ũeff(k) 
 u(k) + 2ρS0(k)]−1 which fully captures the
long range behavior when mode coupling can be neglected. We
therefore obtain Eq. (41) which relates the structure factor with
the effective Jastrow potential in the long wavelength limit.

APPENDIX C: DERIVATION OF BACKFLOW CORRECTIONS

Let us consider the following backflow coordinates in the orbitals of the determinant

φkj ≡ φk(qj ) with qj ≡ rj + ηj , and ηj = i

�

∑
k

k yk[eik·rj ρ−k − 1] (C1)

so that the laplacian of the determinant is

∇2D =
∑
ijαβ

∂2D

∂qα
i ∂qβ

j

[∇qα
i

] · [∇qβ

j

] +
∑
iα

∂D

∂qα
i

∇2qα
i . (C2)

Since φkj are (approximate) eigenfunctions of an effective Hamiltonian, terms with i = j and α = β in the first summation on
the r.h.s. are expected to dominate the expectation value

− �
2

2me

〈
1

D
∇2D

〉
≈ t

d

∑
iα

〈[∇qα
i

] · [∇qα
i

]〉
, (C3)

where

t = − �
2

2meN

∑
iα

〈
1

D

∂2

∂q2
iα

D

〉
= 1

N

∑
i

〈εi − veff(qi)〉 (C4)

is the single particle kinetic energy per particle using Eq. (19). We can now simplify

∇β
n qα

i = δni

[
δαβ − 1

�

∑
k

kαkβ yk(eik·rnρ−k − 1)

]
+ (1 − δni)

1

�

∑
k

kαkβ yke
ik·(ri−rn) (C5)

and

1

N

∑
iαβ

〈[∇qα
i

]2〉 = 1

N

∑
iβ

〈[
δαβ − 1

�

∑
k

kαkβ yk(eik·ri ρ−k − 1)

]2

+
∑
nβ

(1 − δni)
1

�2

∑
kk′

kαkβk′
αk′

β ykyk′ei(k+k′)·(ri−rn)

〉
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=
[

1 − 2

d�

∑
k

k2 yk(S(k) − 1)

]

+ 1

d�2N

∑
kk′i

〈
(k · k′)2ykyk′(eik·ri ρ−k − 1)(eik′ ·ri ρ−k′ − 1) +

∑
n

(1 − δni)(k · k′)2 ykyk′ei(k+k′)·(ri−rn)

〉


 1 − 2

d�

∑
k

k2 yk(S(k) − 1) + ρ

d�

∑
k

k4y2
k (S(k) + 1). (C6)

From this analysis, we can expect that backflow introduces
another kinetic energy correction given by

�TBF ≈ t�s (C7)

�s =
[∫

dk
(2π )d

− 1

�

∑
k

]
k2yk

d

× [2 + ρk2yk − (2 − ρk2yk)S(k)], (C8)

where t is the mean kinetic energy of the single particle orbitals
in the determinant. From the long-range limit of the electron
electron backflow [12,42], yq = −c(rs)/nq2 with c(rs) ≈ 1 +
0.075

√
rs/(1 + 0.8

√
rs) for d = 3, from which we obtain the

leading order term

�sLO = − 1

3N
(C9)

or

�T LO
BF = − t

3N
(C10)

with t 
 3k2
F /10m for a metal with spherical dispersion

relation.

APPENDIX D: EXTRAPOLATION OF POTENTIAL
ENERGY BASED ON EWALD SUMMATION AND

CORRECTIONS DUE TO NONANALYTIC BEHAVIOR
OF THE STRUCTURE FACTOR

To derive the long-range contributions for potential and
kinetic energy, Eqs. (30) and (35), we have assumed that the
long-range part of the underlying potentials can be separated
so that the resulting expressions in Fourier space converge
rapidly. In all examples provided in the main text, this
separation was done numerically using optimized potentials
[31,32]. Analytical expressions can be obtained for power-law
potentials, in particular for the Coulomb 1/r interaction,
based on the method introduced by Ewald [11,27,33]. In this
expression, the periodic Coulomb potential inside a box of
linear extension L, can be written as

vpp(r) = 1

�

∑
k

vlr
k eik·r +

∑
n

vsr (|r + nL|) (D1)

with

vlr
k = 4π

k2
e−k2/4α2

, vsr (r) = erfc(αr)

r
, (D2)

where the parameter α controls the speed of convergence and n
indicates the summation over all image charges in real space.
In the following, we set α = √

kc/L and cut off the sum in

reciprocal space at wave vector kc together with nearest-image
convention in real space.

We illustrate the potential energy corrections for the
homogeneous electron gas within the Hartree-Fock approx-
imation [56]. Its structure factor in the thermodynamic limit
is SHF (k) = 3k/4kF − k3/16k3

F . Using GC-TABC the kinetic
energy is exactly sampled. Additionally, the finite size structure
factor SN (k) is identical to the infinite one, SN (k) ≡ S∞(k),
on the discrete k mesh compatible with the simulation box
[8,22]. Thus, size effects are entirely due to the discretization
error inside the calculation of the exchange energy. It is
straightforward to calculate the long-range contribution to the
potential energy corrections.

In deriving the energy correction formulas in the main text,
we have assumed that the short range part of the pair correlation

FIG. 5. Differences of the potential energy per electron VN

in units of Ha, relative to the thermodynamic limit, V∞ for
the homogeneous electron gas at rs = 1 within the Hartree-Fock
approximation. The black symbols are GCTABC results of the finite
system with N electrons, red symbols correspond to the finite size
corrected ones with long and short range corrections, �Vlr and �Vsr ,
using the Ewald method described in appendix D. In the inset we
compare the long and short range potential corrections, �Vlr (pink
symbols), and �Vsr + �Vlr (red symbols) with the leading order
corrections (blue symbols) of Ref. [13]. Lines are guides to the eyes.
For all size corrections, the value of the slope of the structure factor at
the origin is estimated from its values at the discrete k mesh; imposing
the exact value, the energy difference can be further improved and
VN + �Vlr + �sr becomes equal to the thermodynamic limit on the
scale of the figures.
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function is not modified by size corrections. This would be
the case if the structure factor was an analytical function of
k. However, within Hartree Fock, the linear behavior of the
structure factor strongly violates this assumption in contrast to
the expected k2 behavior in more realistic calculations beyond
Hartree-Fock. We can take into account this behavior by

�Vsr =
[∫

dk
(2π )d

− 1

�

∑
k

]
vsr

k [S̃N (k) − S̃N (kc)]θ (kc − k),

(D3)
where S̃N (k) is the interpolation of the structure factor
imposing a vanishing derivative at the cutoff kc and vsr

k =
4π (1 − e−k2/4α2

)/k2 for the Ewald potential. Notice that we
have inserted S̃N (kc) to force the integrand to vanish at kc, but
the difference between the discrete sum and the integration
vanishes to high precision by construction.

In Fig. 5, we show the finite size error in the exchange
energy of the electron gas at rs = 1 within the Hartree-Fock
approach and the results of the potential energy corrections
above in comparison with the leading order corrections [13].
For all size corrections, the value of the slope of the structure
factor around the origin is estimated by finite difference of

the finite size structure factor. Imposing the exact value of
the slope, deviations to the thermodynamic limit of our best a
priori value of the exchange energy, VN + �Vlr + �Vsr , are
of order � 10−5 Ha for N � 10. Our procedure can therefore
be considered as optimal.

In realistic calculations (beyond Hartree Fock), screening
effects strongly modify long-range behavior of the structure
factor compared to the Hartree-Fock behavior leading to
S(k) ∼ k2 around k = 0. Although nonanalytic behavior may
still occur beyond leading order (terms of order k3), the
corresponding size corrections �Vsr are expected to be much
reduced. In practice, it is difficult to use Eq. (D3) to correct
for nonanalytical terms beyond leading order, so that we
have only taken into account Vlr for size corrections in
3D. However, if we can extract the nonanalytical behavior,
S(k) = akα + bk2 + . . . around k = 0, we can estimate these
corrections from the asymptotic expansion

�Vsr = a

[∫
dk

(2π )d
− 1

�

∑
k

]
vsr

k kα. (D4)

These corrections are of order N−2 in 3D (α = 3) and L−7/2 ∼
N−7/4 in 2D (α = 3/2).
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