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Topological aspects of nonlinear excitonic processes in noncentrosymmetric crystals
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We study excitonic processes second order in the electric fields in noncentrosymmetric crystals. We derive
formulas for shift current and second harmonic generation produced by exciton creation, by using the Floquet
formalism combined with the Keldysh Green’s function method. It is shown that (i) the steady dc shift current
flows by exciton creation without dissociation into free carriers and (ii) second harmonic generation is enhanced
at the exciton resonance. The obtained formulas clarify topological aspects of these second order excitonic
processes which are described by Berry connections of the relevant valence and conduction bands.
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I. INTRODUCTION

Nonlinear optical processes in solids are the important
subject in condensed matter physics, which are also of
crucial importance for applications [1–3]. In particular, non-
centrosymmetric crystals host the second order processes in
electric fields such as shift current, optical rectification, and
second harmonic generation (SHG). We have recently revealed
that these second order optical processes are topological
in nature and are described by the Berry connections of
Bloch wave functions of conduction and valence bands for
noninteracting electrons [4]. However, the role of Coulomb
interaction is often essential in the electronic processes in
insulating solids. In particular, excitons, bound pairs of
electron and hole via Coulomb interaction, are relevant to these
processes by enhancing these nonlinear effects in many cases
[3] Therefore, it is an important issue to study the interaction
effect on the topological nonlinear optical effects, which we
address in this paper.

One example of the second order optical effects is the
photocurrent, which is also relevant to the solar cell action.
Light irradiation creates the electrons and holes in the crystal,
which are often bound to form neutral excitons. It is believed
that the excitons cannot contribute to the steady dc current.
If this is the case, the dissociation of the excitons into free
electrons and holes is essential to produce the dc photocurrent.
This process is usually achieved by the potential gradient at p-n
junction or by the applied electric field. The efficiency of the
solar cell action is largely determined by the probability of the
thermally activated dissociation process which is competing
with the annihilation of the excitons [5]. However, we show
below that the excitons can support the dc current under the
steady light irradiation due to the geometrical nature of the
Bloch wave functions.

In the past decades, it has been recognized that the free
carriers are not necessarily needed for the current. The repre-
sentative example is the polarization current in ferroelectrics
[6]. In an insulator with a band gap, electrons occupying the
valence band can support current corresponding to the time
derivative of the polarization. This current is characterized
by the Berry phase of the valence electrons. Specifically, the
Berry phase is related to the “intracell” coordinates, i.e., the
band dependent shift of the wave packet made from the Bloch

wave functions. This shift of the electrons described by the
Berry phase is the origin of the electric polarization that leads
to the polarization current. However, the polarization current
cannot be a steady dc current. Since the polarization current
usually appears in the process of the polarization reversal
in ferroelectrics, it inevitably vanishes when the polarization
reversal is completed. Quantum pumping current proposed by
Thouless [7], on the other hand, can support dc current, but it
requires a nontrivial topological (winding) number defined in
the parameter space of the Hamiltonian which is only achieved
with a large deformation of the Hamiltonian in the parameter
space. The Hall current in the quantum Hall effect is also such
current characterized by a nontrivial Berry phase [8]. While
the quantum Hall current is steady dc current, it is carried by
the edge channels (not through the bulk) and is realized
under the nontrivial topological (Chern) number which usually
requires an application of a large external magnetic field.
Therefore, it has been considered to be difficult to realize
dc current in the presence of a band gap when the Hamiltonian
does not possess any nontrivial topological number.

The restriction on obtaining dc current is relaxed in the
nonequilibrium state under the light irradiation. Of particular
interest is the shift current as a mechanism of the photocur-
rent in noncentrosymmetric crystal [4,9–13]. This might be
relevant to the recent experiments showing the high efficiency
solar cell action [14–18]. Shift current is induced by the change
in the intracell coordinates associated with the interband
transitions. Namely, the difference of the Berry phases between
the conduction and valence bands induces the steady dc current
in noncentrosymmetric crystals even in the absence of an
external dc electric field. However, it is assumed here that
electrons and holes are independent free particles, i.e., the
single particle approximation is employed.

The other example of the second order optical effects is the
second harmonic generation (SHG) [1–3]. SHG is a common
optical process which is used to detect the inversion symmetry
breaking both in the bulk crystal and at interfaces or surfaces.
When the incident light has the frequency �, the second
order nonlinear responses can have two output frequencies,
i.e., zero and 2�. The first one corresponds to the shift current
discussed above or optical rectification if it is detected optically
in sufficiently low frequencies. The optical rectification is
important in generating terahertz (THz) light. The latter 2�
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response corresponds to the SHG. It is experimentally shown
that the excitons can contribute to the optical rectification
[19,20] and the SHG [21–23]. While the optical rectification
and the SHG are well-known nonlinear optical effects, their
enhancement due to the exciton resonance has not been fully
explored from the viewpoint of topology and geometry of the
Bloch electrons.

In the present paper, we study the role of exciton formation
on the second order optical processes and demonstrate that
they are topological in nature. We show that (i) the shift current
originating from the Berry phase remains nonvanishing even
when the excitons are formed due to the attractive interaction
between an electron and a hole created by the light irradiation,
and (ii) the SHG is expressed by the similar expression to the
shift current in terms of the Berry connection and is enhanced
at the exciton resonance. This is achieved by using the Floquet
two band model developed in Ref. [4] by incorporating the
attractive interaction. This formalism enables us to concisely
describe nonequilibrium steady states with exciton formation
and study various nonlinear current responses produced by
exciton creation.

II. FLOQUET TWO BAND MODEL FOR EXCITONS

We study a two band model that describes the exciton
formation in a system driven by an external electric field
of light. We consider a d-dimensional system in which the
electric field is applied along the ith direction and the repulsive
interaction is present between the valence electron and the
conduction electron. Then the Hamiltonian of the two band
model is given (with the convention e = � = 1) by

H =
∑

α=c,v

∑
k

ε0
i [k + A(t)ei ]ψ

†
α,kψα,k

+
∑

k

A(t)[v12(k)ψ†
v,kψc,k + H.c.]

−
∑
k,k′

Vkk′ψ
†
c,kψv,kψ

†
v,k′ψc,k′ , (1)

where ψv and ψc are annihilation operators for valence and
conduction bands with the energy dispersions ε0

v (k) and ε0
c (k),

respectively. Electrons are driven by an electric field E(t)ei

(with the ith unit vector ei ) which is periodic in time as

E(t) = E e−i�t + E∗ei�t . (2)

This electric field is introduced to the Hamiltonian by the
substitution k → k + A(t)ei and the gauge potential is given
by A(t) = iA e−i�t − iA∗ei�t with A = E/�. In addition to
the first term in Eq. (1) that corresponds to this substitution in
the energy dispersion, the electric field leads to an interband
effect described by the second term in Eq. (1), i.e., the coupling
to the current matrix element

v12(k) = 〈ψv,k|v|ψc,k〉 (3)

between the valence and conduction bands where v is the
velocity operator in the ith direction. The attractive interaction
between electron and hole is described by Vk,k′ which leads to
the exciton formation. We have picked up only the interaction
terms which are relevant to the formation of excitons with

zero center-of-mass momentum corresponding to the uniform
electric field of light. This is analogous to the BCS Hamiltonian
of superconductivity, but we do not discuss the condensate of
the excitons here.

The nonequilibrium steady state under the light irradiation
is concisely described by using the Floquet formalism com-
bined with the Keldysh Green’s function method [4,24–29].
The Floquet formalism offers a description of periodically
driven systems in terms of Floquet bands. Specifically, we
define a Floquet Hamiltonian HF with Fourier transformation
of the time dependent Hamiltonian H0(t) of the period T as

(HF )mn = 1

T

∫ T

0
dt ei(m−n)�tH0(t) − n�δmn, (4)

where m and n are Floquet indices and � = 2π/T . While
Floquet bands obtained from HF determine eigenstates in
periodically driven systems, they lack the information of how
they are occupied in the steady state. The occupation of the
Floquet bands in the steady state can be fixed by coupling
the system to a heat bath having the Fermi energy and the
temperature that we want to impose onto the system. This is
concisely described by using the Keldysh Green’s function
method and include the effect of the heat bath as a self-energy.
The Keldysh Green’s functions in the Floquet formalism are
written by the Dyson equation as

(
GR GK

0 GA

)−1

= ω − HF + 	. (5)

Here we consider two contributions to the self-energy as
	 = 	bath + 	ex, where 	bath is the self-energy arising from
a coupling to the bath and 	ex is the self-energy arising from
the exciton formation due to the electron-electron interaction.
The self-energy 	bath for the heat bath is given by

(	bath)mn = i
δmn

(
1
2 −1 + f (ω + m�)
0 − 1

2

)
, (6)

for Floquet indices m and n. This form of 	bath assumes
that each site is coupled to a heat bath which has a wide
spectrum and the distribution function f (ε), and 
 measures
the strength of the coupling between the system and the bath
[24]. The inclusion of 	bath fixes the occupation of the Floquet
bands properly through the Keldysh component of the Dyson
equation. The self-energy 	ex describes the exciton formation
in the driven system which we incorporate in the mean-field
approximation for the interaction term by keeping the Fock
term in the Keldysh Green’s function.

Now we apply this formalism to the two band model in
Eq. (1). When the electric field is weak, we can focus on two
Floquet bands, i.e., the valence band dressed with one photon
and the conduction band dressed with zero photon, which are
denoted by annihilation operators ψ1 and ψ2, respectively, as
schematically illustrated in Fig. 1. Here, subscripts 1 and 2
are shorthand for the valence band with Floquet index −1 and
the conduction band with Floquet index 0, respectively. In this
case, the Floquet Hamiltonian is given by [4]

HF =
(
ψ

†
1,k ψ

†
2,k

)
HF

(
ψ1,k

ψ2,k

)
, (7)
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FIG. 1. Schematic picture of the Floquet two band model. Bands
labeled by ψ1 and ψ2 denote the valence band with Floquet index
−1 and the conduction band with Floquet index 0, respectively.
Quasienergy for the Floquet band ψ1 is smaller than that for ψ2.
The exciton formation is described by an effective mixing of these
two bands in the mean-field approximation of the electron-electron
interaction.

HF =
(

ε1(k) −iA∗[v12(k) + v′∗(k)]
iA[v21(k) + v′(k)] ε2(k)

)

≡ ε + d · σ , (8)

where ε1 = ε0
v + ��, ε2 = ε0

c , and v21 = v∗
12. The detuning

dz(k) = − 1
2 [ε0

c (k) − ε0
v (k) − ��] is negative for any value of

k, because we are interested in the excitonic bound state where
the photon energy is smaller than the band gap. The nonzero
expectation value of excitons effectively modifies the dipole
matrix element by

iAv′(k) = −
∫

dk′Vkk′�(k′), (9)

�(k) = 〈ψ†
1,kψ2,k〉. (10)

This mean-field treatment of excitons in HF is equivalent to
including the retarded component of the exciton self-energy
	R

ex into the mean-field Floquet Hamiltonian HF in the Dyson
equation [Eq. (5)].

The exciton formation is captured by the self-consistency
equation for �(k) which we solve by employing the Keldysh
Green’s function in the following. First, the lesser Green’s
function for the Floquet two band model is given by [4]

G< = GR	<GA

= (ω − ε − i
 + d · σ )	<(ω − ε + i
 + d · σ )

[(ω − ε − i
)2 − d2][(ω − ε + i
)2 − d2]
, (11)

with

	< = 	R + 	K − 	A

2
= i


1 + σz

2
. (12)

Here the lesser self-energy 	< describes the occupation of
Floquet bands and is determined by the heat bath as 	< ∼=
	<

bath. The above form of 	< assumes that the Fermi energy is
located within the energy gap of the original band structure
[24]. Specifically, the final equation in Eq. (12) follows

from f (ε0
v ) = 1 and f (ε0

c ) = 0 since (	<
bath)mn = i
δmnf (ω +

m�). Next, in the case of the two band model, general
expectation values 〈ψ†(b · σ )T ψ〉 for any b = (bx,by,bz) can
be evaluated by using the above lesser Green’s function as [4]

〈ψ†(b · σ )ψ〉 = −iTr[G<(b · σ )]

=
∫

dk
1

d2 + 
2

4

[



2
(−dxby + dybx)

+ (dxbx + dyby)dz +
(

d2
z + 
2

4

)
bz

]
,

(13)

where Tr denotes the trace of a matrix and integration over k
and ω. The self-consistency condition for �(k) is written by
using the above equation with b · σ = (σx + iσy)/2 as

�(k) = 〈ψ†
1,kψ2,k〉 = −i

∫
dω G<

21

= iA(v21 + v′)
(
dz − i 


2

)
2
(
d2 + 
2

4

) , (14)

which is essentially equivalent to the Dyson equation for the
retarded component of the self-energy 	R [29]. This leads to
the integral equation,

�(k) = iAv21
dz − i 


2

2
(
d2 + 
2

4

) − dz − i 

2

2
(
d2 + 
2

4

)
∫

dk′Vkk′�(k′).

(15)

If we assume that the attractive interaction has the separable
form

Vkk′ = w∗(k)w(k′), (16)

we can solve the integral equation as

v′(k) = −w∗(k)B, B = 1

iA

∫
dk′w(k′)�(k′), (17)

where the integral equation for �(k) reduces to the linear
equation for B given by

B =
∫

dkw(k)v21
dz − i 


2

2
(
d2 + 
2

4

)−
∫

dk|w(k)|2 dz − i 

2

2
(
d2 + 
2

4

)B.

(18)

When A|v21 + v′| is much smaller than |dz| and 
 (i.e., the
external electric field is not too strong), v′ is written as

v′(k) = −w∗(k)
C1

1 + C2
, (19)

with

C1 =
∫

dk
w(k)v21

2
(
dz + i 


2

) , C2 =
∫

dk
|w(k)|2

2
(
dz + i 


2

) . (20)

Intuitively, 1/(1 + C2) corresponds to the propagator of the
exciton, and the resonance to the exciton state takes place when
Re(1 + C2) = 0 is satisfied by the incident light frequency
�. In particular, when the detuning dz(k) is constant as a
function of k (as in flat bands) and the interaction is of a
contact type [i.e., w(k) is a constant satisfying

∫
dk|w(k)|2 =

V ], the exciton resonance takes place at the frequency �� =
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ε0
c − ε0

v − V . In the following, we show that the shift current
is nonvanishing in the presence of the exciton formation where
no free electrons and holes are created.

Now we study the current J ≡ 〈ψ†∂kj
HF ψ〉 in the j th

direction in the presence of exciton formation. The cur-
rent expectation value is obtained by setting bx − iby =
−iA∗(∂kj

v)12 and bz = (∂kj
ε1 − ∂kj

ε2)/2 in Eq. (13), which
gives

J =
∫

dk(j1 + j2), (21)

with

j1 =
∫

dk
Re

[(
dz − i 


2

)
(dx + idy)(bx − iby)

]
d2 + 
2

4

= |A|2 Re
{(

dz − i 

2

)[(
∂kj

v
)

12(v21 + v′)
]}

d2 + 
2

4

, (22)

j2 =
(
d2

z + 
2

4

)(
∂kj

ε1 − ∂kj
ε2

)
2
(
d2 + 
2

4

) . (23)

When |A(v21 + v′)| and 
 are much smaller than |dz|, we can
replace d2 with d2

z in the denominators. Then j2 vanishes after
the integration over k because

∫
dk ∂kj

εα = 0; we focus on
the contribution from j1 hereafter. In the two band model, the
derivative of the velocity operator in Eq. (22) is written as [4](

∂v

∂kj

)
12

= ∂v12

∂kj

− 〈
∂kj

u1

∣∣v|u2〉 − 〈u1|v
∣∣∂kj

u2
〉

= v12(R1 + iR2), (24)

with

R1 = ∂kj
log |v12| + v11 − v22

ε1 − ε2
, (25)

R2 = ∂kj
Im[log v12] + a1 − a2, (26)

Here, uα is the periodic part of the Bloch wave function and
aα = −i〈uα|∂kj

uα〉 is the Berry connection of the band α.
We note that R1 and R2 have dimensions of the length. In
particular, R2 is known as the shift vector and describes the
shift of the wave packets in the valence and conduction bands.
Intuitively, the shift vector R2 is a k-resolved version of electric
polarization and originates from the difference of intracell
coordinates for the valence and conduction bands which is
expressed by the Berry connections. Indeed, the k integral of
R2 is the difference of electric polarizations of the valence and
conduction bands as can be seen from∫

dk R2 =
∫

dk a1 −
∫

dk a2, (27)

where the contribution of ∂kj
Im[log v12] vanishes because it

is a total derivative with respect to kj . In the presence of the
time reversal symmetry (TRS), R1 and R2 are odd and even in
k, respectively, and |v12|2 is even in k. Thus the photocurrent
from the excitons in Eq. (21) reduces in the presence of TRS to

J = Jcon + Jex, (28a)

Jcon = |A|2
∫

dk


2

d2
z + 
2

4

|v12|2R2, (28b)

Jex = |A|2
∫

dk
1

dz

[Re(v12v
′)R1 − Im(v12v

′)R2]. (28c)

The first term Jcon describes the conventional shift current
that involves creation of a pair of free electron and hole which
is present for �� > Eg with the band gap Eg . The second
term Jex describes the shift current carried by excitons and is
nonvanishing even when �� < Eg . We note that we dropped

 in the second term because we can assume 
 	 |dz| in
describing excitons.

We study properties of the exciton photocurrent Jex in the
following. First, the photocurrent Jex is generated through the
real transitions to create excitons, because only the imaginary
part of the exciton propagator 1/(1 + C2) contributes to the
photocurrent Jex in Eq. (28). This is reasonable from the
viewpoint of the energy conservation. It is easy to explicitly
show this fact in the presence of the TRS by assuming
that the time reversal operation is represented by a complex
conjugation (T = K). In this case, the velocity operator
obeys the equation vij (−k) = −(vij (k))∗ and the separable
interaction term w(k) can be chosen to satisfy w(−k) = w∗(k)
without loss of generality. Since the real part of w(k)v21(k)
is odd in k, C1 is pure imaginary at the exciton resonance
where we can drop 
 in the denominator. By noticing
that w∗(−k)v12(−k) = −[w∗(k)v12(k)]∗, we can write the
photocurrent as

Jex = |A|2
∫

dk
Im(C1)

dz

Im

[
1

1 + C2

]

× {Re[w∗(k)v12(k)]R1 − Im[w∗(k)v12(k)]R2}, (29)

which is proportional to Im[1/(1 + C2)] and manifests that
the photocurrent is generated by real transition to the exciton
state. Second, the expression for Jex can be further simplified
for shallow excitons. Shallow excitons are those with small
binding energy that are formed by Bloch states near the
band gap. Specifically, in this case of shallow excitons,
the k integrals are contributed only from the small region
(δk)d around k = 0 where the band gap is the smallest; we
replace

∫
dk with

∫
dk(δk)dδ(k) in Eq. (29). By doing so, the

mean-field solution of the exciton in Eq. (20) leads to

Im[C1] = (δk)d
w(0)

2dz(0)
Im[v21(0)], (30)

Im

[
1

1 + C2

]
= −2dz(0)




[2dz(0) + V ′]2 + 
2
, (31)

with V ′ = |w(0)|2(δk)d . Thus the photocurrent Jex for shallow
excitons is given by

Jex
∼= |A|2 V ′(δk)d

|dz(0)|



[2dz(0) + V ′]2 + 
2
|v12(0)|2R2(0),

(32)

where we used the relations Im[v12(0)]Im[v21(0)] =
−|v12(0)|2 and dz < 0. In this expression, the factor

/{[2dz(0) + V ′]2 + 
2} describes the real transition into the
exciton state at the resonance frequency �� = ε0

c − ε0
v − V ′.
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In addition, the shift current for shallow excitons is propor-
tional to the weight of the exciton V ′(δk)d/[2|dz(0)|]. This
clearly shows that the nonzero shift current flows by creating
excitons below the band gap. Furthermore, we notice that
Jex is proportional to the contribution to the conventional
shift current Jcon at k = 0 that has a factor |v12(0)|2R2(0) as
seen in Eq. (28b). This indicates that the conventional shift
current in the noninteracting system is partly transferred to
the exciton resonance below the band gap due to the exciton
formation with the attractive interaction. In fact, by recovering
the energy broadening 
 in Eq. (28c), one obtains the term
|A|2 
/2

d2
z +
2/4 Im[(∂kj

v)12v
′] which gives negative shift current

contribution for the electron-hole continuum as follows. For
simplicity, we focus on the case where the resonance condition
is satisfied at the band gap at k = 0 [i.e., dz(0) = 0 and
dz(k) 
= 0 for k 
= 0]. In this case, Eq. (20) gives C1 =
−iπw(0)v21(0)D(0) and C2 = −iπ |w(0)|2D(0), where D(0)
is the joint density of states at k = 0, and the above term
is expressed as |A|2 
/2

d2
z +
2/4 |v12(0)|2R2(0)[− π |w(0)|2D(0)

1+(π |w(0)|2D(0))2 ].
This should be compared with Jcon and clearly de-
scribes the partial suppression of the conventional
shift current above the band gap due to the exciton
formation.

An optical process that is closely related to the shift current
is optical rectification. The optical rectification is the second
order nonlinear optical effect that optically measures emission
of low frequency light, typically in the THz regime. Namely,
the optical rectification is a low frequency optical analog of
the shift current and is important for application for THz
generation. Since the shift current is enhanced at the exciton
resonance below the band gap, the optical rectification is also
enhanced at the exciton resonance. Thus strong THz generation
is expected by shining the light to noncentrosymmetric crystals
at the exciton resonance. Indeed, there are experimental reports
on enhanced THz emissions for GaAs when the laser frequency
is resonant to the excitons [19,20].

III. SECOND HARMONIC GENERATION

Exciton formation also enhances the SHG for the photon
energy below the band gap in a similar manner to the case
of shift current. The SHG is the current response of the
frequency 2� when the incident light has the frequency �. In
our formalism, the SHG can be studied by using the formula
for time-dependent current,

J (t) = −i
∑
m

Tr[v(t)G<
mn]e−i(m−n)�t , (33)

where subscripts m and n denote the Floquet indices, and Tr
denotes a trace over the band indices and ω and k integration.
Here the time-dependent current operator is given by

v(t) = v + (iA e−i�t ∂kv + H.c.) + O(A2). (34)

The frequency 2� component of the current J2� is decom-
posed into two contributions as

J2� = J1ph + J2ph, (35)

where the first term and the second term represent one-photon
contribution and the two-photon contributions, respectively.

In the standard perturbation theory [10], the one-photon
contribution corresponds to the bubble diagram where the
diamagnetic current is induced by the external electric
field coupling to the usual current operator, while the two-
photon contribution corresponds to the diagram where the
usual current response is induced by the external electric
field coupling to the diamagnetic current. In the following,
we compute the one-photon contribution and the two-photon
contribution separately.

The one-photon contribution J1ph is obtained by setting
m = n + 1 and v(t) → iA e−i�t ∂kv in Eq. (33). Since this
is the same Floquet two band model as in Eq. (8), we can
compute J1ph in a similar way to the shift current. In particular,
the same self-consistent equation, Eq. (15), holds for the
exciton formation. By using the formula for the lesser Green’s
function [4],

(G<)21 = (dx + idy)
(



2 + idz

)
2
(
d2 + 
2

4

) , (36)

the one-photon contribution is written as

J1ph = −A2
∫

dk
1

2dz

Re[(∂kv)12v
′]

= −A2
∫

dk
Im(C1)

2dz

Im

[
1

1 + C2

]

× {Re[w∗(k)v12(k)]R1 − Im[w∗(k)v12(k)]R2}, (37)

where we only kept terms relevant to the exciton resonance.
Thus the one-photon contribution is the same as the shift
current Jex except that it has the factor −A2/2 instead of |A|2
in Eq. (29).

The two-photon contribution J2ph is obtained by setting
m = n + 2 and v(t) → v in Eq. (33). Therefore, the two
photon contribution arises from another two band model in
which valence and conduction bands are separated by two
Floquet indices. This is given by

H̃F = (ψ̃†
1 ψ̃

†
2)H̃F

(
ψ̃1

ψ̃2

)
, (38)

H̃F =
(

ε0
v + 2�� − 1

2A2[(∂kv)12 + (∂kṽ
′)∗]

− 1
2A2[(∂kv)21 + ∂kṽ

′] ε0
c

)
,

(39)

where ψ̃1,ψ̃2 are annihilation operators for the valence band
with Floquet index −2 and the conduction band with Floquet
index 0, respectively, and (∂kv)12 = 〈ψv,k|∂kv|ψc,k〉. The off-
diagonal term is obtained by expanding the time dependent
Hamiltonian up to the order of A2. Specifically, when we keep
terms up to the order of A2, the time-dependent Hamiltonian
reads

H (t) = H0 + A(t)v + 1
2A(t)2∂kv, (40)

and the Fourier components of e±i2�t produce the off-diagonal
terms in Eq. (39). In this case, the self-consistent equation is
given by

−1

2
A2∂kṽ

′ = −
∫

dk′Vkk′�̃(k′), (41)
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�̃(k) = 〈ψ̃†
1,kψ̃2,k〉

= −(1/2)A2[(∂kv)21 + ∂kṽ
′]
(
dz − i 


2

)
2
(
d2 + 
2

4

) . (42)

These equations describe excitons formed by two photon
absorption and are different from Eq. (15) for the excitons
formed by one photon absorption. The self-consistent equation
is solved in a similar manner by assuming the separable form
for the interaction Vkk′ = w∗(k)w(k′) as

∂kṽ
′(k) = −w∗(k)

C̃1

1 + C̃2
, (43)

with

C̃1 =
∫

dk
w(k)(∂kv)21

2
(
dz + i 


2

) =
∫

dk
w(k)v21

2
(
dz + i 


2

) (R1 − iR2),

(44)

C̃2 =
∫

dk
|w(k)|2

2
(
dz + i 


2

) . (45)

Here we used the identity (∂kv)21 = [(∂kv)12]∗ = [v12(R1 +
iR2)]∗ = v21(R1 − iR2). Then we obtain the two photon
contribution as

J2ph = −A2

2

∫
dk

1

2dz

Re[v12(∂kṽ
′)21]

= −A2
∫

dk
Re(C̃1)

4dz

Im

[
1

1 + C̃2

]
Im[w∗(k)v12(k)],

(46)

where we only kept the term relevant to the exciton resonance.
When we equate the first line and the second line, we used
constraints from the TRS. Specifically, the TRS (T = K) re-
quires w∗(k)v12(k) = −[w∗(−k)v12(−k)]∗ and w(k)∂kv(k) =
[w(−k)∂kv(−k)]∗. Thus C̃1 is real when we neglect i 


2
in the denominator, and Re[w∗(k)v12(k)] is odd in k and
vanishes after k integration. Since this expression shows
J2ph ∝ Im[1/(1 + C̃2)], we again find that the two photon
contribution to SHG is generated by the real transition to the
exciton state.

Next we study SHG in the case of shallow excitons. We
assume that the integral is contributed near k = 0 due to the
factor 1/dz, and replace

∫
dk with

∫
dk(δk)dδ(k). The one-

photon contribution J1ph reduces to −1/2 times Eq. (32). In
the case of the two-photon contribution, the self-consistent
solution reduces in the shallow exciton limit to

Re[C̃1] = (δk)d
w(0)

2dz(0)
Im[v21(0)]R2(0), (47)

Im

[
1

1 + C̃2

]
= −2πdz(0)δ[2dz(0) + V ′]. (48)

Here we used Re[v21(0)] = R1(0) = 0 under the TRS in the
first line and took 
 → 0 limit in the second line. By using
these equations in Eq. (46), the two photon contribution is
written as

J2ph
∼= −πA2 V ′(δk)d

4dz(0)
|v12(0)|2R2(0)δ[2dz(0) + V ′]. (49)

Combining these two contributions, we obtain the SHG from
shallow excitons as

J2�
∼= πA2V ′(δk)d |v12(0)|2R2(0)

×
[
δ(ε0

v − ε0
c + V ′ + ��)

2(ε0
v − ε0

c + ��)
− δ(ε0

v − ε0
c +V ′ + 2��)

4(ε0
v − ε0

c + ��)

]
.

(50)

This clearly shows that the SHG is enhanced with exciton
formation when the photon energy �� is the same as or half
of the exciton creation energy (ε0

c − ε0
v − V ′).

Finally we comment on the relationship between the SHG
and the shift current. Let us define nonlinear conductivities for
SHG and shift current as

J2� = σ (2)(�)E(�)2, (51)

J = σ (0)(�)|E(�)|2. (52)

In the case of noninteracting systems, the real part of the
nonlinear conductivity for SHG is related to that for shift
current as [4]

Re[σ (2)(�)] = − 1
2σ (0)(�) + 1

4σ (0)(2�). (53)

This is obtained by replacing v′ with v in expressions for SHG
[Eq. (37) and Eq. (46)] and comparing it with Jcon. While
the above relation still holds for the one-photon contribution
with exciton formation, i.e., J1ph = − 1

2Jex, the two photon
contribution does not satisfy this relation because the mean-
field solution for the two-photon contribution involves the k
integral of ∂kv in C̃1 in contrast to v in C1. However, this
relationship recovers in the case of shallow excitons as is
noticed by comparing Eq. (32) and Eq. (50). Thus the SHG and
the shift current are closely related with each other even in the
presence of exciton formation, and both are governed by the
shift vector Rk(k) which is essentially a topological quantity
described by Berry connections. Since the k integral of Rk(k)
over the Brillouin zone coincides with the difference of
polarizations of valence and conduction bands, both SHG and
shift current are considered to be topological phenomena akin
to electric polarization phenomena in ferroelectric materials.

IV. DISCUSSIONS

We have shown that the excitons can produce shift current
under the steady light irradiation. The absence of the inversion
symmetry, i.e., the noncentrosymmetric crystal structure, is
essential for this effect, since otherwise the two contributions
from k and −k cancel each other as discussed in Ref. [4].
In addition, the experimental test of the prediction in the
present paper requires (i) well-defined exciton absorption peak
separated from the electron-hole continuum, (ii) low enough
temperature to suppress the thermal dissociation of excitons
into electrons and holes, and (iii) well-separated electrodes
from the light irradiation spot to eliminate the contribution
from the exciton dissociation at electrodes. It is also mentioned
here that the shift current of excitons can be generalized to
that of spin waves in noncentrosymmetric magnets, e.g., the
electromagnons in chiral magnets.

Shift current of excitons can be also detected in optical
measurements. When the incident light has two frequencies
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�1 and �2, the second order nonlinear effect allows that two
harmonics �1 − �2 and �1 + �2 are generated. In particular,
the former one is used to generate the THz light [19,20],
and corresponds to the shift current when �1 = �2 = �.
Therefore, by tuning �1, �2, one can see whether the
current remains finite in the limit of �1 − �2 → 0. This
offers an experimental test of the dc shift current without the
complications related to the contact to the leads. Furthermore,
this indicates that the THz generation and the SHG are
enhanced when the incident light is resonant to the exciton
state below the band gap. One example of noncentrosymmetric
materials to study such nonlinear optical effects of excitons
would be transition metal dichalcogenide monolayers such as
MoS2, because MoS2 monolayers are noncentrosymmetric and
known to show strong exciton binding [30–32].

A comment is in order for the mechanism of relaxations.
In our model, the relaxation originates from the fact that
each site is coupled to a heat bath with a fixed distribution
function. This is introduced by the self-energy 	 and realizes
the nonequilibrium steady state with finite shift current. Here, it
is assumed that the exchange of electrons between the system
and the heat bath does not lead to a change in polarization.
In contrast, the recombination of electron-hole pairs (which is
also a source of relaxation) results in a decrease in polarization
and reduces the shift current. Therefore, the shift current from
the exciton formation requires a relaxation process which
involves no change in polarization and whose efficiency is
larger than the recombination process. For example, this
requirement is satisfied by an isotropic heat bath such as
a partially filled band that can exchange charge degrees of

freedom with the two band system involved in the exciton
formation.

Finally, the physical picture of the exciton shift current is
sketched. The exciton formation results in the polarization
due to the shift between a hole in the valence band and
an electron in the conduction band which is quantified by
the Berry phase. When excitons are constantly created in
the nonequilibrium situation, the continuous increase of the
polarization in time produces the steady dc current. This
mechanism is analogous to the quantum Ratchet motion in
the presence of the asymmetry, and in sharp contrast to
the charge pumping in the ground state. In the latter case,
large amplitude deformation of the Hamiltonian is required to
achieve a nontrivial winding number; in the quantum Rachet
motion, only a small amplitude oscillation of a parameter
in the Hamiltonian is sufficient to support the constant dc
current and energy supply. Therefore, the nonequilibrium
states will offer a new avenue for the physics of Berry
phase.
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