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We employ the Gutzwiller variational approach to investigate the interplay of Coulomb interaction and
spin-orbit coupling in a three-orbital Hubbard model. Already in the paramagnetic phase we find a substantial
renormalization of the spin-orbit coupling that enters the effective single-particle Hamiltonian for the
quasiparticles. Only close to half band-filling and for sizable Coulomb interaction do we observe clear signatures
of Hund’s atomic rules for spin, orbital, and total angular momentum. For a finite local Hund’s rule exchange
interaction we find a ferromagnetically ordered state. The spin-orbit coupling considerably reduces the size of the
ordered moment, it generates a small ordered orbital moment, and it induces a magnetic anisotropy. To investigate
the magnetic anisotropy energy, we use an external magnetic field that tilts the magnetic moment away from
the easy axis (1,1,1).
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I. INTRODUCTION

In atomic physics, the spin-orbit coupling (SOC) plays an
important role because it determines the value of the total
angular momentum in the ground state according to Hund’s
third rule. After maximizing the total spin s (first rule) and the
total orbital moment l (second rule), the quantum number for
the total angular momentum is j = |l − s| (j = l + s) below
(above) half filling (third rule) [1,2]. The third rule applies
in the limit where the SOC is small compared to the average
Coulomb interaction of the electrons, i.e., for all “light atoms,”
including transition metals. Note that the quantum numbers s

and l are, in fact, well defined only in the limit of a vanishing
SOC.

For atoms in a solid, the situation is obviously much
more complicated because neither of the three quantum
numbers s, l, or j is well defined due to a breaking of the
rotational symmetry. Yet, we know that some of the basic
mechanisms of Hund’s rules are still relevant. For example,
the maximization of the spin is a direct consequence of
intra-atomic exchange correlations that are caused by the
electronic Coulomb interactions. The very same Coulomb
interaction is the reason for magnetic order in solids, e.g.,
in ferromagnets. The SOC is only a small perturbation to the
dominant Coulomb interaction in transition metals and their
compounds. Nevertheless, it can have profound consequences,
e.g., for the direction of the magnetic moment, the so-called
“easy axis.”

From a theoretician’s point of view, the analysis of the
interplay and/or competition of a strong local Coulomb
interaction and a (comparatively small) SOC in a solid is
rather demanding. Even the study of simplifying models for
the Coulomb interaction, such as multiorbital Hubbard models,
poses a tremendously difficult task. Any study of such models
is possible with a limited numerical accuracy only, e.g., in
determining the ground-state energy. Given the fundamental
uncertainties in the treatment of the sizable Coulomb correla-
tions it is nontrivial to come to firm conclusions on the effects
of the SOC. Therefore, most theoretical studies on the interplay
of Coulomb interaction and SOC focused on insulating or spin

states and/or assumed a rather large SOC [3–6]. For the study
of (itinerant) 4d, 5d, or f electron systems, the dynamical
mean field theory has been used frequently in recent years;
see, e.g., Refs. [7–10]. In such systems, however, the SOC
tends to be significantly larger than in transition metals and
their compounds that we have primarily in mind in our present
model study.

In this work, we employ the Gutzwiller approach [11] to
investigate approximate variational ground states for multior-
bital Hubbard models. The analytical evaluation of expectation
values for Gutzwiller wave functions poses a difficult many-
body problem that requires additional approximations. Most
often applied in the context of multiband models is the
“Gutzwiller approximation” which becomes exact for the
Gutzwiller wave functions in the limit of infinite spatial
dimensions [11–14]. It can be used to evaluate expectation
values for a large set of model parameters; see Sec. II B.
This allows us to study systematically the subtle interplay
of Coulomb correlations and spin-orbit coupling.

We consider a Hubbard model with three degenerate t2g

orbitals on a three-dimensional cubic lattice. In the first part of
our investigation we concentrate on the interplay of Coulomb
interaction and spin-orbit coupling for paramagnetic metallic
ground states. We find that the Coulomb interaction enhances
the effective SOC between the quasiparticles. In addition, we
investigate the significance of Hund’s rules. Only Hund’s first
rule approximately applies in strongly correlated paramagnetic
metallic systems.

It is well known that for a finite (local) exchange interaction,
multiorbital Hubbard models tend to favor ferromagnetic states
for sufficiently large Coulomb interactions. In the second part
of our investigation we investigate if and to what extent the
ferromagnetic states are modified by the spin-orbit coupling.
We find that the SOC opposes the formation of ferromagnetic
order in metals. While, in the absence of SOC, the ordered
moment has no preferred direction, the SOC aligns it along
the “easy axis” and induces a small ordered orbital moment.

Recently, the Gutzwiller method and the density functional
theory (DFT) were combined in a self-consistent manner
[15,16]; a formal derivation can be found in Ref. [17]. The
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Gutzwiller-DFT was applied to a number of materials, for
example to nickel and iron; see Refs. [17,18], and references
therein. From a methodological point of view, our model study
in this work provides a first step towards a self-consistent
treatment of the SOC within the Gutzwiller-DFT scheme.

This work is organized as follows. In Sec. II we introduce
our model and summarize the Gutzwiller variational approach.
In Sec. III we discuss our results for paramagnetic and ferro-
magnetic ground states. Summary and conclusions, Sec. IV,
close our presentation. Technical details are deferred to two
appendices.

II. MODELS AND METHOD

In this section, we introduce our model and explain the
Gutzwiller variational approach that we use for its investiga-
tion.

A. Hamiltonian

We study a Hubbard model with three t2g orbitals per site on
a simple-cubic lattice in three dimensions. The Hamiltonian
of this system has the form

Ĥ = Ĥ0 + ĤC + Ĥso, (1)

where Ĥ0 denotes the kinetic energy of the electrons, ĤC

describes their Coulomb interaction, and Ĥso models the
spin-orbit coupling.

1. Kinetic energy and density of states

We consider electrons that move between t2g orbitals b and
b′ on sites i and j of our simple-cubic lattice with L sites. In
second quantization the single-particle Hamiltonian reads

Ĥ0 =
∑
i �=j

∑
σ,σ ′

t
σ,σ ′
i,j ĉ

†
i,σ ĉj,σ ′ , (2)

where we introduce the combined spin-orbital index

σ ≡ (b,s), b ∈ {1,2,3}, s ∈ {↑,↓}. (3)

The crystal-field energies are set to zero, t
σ,σ ′
i,i = 0.

We use the standard parametrization for the hopping
amplitudes in (2) with some generic Slater-Koster parameters
[19]

t (1),(2),(3)
π = 0.3t, − 0.1t,0.025t, (4)

t (2),(3)
σ = 0.1t,0.01t, (5)

t
(1),(2),(3)
δ = 0.1t, − 0.025t,0.02t, (6)

for the electron transfers up to third-nearest neighbors. By
including hoppings beyond the nearest neighbors we make
sure that there are no artificial features in our band structure,
such as nesting vectors or particle-hole symmetry. In transition
metal compounds, the value of t is of the order of 1 eV. In our
pure model study in this work, we will simply set t = 1 as our
energy unit.

-1.5 -1 -0.5 0 0.5 1 1.50 0

1 1

2 2

3 3

4 4

5 5

6 6

7 70 0.2 0.4 0.6 0.8 1

D
O

S(
   

  )

EF

nσ

σn E F
D

O
S(

   
  )

FIG. 1. Density of states at the Fermi energy EF as a function of
EF (blue) and the orbital occupation nσ (black).

The single-particle Hamiltonian (2) can be readily diago-
nalized in momentum space,

Ĥ0 =
∑

k

∑
σ,σ ′

εk;σ,σ ′ ĉ
†
k,σ ĉk,σ ′ (7)

with the bare dispersion

εk;σ,σ ′ ≡ 1

L

∑
i �=j

t
σ,σ ′
i,j eik(Ri−Rj ), (8)

and k from the first Brillouin zone. The remaining task is
the diagonalization of the 6×6 matrix εk;σ,σ ′ for each k to
obtain the (bare) band structure. For noninteracting electrons,
all energy levels up to the Fermi energy EF are filled in the
ground state. The corresponding density of states at the Fermi
energy EF is shown in Fig. 1 as a function of both EF and of the
average orbital occupation 0 � nσ � 1. The total bandwidth
is W ≈ 3.4.

Apparently, the Hamiltonian for the kinetic energy is not
particle-hole symmetric, as can be seen from the density
of states at the Fermi energy. Figure 1 clearly shows that
DOS(nσ ) �= DOS(1 − nσ ). To study the influence of the
spin-orbit coupling, we shall later investigate a particle-hole
symmetric kinetic energy. For this case, we use the some-
what artificial Slater-Koster parameters for electron transfers
between nearest neighbors only,

t ′(1)
π = 0.2, t

′(1)
δ = 0.1, (9)

which lead to a symmetric density of states of bandwidth
W ′ = 2.

In our ferromagnetic calculations we focus on the filling
nσ ≈ 0.4 where the (paramagnetic) density of states has a
maximum at the Fermi energy. At such a maximum we
can expect a stronger tendency towards ferromagnetic order
according to the Stoner criterion [20].
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2. Local interactions

The Coulomb and spin-orbit interaction are assumed to be
purely local,

ĤC =
∑

i

Ĥi;C, Ĥso =
∑

i

Ĥi;so. (10)

The local Coulomb interaction for a model with three degen-
erate t2g orbitals reads [21]

2Ĥi;C = U
∑
b,s

n̂i,b,s n̂i,b,s̄ +
∑

b(�=)b′
s,s ′

(U ′ − δs,s ′J )n̂i,b,s n̂i,b′,s ′

+ J
∑

b(�=)b′

[
(ĉ†i,b,↑ĉ

†
i,b,↓ĉi,b′,↓ĉi,b′,↑ + H.c.)

+
∑

s

ĉ
†
i,b,s ĉ

†
i,b′,s̄ ĉi,b,s̄ ĉi,b′,s

]
, (11)

where we use the convention ↑̄ = ↓, ↓̄ = ↑, and n̂i,b,s =
ĉ
†
i,b,s ĉi,b,s counts the electrons with spin s in orbital b on

site i. Note that for t2g orbitals the three parameters in (11)
are not independent because they obey the symmetry relation
U ′ = U − 2J [21].

For the SOC we use

Ĥi;so =
∑
σ,σ ′

εso
i;σ,σ ′ ĉ

†
i,σ ĉi,σ ′ . (12)

When we work with the following order for our local basis
|σ 〉,
|1〉 = |yz,↑〉, |2〉 = |yz,↓〉, |3〉 = |xz,↑〉, . . . ,|6〉, (13)

the six-dimensional SOC matrix ε̃so in (12) has the well-known
form

ε̃so = −i
ζ

2

⎛
⎝ 0 −σ̃3 σ̃2

σ̃3 0 −σ̃1

σ̃2 σ̃1 0

⎞
⎠ ≡ ζ �̃ (14)

with the standard two-dimensional Pauli matrices σ̃1, σ̃2, σ̃3,
and the SOC constant ζ .

The local Hamiltonian

Ĥi;loc = Ĥi;C + Ĥi;so (15)

in the 64-dimensional local Hilbert space is readily diagonal-
ized,

Ĥi;loc|	〉i = E	|	〉i . (16)

For parameter values that are typical for transition metals,
ζ/J = 0.2 . . . 1.0 and J/U = 0.2, the atomic spectrum has a
generic form. In Table I we list the degenerate eigenspaces of
Ĥi;loc, ordered by increasing energy for given particle number
0 � nloc � 6. We give the degeneracy g of each level, its total
spin s, orbital moment l, and total “angular momentum” j .

Since the rotational symmetry is broken in our cubic
environment, the quantum numbers l and j do, in fact, not
label eigenstates of the total “angular momentum” operator. It
is well known, however, that in the t2g sub-space we have

l̃
2 =

∑
i∈{x,y,z}

l̃2
i = 21 (17)

TABLE I. Degenerate eigenspaces of Ĥi;loc, ordered by energy
for a given particle number 0 � nloc � 6 with a specification of
the degeneracy g, total spin s, orbital moment l, and total “angular
momentum” j .

No nloc g s l j No nloc g s l j

1 0 1 0 0 0 1 6 1 0 0 0

1 1 4 1/2 1 3/2 1 5 2 1/2 1 1/2
2 1 2 1/2 1 1/2 2 5 4 1/2 1 3/2

1 2 5 1 1 2 1 4 1 1 1 0
2 2 3 1 1 1 2 4 3 1 1 1
3 2 1 1 1 0 3 4 5 1 1 2
4 2 5 0 2 2 4 4 5 0 2 2
5 2 1 0 0 0 5 4 1 0 0 0

No nloc g s l j

1 3 4 3/2 0 3/2
2 3 4 1/2 2 3/2
3 3 6 1/2 2 5/2
4 3 2 1/2 1 1/2
5 3 4 1/2 1 3/2

for the vector l̃ of the three matrices

l̃x =
⎛
⎝0 0 0

0 0 i

0 −i 0

⎞
⎠,

l̃y =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, (18)

l̃z =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠.

Hence, the orbital moment behaves like that of l = 1 states
(“T-P equivalence”) [21], because 〈l̂2〉 = 1(1 + 1) = 2. To be
more precise, one finds

l̃i = −l̃
(l=1)
i , (19)

where on the right-hand side we introduced the representation
of the orbital momentum for (l = 1) p orbitals. Due to the
T-P equivalence we can label the multiplet states |	〉 by a
quantum number j that formally corresponds to a total angular
momentum of l = 1 orbitals. Table I shows that Hund’s rules
are still valid for the ground states of all particle numbers if
we make the replacement l → −l in Hund’s third rule, as a
consequence of Eq. (19). In particular, as seen from Table I,
the local spectrum is not particle-hole symmetric. As we will
show in Sec. III A 1, the particle-hole asymmetry induced by
the SOC is visible in our itinerant three-band lattice model
even when we work with a symmetric density of states.

B. Gutzwiller wave functions and energy functional

1. Wave functions

For the variational investigation of the Hamiltonian (1) we
use the Gutzwiller wave functions

|
G〉 =
∏

i

P̂i |
0〉, (20)
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where |
0〉 is a normalized single-particle product state
(Slater determinant) and the local Gutzwiller correlator is
defined as

P̂i =
∑
	,	′

λi;	,	′ |	〉i i〈	′| ≡
∑
	d

λi;	d |	d〉i i〈	d|. (21)

Here, we introduce the matrix λ̃i of (complex) variational
parameters λi;	,	′ which allows us to optimize the occupation
and the form of the eigenstates |	d〉i of P̂i .

We assume that the matrix λ̃i is Hermitian which ensures
that the eigenstates |	d〉i exist and form a basis of the
local Hilbert space. Without SOC it is usually a sensible
approximation to work with a diagonal (and hence real) matrix
λ̃i . For a finite SOC, however, it is essential to include at least
some nondiagonal elements in λ̃i . In this work, we will take
into account all nondiagonal parameters in λi;	,	′ with states
|	〉i and |	′〉i that have the same particle number.

The evaluation of expectations values with respect to the
wave function (20) poses a difficult many-particle problem that
cannot be solved in general. As shown in Refs. [11,22], it is
possible to derive analytical expressions for the variational
ground-state energy in the limit of infinite spatial dimen-
sions (D → ∞). An application of this energy functional to
finite-dimensional systems is usually termed the “Gutzwiller
approximation.” It will also be used in this work. One should
keep in mind, however, that the Gutzwiller approximation has
its limitations, and the study of some phenomena requires
an evaluation of expectation values in finite dimensions
[23,24].

Since the energy functional of the Gutzwiller approxima-
tion has been derived in detail in previous work, we will only
summarize the main results in this section. In the following
we are only interested in systems and wave functions that
are translationally invariant. Hence, we shall drop lattice-site
indices whenever this does not lead to ambiguities.

2. Constraints

As shown in Refs. [11,22] it is most convenient for the
evaluation of Gutzwiller wave functions in infinite spatial
dimensions to impose the following (local) constraints

〈P̂ †P̂ 〉
0 − 1 ≡ gc
1(λ̃,|
0〉) = 0, (22)

〈ĉ†σ P̂ †P̂ ĉσ ′ 〉
0 − Cσ ′,σ ≡ gc
σ,σ ′(λ̃,|
0〉) = 0, (23)

for the local correlation operators P̂ ≡ P̂i . Here, we introduce
the local density matrix C̃ ≡ C̃i with the elements

Ci;σ,σ ′ = 〈ĉ†i,σ ′ ĉi,σ 〉
0 . (24)

Note that the order of indices in (24) has been chosen
deliberately because it slightly simplifies the analytical results
in Sec. II B 5.

The constraints can be evaluated by means of Wick’s
theorem; explicit expressions are given in Appendix A. In
systems with a high symmetry, the matrix C̃ is often diagonal,
e.g., for d orbitals in a cubic environment. In such a case,
one usually has to take into account only the diagonal
constraints (23), because the left-hand side of (23) for σ �= σ ′
is automatically zero for all values of λ̃i that are included in

the variational ansatz. Here, the matrix C̃ is nondiagonal in
our system with a finite SOC. Even if one introduces a local
basis which has a diagonal local density matrix with respect to
|
0〉, see Appendix A, one still has to take into account some
nondiagonal constraints.

3. Expectation values

Each local operator Ôi , e.g., the operator Ĥi;so, can be
written as

Ôi =
∑
	,	′

O	,	′m̂i;	,	′ , (25)

m̂i;	,	′ ≡ |	〉i i〈	′|. (26)

In infinite dimensions the expectation value of Ôi has the form

〈Ôi〉
G =
∑

	1,	2,	3,	4

O	2,	3λ
∗
	2,	1

λ	3,	4
〈m̂i;	1,	4〉
0 , (27)

where the remaining expectation values

m0
i;	,	′ ≡ 〈m̂i;	,	′ 〉
0 (28)

can readily be evaluated using Wick’s theorem; see
Appendix A.

The expectation value of a hopping operator in infinite
dimensions reads (i �= j )〈

ĉ
†
i,σ1

ĉj,σ2

〉

G

=
∑
σ ′

1,σ
′
2

q
σ ′

1
σ1

(
q

σ ′
2

σ2

)∗〈
ĉ
†
i,σ ′

1
ĉ
j,σ ′

2

〉

0

, (29)

where an analytical expression for the (local) renormalization
matrix qσ ′

σ is also given in Appendix A. Note that the matrix
qσ ′

σ is, in general, neither real nor Hermitian. Any symmetries
among its elements are caused by those of the orbital basis
states |σ 〉 and the form of the Gutzwiller wave function.
For example, if we have no SOC and no magnetic or orbital
order in our degenerate three-band system, the renormalization
matrix has the simple form qσ ′

σ = δσ,σ ′
√

q with only one
renormalization factor for all orbitals.

4. Structure of the energy functional

In a translationally invariant system, the expectation values
that we introduced in the previous section lead to the following
variational energy functional (per lattice site)

EG(λ̃,|
0〉) =
∑
σ1,σ2
σ ′

1,σ
′
2

q
σ ′

1
σ1

(
q

σ ′
2

σ2

)∗
Eσ1,σ2,σ

′
1,σ

′
2

+
∑

	,	1,	2

E	λ∗
	,	1

λ	,	2
m0

	1,	2
. (30)

Here, we introduce the tensor

Eσ1,σ2,σ
′
1,σ

′
2
≡ 1

L

∑
i �=j

t
σ1,σ2
i,j 〈ĉ†

i,σ ′
1
ĉ
j,σ ′

2

〉

0

= 1

L

∑
k

εk;σ1,σ2

〈
ĉ
†
k,σ ′

1
ĉk,σ ′

2

〉

0

(31)

with the bare dispersion εk;σ,σ ′ from Eq. (8).
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The energy (30) is a function of λ	,	′ and |
0〉 where |
0〉
enters (30), (31) solely through the (noninteracting) density
matrix ρ̃ with the elements

ρ(iσ ),(jσ ′) ≡ 〈ĉ†j,σ ′ ĉi,σ 〉
0 . (32)

Note that the nonlocal elements of ρ̃ (i �= j ) determine the
tensor (31) while its local elements

ρ(iσ ),(iσ ′) = Ci;σ,σ ′ , (33)

as introduced in Eq. (24), enter the elements qσ ′
σ of the

renormalization matrix, the expectation value (28), and the
constraints (22), (23).

The energy

EG = EG(λ̃,ρ̃,C̃) (34)

has to be minimized with respect to the variational parameters
λ	,	′ and the density matrices ρ̃ and C̃ obeying the constraints
(22), (23), (33), and

ρ̃2 = ρ̃. (35)

This additional constraint ensures that ρ̃ corresponds to a
Slater determinant |
0〉. Note that introducing the local density
matrix C̃ as an independent variational object in (34), at
the expense of the additional constraint (33), is actually not
necessary. Instead one could consider the energy solely as a
function of λ̃,ρ̃. Our form of the energy functional, however,
will turn out to be slightly more convenient because, in the
Gutzwiller approximation, ρ̃ enters the energy in a nonlinear
way only through its local elements.

5. Minimization of the energy functional

We introduce the real and the imaginary parts of the
variational parameters

λ	,	′ = λ
(r)
	,	′ + iλ

(i)
	,	′ . (36)

Due to the Hermiticity of λ̃ we have

λ
(r)
	,	′ = λ

(r)
	′,	, (37)

λ
(i)
	,	′ = −λ

(i)
	,	′ → λ

(i)
	,	 = 0, (38)

which leads to a number nv of independent (and real)
variational parameters λ

(r/i)
	′,	 . They will be considered as the

components vz of the nv-dimensional vector

v = (
v1, . . . ,vnv

)T
. (39)

The (in general) complex constraints (22), (23) are not all
independent, e.g., because of the Hermiticity of g̃c. We denote
the set of all independent real and imaginary parts of (22), (23)
by the nc real constraints

gl(v,C̃) = 0 (l = 1, . . . ,nc). (40)

The constraints (33), (35), and (40) are implemented via
Lagrange parameters ησ,σ ′ , �(iσ ),(jσ ′), and �l . This leads to

the Lagrange functional

LG ≡ EG(v,ρ̃,C̃) −
∑

l

�lgl(v,C̃)

−
∑
σ,σ ′

ησ,σ ′
∑

i

(Cσ ′,σ − ρ(iσ ′),(iσ ))

−
∑
i,j

∑
σ,σ ′

�(iσ ),(jσ ′)[ρ̃
2 − ρ̃](jσ ′),(iσ ), (41)

which provides the basis of our minimization.
As shown, e.g., in Ref. [25], the minimization of (41) with

respect to ρ̃ leads to the effective single-particle Hamiltonian

Ĥ eff
0 =

∑
i,j

∑
σ,σ ′

(
t̄
σ,σ ′
i,j + δi,j ησ,σ ′

)
ĉ
†
i,σ ĉj,σ ′ (42)

with the renormalized hopping parameters

t̄
σ1,σ2
i,j (v,C̃) =

∑
σ ′

1,σ
′
2

q
σ1

σ ′
1
(v,C̃)

(
q

σ2

σ ′
2
(v,C̃)

)∗
t
σ ′

1,σ
′
2

i,j . (43)

The optimal Slater determinant |
0〉 is the ground state of
Ĥ eff

0 ,

Ĥ eff
0 |
0〉 = Eeff

0 |
0〉. (44)

From the minimization of (41) with respect to C̃ we obtain an
equation for ησ,σ ′ in (42),

ησ,σ ′ = ∂

∂Cσ,σ ′
EG −

∑
l

�l

∂

∂Cσ,σ ′
gl. (45)

Finally, the minimization with respect to v

∂

∂vZ

EG −
∑

l

�l

∂

∂vZ

gl = 0 (46)

determines the Lagrange parameters �l and the optimal value
of v. Equations (42)–(46) need to be solved self-consistently.
In Appendix B we explain in more detail how we solve this
problem numerically. Note that our minimization algorithm
does not require the constraints gl(v,C̃) to be independent. This
is a major advantage over the method that we had proposed in
the earlier work [25].

III. RESULTS

In the following we discuss the paramagnetic and the
ferromagnetic cases separately.

A. Paramagnetic ground states

1. Effective spin-orbit coupling

Without any breaking of spin or orbital symmetries, the
minimization of the Gutzwiller energy functional leads to
effective on-site energies (45) that have the same form as the
SOC (14) but with the coupling constant ζ replaced by ζ eff .
This change from the bare to an effective coupling constant
also changes the quasiparticle dispersion of Ĥ eff

0 . Therefore,
the energy splittings at certain high-symmetry points as seen
in ARPES experiments are a measure for the effective,
not the bare, spin-orbit coupling. Note that extracting the
quasiparticle dispersion from our Gutzwiller approach relies
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FIG. 2. SOC renormalization rSOC as a function of the orbital
occupation nσ for J = 0, ζ = 0.05 (red), ζ = 0.1 (blue), ζ = 0.2
(black), and U = 2,3,4 (in ascending order).

on a Fermi-liquid interpretation [26]. However, all changes of
the effective single-particle Hamiltonian, e.g., energy shifts,
are related to changes of certain ground-state expectation
values. Since the latter are variationally controlled, it is very
likely that the exact single-particle spectrum reflects the same
trends.

In Fig. 2 we show the renormalization of ζ ,

rSOC ≡ ζ eff/ζ, (47)

as a function of the orbital occupation nσ for the three bare
values ζ = 0.05,0.1,0.2 and interaction parameters U = 2,3,4
and J = 0. Apparently, the effective spin-orbit coupling
increases as a function of U , apart from a small region
of an almost filled shell where ζ eff(U ) < ζ . For U = 4,
which is approximately equal to the bandwidth, the spin-
orbit couping can be renormalized by a factor two or more,
rSOC(U = 4,nσ = 2/3,ζ = 0.2) ≈ 2.3. This substantial in-
crease is clearly visible in the quasiparticle band structure, see
Fig. 3, where we show the bare (U = J = 0) and renormalized
band structures (U = 4,J/U = 0.2) for nσ = 2/3 and ζ =
0.2. For example, the splitting of the bands at the 	 point and
the R point is noticeably enhanced in presence of the Coulomb
interaction.

The renormalization rSOC is not monotonic as a function
of the bare coupling ζ . Moreover, it is not particle-hole
symmetric; i.e., it is not invariant under the transformation
nσ → 1 − nσ . This is only partly caused by the particle-hole
asymmetry of the bare density of states in Fig. 1. As discussed
already in Sec. II A 2, the SOC inherently breaks the particle-
hole symmetry. To illustrate this point, we show the results
for a symmetric density of states that results from the nearest-
neighbor electron transfers (9), displayed in the inset of Fig. 4.
As seen from the figure, the SOC alone induces a particle-hole
asymmetry in the renormalization of the effective spin-orbit
coupling. We note in passing that band structures with a
fairly similar density of states may, nevertheless, display a
very different nσ dependence of rSOC. Apparently, the full

FIG. 3. Quasiparticle bands along high-symmetry lines for ζ =
0.2, nσ = 2/3, U = 0, J = 0 (red), and U = 4, J/U = 0.2 (black).

momentum dependence of the band structure determines the
details of the rSOC curves.

For finite values of the exchange interaction J , the effective
coupling constants are smaller than for J = 0, in general.
This can be seen in Figs. 5 and 6 where we show the
renormalization for J/U = 0.2 and U = 1,2 (Fig. 5) and
U = 2.5 (Fig. 6). Note that for U = Uc � 2.5 there appears
a Brinkmann-Rice type of insulating phase [27] at half filling
where the renormalization matrix q̃ is zero. Therefore we could
perform our calculations shown in Fig. 6 only away from half
filling.

The dependence of the renormalization on the band filling
nσ appears to be even more complicated for finite J , in
particular in the region around half filling. One must keep
in mind, however, that there is a “trivial” contribution to the
renormalization of ζ which simply stems from the bandwidth
renormalization induced by the renormalization matrix qσ ′

σ . To

0.2 0.4 0.6 0.80.8
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1.4

1.6

1.8
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1
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1.8

-1 -0.5 0 0.5 10
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C

FIG. 4. SOC renormalization rSOC for the symmetric density of
states from the nearest-neighbor electron transfers (9), as a function
of the orbital occupation nσ for ζ = 0.1, J = 0, U = 3 (black) and
U = 4 (blue); inset: density of states at the Fermi energy.
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FIG. 5. SOC renormalization rSOC as a function of the orbital
occupation nσ for J/U = 0.2, ζ = 0.05 (red), ζ = 0.1 (blue),
ζ = 0.2 (black), and U = 1 (circles), U = 2 (squares).

understand this effect, we consider, for the sake of argument, a
renormalization matrix of the simplest form qσ ′

σ = δσ,σ ′
√

q. In
that case, the effective hopping parameters in (42) are given by
t̄
σ,σ ′
i,j = qt

σ,σ ′
i,j . Hence, in order to obtain the same expectation

values of |
0〉 as in the noninteracting limit, we must introduce
a scaling ζ → qζ < ζ . The effect of the enhancement of ζ eff

is therefore amplified by the renormalization of the hopping
parameters.

For a more quantitative analysis, we define an average value
q̄ of the bandwidth renormalization through

q̄ = 〈Ĥ0〉G/〈Ĥ0〉0; (48)

i.e., q̄ quantifies the reduction of the average kinetic energy
in the presence of the Coulomb interaction. The relative SOC
renormalization is then plotted in Fig. 7 for the same param-
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FIG. 6. SOC renormalization rSOC as a function of the orbital
occupation nσ for J/U = 0.2, ζ = 0.05 (red), ζ = 0.1 (blue),
ζ = 0.2 (black), and U = 2.5.
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FIG. 7. Relative SOC renormalization rSOC/q̄ as a function of
the orbital occupation nσ for J/U = 0.2, ζ = 0.05 (red), ζ = 0.1
(blue), ζ = 0.2 (black), and U = 1 (circles), U = 2 (squares),
U = 2.5 (diamonds).

eters as in Fig. 5. It shows that the nontrivial renormalization
is, in fact, largest in the region around half filling. Moreover,
it is actually fairly independent of the bare SOC, a feature that
cannot be seen in the original representation of the data in
Fig. 5.

2. Hund’s rules in a solid?

In the introduction we raised the question of whether, and
to what extent, Hund’s rules are still discernible in a solid. To
clarify this issue, we define the three “quantum numbers” s,l,j

via the local expectation values〈
Ŝ

2
i

〉
G = s(s + 1),〈

L̂
2
i

〉
G = l(l + 1), (49)

〈(Ŝi + L̂i)
2〉G = j (j + 1).

Figure 8 shows these three numbers for ζ = 0.05, J/U =
0.2, and U = 1,2,2.5. The bars give the values in the atomic
limit, as extracted from the ground states in Table I. As
expected, all quantum numbers move towards their atomic
values when we increase the Coulomb interaction parameters.
This is best visible near half filling when the system is
close to the metal-insulator transition that appears at half
filling.

As shown in previous work [11,28], this transition is of first
order where in the Gutzwiller insulating state all atoms are in
their ground state. This means that at Uc all three quantum
numbers will jump to their atomic values at half filling. For
all other (integer) fillings, the system is still rather itinerant
and some of the quantum numbers, in particular j , deviate
significantly from their atomic values. This is best visible at a
filling of nσ = 2/3 where the value of j is far off its atomic
value jatomic = 0. The results change only slightly when we
increase the values of U (and J ) as can be seen from Fig. 9
where we display j , l, and s for larger values of U away from
half filling.
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FIG. 8. Quantum numbers j (black), l (blue), s (red) as a function
of the orbital occupation nσ for J/U = 0.2, ζ = 0.05, and U = 1
(solid), U = 2 (dashed), U = 2.5 (dotted).

The difference between the behavior close to half filling and
the other integer fillings can be understood from the atomic
spectra. The high-spin ground state at half filling is only
slightly changed by a small SOC and, most importantly, its
degeneracy is not lifted. Hence, the energy difference between
the Hund’s rule ground state and the first excited state is of
the order of J . In contrast, at all other integer fillings, the
ground states are created by a splitting of the (degenerate)
ground states at ζ = 0, caused by the SOC. Therefore, the
energy difference between the Hund’s rule ground state and
the first excited states is much smaller away from half filling.
As a consequence, it is energetically not favorable to lose a lot
of kinetic energy by only occupying the Hund’s rule ground
state. Unlike in the half-filled case, the Hund’s rule ground
state does not dominate the quantum numbers in the metallic
phase at or around other integer fillings. As seen from Figs. 8

0.1 0.2 0.30

0.5

1

1.5

2

0.7 0.8 0.9 0

0.5

1

1.5

2

j,l
,s j,l
,s

nσ σn

FIG. 9. Quantum numbers j (black), l (blue), s (red) as a function
of the orbital occupation nσ for J/U = 0.2, ζ = 0.05, and U = 6
(solid), U = 9 (dashed).

1 1.5 20

0.5

1

S

U

FIG. 10. Spin S in (1,1,1) direction as a function of U with
J/U = 0.2 for nσ = 0.4 and ζ = 0.05 (blue), 0.1 (red), 0.15 (green),
0.2 (maroon), 0.255 (violet), 0.3 (orange).

and 9, only Hund’s first rule is seen to be obeyed in strongly
correlated paramagnetic metals close to integer fillings.

B. Ferromagnetic ground states

Without the spin-orbit coupling, the Hamiltonian commutes
with the total spin operator. Hence, the energy of a ferro-
magnetic ground state cannot depend on the direction of the
magnetic moment. For finite SOC, there is a preferred direction
of the moment, the so-called “easy axis.” In order to find this
axis, we minimize the energy functional with respect to |
0〉
without any bias on the magnetic-moment direction using a
completely general matrix ησ,σ ′ . It turns out that in our system
and for the parameters considered in this section, the magnetic
moment always points into the (1,1,1) direction.

1 1.5 20

0.05

0.1

L

U

FIG. 11. Orbital moment L in (1,1,1) direction as a function of
U with J/U = 0.2 for nσ = 0.4 and ζ = 0.05 (blue), 0.1 (red), 0.15
(green), 0.2 (maroon), 0.255 (violet), 0.3 (orange).
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FIG. 12. Anisotropy energy �E1,2 as a function of the magnetic-moment direction that is rotated (1) from (1,0,0) to (1,1,1) (solid lines)
and (2) from (1,0,0) to (1,1,0) (dashed lines) with maximum rotation angles ᾱ1 = arccos 1/

√
3 and ᾱ2 = π/4; parameters: U = 1.2 (black),

U = 1.25 (blue), U = 1.3 (red), U = 1.35 (green), U = 1.4 (orange), U = 1.45 (violet), U = 1.5 (maroon), J/U = 0.2, ζ = 0.1; inset:
maximal anisotropy energy as a function of U for J/U = 0.2, ζ = 0.1.

1. Ordered moment

In Fig. 10 we display the total spin S ≡ |〈Ŝi〉| for seven
different values of ζ (0 � ζ � 0.3) as a function of U for
J/U = 0.2. As seen from the figure, the SOC destabilizes the
ferromagnetic order; i.e., the value Uc for noticeable ferro-
magnetic order (S > 0.1) substantially increases as a function
of ζ . Concomitantly, the ordered magnetic moment m = 2S

strongly depends on the SOC as long as the magnetic order is
weak, S < 1/2. The SOC becomes a small perturbation only
in the saturation region, S > 1.

The SOC not only reduces the ordered spin moment; it also
induces an orbital moment; i.e., L ≡ |〈L̂i〉| is nonzero. This is
shown in Fig. 11 where we display L for the same parameters
as in Fig. 10, apart from ζ = 0 where L = 0. The orbital
contribution to the magnetic moment, however, remains rather
small, of the order of 10% of the spin moment, especially
for values of ζ < 0.1 that are realistic for transition metals.
Therefore, the gain in orbital moment does not compensate
the loss in the ordered spin moment induced by the spin-orbit
coupling.

2. Anisotropy energy

Finally, we take a look at the “anisotropy energy,” i.e., the
dependence of the energy on the magnetic-moment direction.
To this end, we could introduce additional constraints that fix
the moment direction during the minimization. However, this
would require additional programming work that we prefer

to avoid. Therefore, we apply an external magnetic field that
allows us to change the magnetic-moment direction. In fact,
this is how the anisotropy energy would actually be measured.

Since our field is just a technical tool, we couple it to the
spin only; i.e., we add

ĤB = −B
∑

i

eB · Si (50)

to the Hamiltonian of our system. Here, eB is the direction
of the magnetic field that we adjust in our calculations. The
size of the field amplitude B must be chosen with care to
obtain meaningful results. On the one hand, it must be large
enough to force the magnetic moment into all directions
that we aim to investigate; i.e., in the ground state we must
approximately find 〈Si〉G||eB . On the other hand, the variation
in the field contribution to the energy must be small compared
to the variation of the system’s energy that we actually want
to determine. Meeting these criteria becomes difficult, in
particular, in the region of small magnetic moments. In all
calculations that we are going to present below, we found that
a field amplitude of B = 0.002 leads to meaningful results for
the anisotropy energy.

In the following we consider rotations of the magnetic
moment from the (1,0,0) direction (1) into the (1,1,1) direction
and (2) into the (1,1,0) direction. The corresponding maximal
rotation angles are ᾱ1 = arccos (1/

√
3) and ᾱ2 = π/4, respec-

tively. From our minimization we obtain the two energies
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FIG. 13. Maximal anisotropy energy as a function of U for
J/U = 0.2, ζ = 0.2 (black), ζ = 0.15 (blue), ζ = 0.1 (red).

E1,2(α) as a function of the angle α. Since, as mentioned
before, the easy axis always points into the (1,1,1) direction,
we define the anisotropy energy as �Ei(α) ≡ Ei(α) − E1(ᾱ1).
This quantity is displayed in Fig. 12 for several values of
U (and consequently also different values of the magnetic
moment) for J/U = 0.2 and ζ = 0.1. The figure shows that,
although the anisotropy energy is quite small, of the order of
several ten μeV per site, our approach is perfectly capable of
resolving it. The maximal anisotropy energy �Emax, i.e., its
value for α = 0, is a nontrivial function of U . This can be seen
from the inset of Fig. 12 where we display �Emax.

When we increase the SOC, the anisotropy energies change
significantly; see Fig. 13, where we show �Emax as a function
of U for ζ = 0.1,0.15,0.2. The nonmonotonic behavior of
�Emax has its cause in the band structure. For example, the
maxima in the red and blue curves and the corresponding
structure in the black curve correspond to almost the same
magnetization; cf. Fig. 10.

To extract the genuine ζ dependence of �Emax, it is best to
consider states with the same moment. This is done in Fig. 14
where we display �Emax as a function of ζ for values of U

which lead to the same ordered spin moments. These curves
reveal that the anisotropy depends very sensitively on ζ for
small values of ζ whereas it becomes linear for sizable ζ .

IV. SUMMARY AND CONCLUSIONS

In this work we investigated the interplay of local Coulomb
interactions and the spin-orbit coupling in a three-orbital Hub-
bard model in three dimensions. Based on the Gutzwiller ap-
proximation to general multiband Gutzwiller wave functions,
we find that the Coulomb interaction leads to a considerable
renormalization of the effective SOC in paramagnetic metals;
the spin-orbit couplings can be enhanced over their atomic
values by a factor of more than two. This effect could be seen
in experiment as enhanced band splittings in the quasiparticle
dispersion.

Hund’s rules determine spin and orbital moments of an
atom. In metallic systems, signatures of Hund’s rules are
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FIG. 14. Maximal anisotropy energy as a function of ζ for values
of U with the same ordered spin moment of S = 0.4 (black), S = 0.45
(blue), S = 0.5 (red), S = 0.6 (green), and J/U = 0.2.

visible only close to half band-filling. For all other (integer)
fillings, the local Hund’s rule ground states cannot dominate
over states with other quantum numbers because this would
be very unfavorable for the electrons’ kinetic energy. At best,
Hund’s first rule applies in strongly correlated metallic systems
close to integer fillings.

For ferromagnetic ground states, we find magnetization
curves that are significantly influenced by the spin-orbit cou-
pling. Overall, the SOC tends to destabilize the ferromagnetic
order. For example, it shifts the onset of ferromagnetism to
higher values of the Coulomb parameters. In the presence of
an ordered spin moment, the SOC has two main effects: (i) the
magnetic spin moment points into a preferred direction (easy
axis), and (ii) it generates a small but finite orbital moment in
the same direction as the spin moment.

We analyzed the magnetic anisotropy by applying an
external magnetic field with constant strength and varying
direction. Our method is capable of resolving the anisotropy
energy which can be rather small for spin-orbit couplings that
are realistic for transition metals. As a function of the Coulomb
interaction, the anisotropy energy shows a nonmonotonic
behavior which we could trace back to details of the electronic
band structure.

In this study we worked with the most general Ansatz for
a Gutzwiller wave function. For the calculation of anisotropy
energies, it is mandatory to avoid the often used approxima-
tion of a diagonal variational-parameter matrix because this
approximation results in anisotropy energies that can be off by
several orders of magnitude.

For our three-band model, it is possible to include all
elements of the variational-parameter matrix. Of course, this
cannot be done for five d bands. Therefore, strategies must be
developed to include only the most significant matrix elements.
In a separate, more technical work, we analyze in detail the
importance of nondiagonal variational parameters, and show
how to obtain accurate results with a properly chosen subset
of such parameters [29].
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Our method can directly be applied to materials that can
be described by effective three-band models, e,g,, Sr2RuO4. It
will be interesting to see the consequences of the substantial
spin-orbit coupling on the ground-state phase diagram and
other electronic properties of these systems [8,30].
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APPENDIX A: ENERGY FUNCTIONAL
AND ITS DERIVATIVES

1. Local basis

The local density matrix (24) is nondiagonal when we
include the spin-orbit coupling. For a fixed state |
0〉, however,
we can always find a local basis, described by operators

d̂
†
i,γ =

∑
σ

ui;σ,γ ĉ
†
i,σ , d̂i,γ =

∑
σ

u∗
i;σ,γ ĉi,σ (A1)

and a unitary matrix ũi , so that the local density matrix D̃i is
diagonal,

Di;γ ′,γ ≡ 〈d̂†
i,γ d̂i,γ ′ 〉
0 = δγ,γ ′ni,γ . (A2)

Working with this new orbital basis |γ 〉 is quite useful because
the energy functional (30) as well as the constraints (22), (23)
have a much simpler form; see Sec. A 3.

In general, the basis |γ 〉 is not uniquely defined. For
instance, in our three-band model without any charge or
magnetic order, our local density matrix has the form

C̃ = n01 − �nso
0 �̃ (A3)

with �̃ as defined in (14). The diagonalization of (A3) leads to
a twofold and a fourfold degenerate set of states |γ 〉 with the
occupation numbers n0 − 2�nso

0 and n0 + �nso
0 , respectively.

Therefore, the states |γ 〉 are defined only up to an arbitrary
unitary transformation within these two degenerate subspaces.
Even for a system with three nondegenerate orbitals there
would be a remaining twofold degeneracy in the spectrum
of C̃.

2. Atomic spectrum

We introduce the configuration basis |I 〉 of the local Hilbert
space,

|I 〉 ≡
∏
σ∈I

ĉ†σ |0〉 ≡ ĉ†σ1
. . . ĉ†σ|I | |0〉, (A4)

where the operators ĉ†σ are in ascending order; i.e., we have
σ1 < σ2 . . . < σ|I | where |I | is the number of particles in

state |I 〉. Using the standard mathematical notations for set
operators, we frequently encounter the states |I ∪ σ 〉 or |I\σ 〉
which result from the local creation/annihilation of an electron.
Since we work with fermions, we define the minus-sign
function

fsgn(σ,I ) ≡ 〈I ∪ σ |ĉ†σ |I 〉. (A5)

With the basis (A4), we can readily set up the local Hamilton
matrix

H loc
I,I ′ = 〈I |Ĥloc|I ′〉 (A6)

and determine its eigenstates

|	〉 =
∑

I

TI,	|I 〉 (A7)

by standard numerical techniques. For the numerical mini-
mization of the Gutzwiller energy functional, however, we
prefer to work with the orbital states |γ 〉 and its corresponding
configuration basis

|J 〉 ≡
∏
γ∈J

d̂†
γ |0〉 ≡ d̂†

γ1
. . . d̂†

γ|I | |0〉. (A8)

One way to determine the expansion of |	〉 with respect to this
basis,

|	〉 =
∑

J

AJ,	|J 〉, (A9)

would be to transform the local Hamiltonian Ĥloc to the basis
|γ 〉 and to set up and diagonalize the Hamilton matrix H loc

J,J ′ .
Alternatively, one may determine the eigenstates (A7) and
calculate the coefficients AJ,	 in (A9) from the formula

AJ,	 =
∑

I

TI,	〈J |I 〉,

〈J |I 〉 = Det
(
u∗

σi ,γj

)
, (σi ∈ I,γj ∈ J ). (A10)

3. Energy functional

For a (still general) orbital basis |γ 〉, we find the following
expression for the constraints (22), (23),

∑
	,	1,	2

λ∗
	,	1

λ	,	2
m0

	1,	2
= 1, (A11)

∑
	,	1,	2

λ∗
	,	1

λ	,	2
m0

	1∪γ,	2∪γ ′ = δγ,γ ′nγ , (A12)

where

|	 ∪ γ 〉 ≡ d̂†
γ |	〉 =

∑
J (γ /∈J )

fsgn(γ,J )AJ,	|J ∪ γ 〉, (A13)

m0
	,	′ ≡ 〈m̂	,	′ 〉
0 . (A14)

Since |J 〉 is a basis of the local Hilbert space, all expectation
values of the form (A14) are determined by the determinants

m0
J,J ′ ≡ 〈m̂J,J ′ 〉
0 =

∣∣∣∣�J,J ′ −�J,J̄

�J̄ ,J ′
�̄J̄ ,J̄

∣∣∣∣. (A15)
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Here, �J,J ′ are the matrices

�J,J ′ =

⎛
⎜⎜⎜⎝

Dγ ′
1,γ1 Dγ ′

2,γ1 . . . Dγ ′
|J ′ |,γ1

Dγ ′
1,γ2 Dγ ′

2,γ2 . . . Dγ ′
|J ′ |,γ2

...
...

. . .
...

Dγ ′
1,γ|J | Dγ ′

2,γ|J | . . . Dγ ′
|J ′ |,γ|J |

⎞
⎟⎟⎟⎠, (A16)

in which the entries are the elements of the uncorrelated
local density matrix (A2) that belong to the configurations
J = (γ1, . . . ,γ|J |) and J ′ = (γ ′

1, . . . ,γ
′
|J ′ |). The matrix �̄J̄ ,J̄ in

(A15) is defined by

�̄J̄ ,J̄ =

⎛
⎜⎜⎜⎜⎝

1 − Dγ1,γ1 −Dγ1,γ2 . . . −Dγ|J̄ |,γ1

−Dσ2,σ1 1 − Dσ2,σ2 . . . −Dγ|J̄ |,γ2

...
...

. . .
...

−Dγ1,γ|J̄ | −Dγ2,γ|J̄ | . . . 1 − Dγ|J̄ |,γ|J̄ |

⎞
⎟⎟⎟⎟⎠,

(A17)

with γi ∈ J̄ ≡ (1, . . . ,N)\(J ∪ J ′).
So far we have not used yet the defining condition (A2)

of the |γ 〉 basis. By applying it, the expectation values (A15)
have the much simpler form

m0
J,J ′ = δJ,J ′m0

J ,

m0
J =

∏
γ∈J

nγ

∏
γ /∈J

(1 − nγ ). (A18)

It is this simplification that makes the use of the |γ 〉 basis
particularly convenient in the evaluation of ground-state
expectation values. For the calculation of derivatives with
respect to Dγ,γ ′ , however, we have to start from the general
expression (A15); see Sec. A 4.

With the above results, Eqs. (A14)–(A17), we can calculate
the local energy as

Eloc =
∑

	,	1,	2

E	λ∗
	,	1

λ	,	2
m0

	1,	2
. (A19)

In the |γ 〉 basis we have explicitly

m0
	1,	2

=
∑
J1,J2

AJ1,	1A
∗
J2,	2

m0
J1,J2

. (A20)

For a ground-state calculation, this expression can be simpli-
fied further using Eq. (A18).

Finally, the renormalization matrix has the form

qγ ′
γ =

∑
	1,...,	4

λ∗
	2,	1

λ	3,	4
〈	2|d̂†

γ |	3〉

×
∑
J1,J4

AJ1,	1A
∗
J4,	4

H
γ ′
J1,J4

(A21)

with

H
γ ′
J1,J4

≡ (1 − fγ ′,J1 )〈J4|d̂γ ′ |J4 ∪ γ ′〉m0
J1,J4∪γ ′

+ (
fγ ′,J4m

0
J1\γ ′,J4

+ (1 − fγ ′,J4 )m0;γ ′
J1\γ ′,J4

)
×〈J1\σ ′|d̂γ ′ |I1〉 (A22)

and

fγ,J ≡ 〈J |d̂†
γ d̂γ |J 〉 (A23)

is either zero or unity. Here, the expectation value m
0;γ ′
J1\γ ′,J4

has
the same form as the one in (A15), except that the index J̄ has
to be replaced by J̄\γ ′. We need the general result (A21) for
the renormalization matrix for the calculation of derivatives
with respect to nondiagonal elements of Dγ,γ ′ ; see Sec. A 4.
For a ground-state calculation one can use Eq. (A2) and obtain
the simpler expression

qγ ′
γ = 1

nσ ′

∑
	1...	4

λ∗
	2,	1

λ	3,	4
〈	2|d̂†

γ |	3〉m0
	1,	4∪γ ′ , (A24)

which may also be written in the form [31]

qγ ′
γ = 1

nσ ′
〈P̂ †d̂†

γ P̂ d̂γ ′ 〉
0 . (A25)

In summary, the Gutzwiller energy functional in the |γ 〉
basis is given as

EG(v,ρ̃,D̃) =
∑
γ1,γ2
γ ′

1,γ
′
2

q
γ ′

1
γ1

(
q

γ ′
2

γ2

)∗
Eγ1,γ2,γ

′
1,γ

′
2

+
∑

	,	1,	2

E	λ∗
	,	1

λ	,	2
m0

	1,	2
. (A26)

Here, we applied the transformation to the |γ 〉 basis,

Eγ1,γ2,γ
′
1,γ

′
2
=

∑
σ1,σ2
σ ′

1,σ
′
2

u∗
σ1,γ1

uσ2,γ2uσ ′
1,γ

′
1
u∗

σ ′
2,γ

′
2
Eσ1,σ2,σ

′
1,σ

′
2

(A27)

and

qγ ′
γ =

∑
σ,σ ′

uσ,γ u∗
σ ′,γ ′q

σ ′
σ . (A28)

4. Derivatives

The minimization algorithm which we explain in this
section requires the calculation of derivatives of the energy and
of the constraints with respect to the variational parameters vz

and the local density matrix C̃ or D̃.

(a) Derivatives with respect to vZ

The constraints, the local energy, and the renormalization
factors are all quadratic functions of the variational parameters
vz; i.e., they are of the form

f (v) =
∑
Z,Z′

fZ,Z′vZ′vZ. (A29)

The fast calculation of derivatives

∂vZ
f (v) =

∑
Z′

(fZ,Z′ + fZ,Z′ )vZ′ (A30)

is then possible if all coefficients fZ,Z′ are stored in the main
memory. In our calculations we observe that the number of
contributing coefficients fZ,Z′ in the expansion is particularly
large in the renormalization factors when we include nondiag-
onal elements in the variational parameter matrix λ	,	′ . Hence,
our minimization for the three-orbital model that includes all
nv = 924 nondiagonal variational parameters is numerically
much more demanding than the minimization, e.g., for a
five-orbital model with only diagonal parameters (nv = 1024).
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(b) Derivatives with respect to Cσ,σ ′

For the calculation of the effective on-site energies (45),
we need to determine the derivatives of the energy and of
the constraints with respect to Cσ,σ ′ . Again, it is easier to
calculate the derivatives first in the γ basis and then transform
them via

∂

∂Cσ,σ ′
=

∑
γ,γ ′

u∗
σ,γ uσ ′,γ ′

∂

∂Dγ,γ ′
. (A31)

For the derivatives of the constraints and of the local energy,
we just need to determine the derivative of (A15). This
gives

∂

∂Dγ,γ

m0
J,J ′ = δJ,J ′m0

J,J

{
1/nγ for γ ∈ J,

−1/(1 − nγ ) for γ /∈ J,
(A32)

for γ = γ ′, and

∂

∂Dγ ′,γ
m0

J,J ′ = δĪ ,I\γ δĪ ,I ′\γ ′
m0

Ī ,Ī

(1 − nγ )(1 − nγ ′)
(A33)

for γ �= γ ′, where γ ∈ J and γ ′ ∈ J ′. The only remaining
problem is to calculate derivatives of the object m

0;γ̄
J,J ′ that

appears in the definition of the renormalization matrix,
Eqs. (A21), (A22), with respect to Dγ ′,γ . It contributes
only when γ �= γ̄ and γ ′ �= γ̄ . Then we can use the simple
relationship

∂

∂Dγ ′,γ
m

0;γ̄
J,J ′ = 1

1 − nγ̄

∂

∂Dγ ′,γ
m0

J,J ′ . (A34)

APPENDIX B: MINIMIZATION ALGORITHM

1. Inner minimization

For a given single-particle state |
0〉, or, equivalently, a
given single-particle density matrix ρ̃, we have to minimize
the energy functional (34) obeying the constraints (40). In
Ref. [25] we introduced a very efficient method for this
minimization which was used in a number of previous studies,
for example on elementary iron and nickel [17,18]. This
method, however, is only applicable if the gradients

Fl ≡ ∂vgl(v) (B1)

of the constraints (40) are linearly independent because it
requires a matrix Wl,l′ ≡ Fl · Fl′ to be regular.

In principle, this problem can be overcome by a group-
theoretical analysis that identifies the maximum set of in-
dependent constraints. Such a solution, however, is rather
cumbersome and it runs into difficulties if one aims to study
the transition between minima with different point-group
symmetries. Even if we ensure that the gradients Fl are
linearly independent, however, we observe that the algorithm
introduced in Ref. [25] becomes prohibitively slow when we
aim to minimize the energy functional for a general (complex)
variational parameter matrix λ	,	′ .

For this reason we tested a couple of alternative minimiza-
tion algorithms that are discussed in textbooks on numerical
optimization [32]. We found the “penalty and augmented
Lagrangian method” (PALM) to be most useful in our context
when combined with an unconstrained Broyden-Fletcher-

Goldfarb-Shanno (BFGS) minimization. We shall briefly
summarize these methods in the following.

(a) PALM

In the PALM one studies the functional

LPALM
G (v,{�l},μ) ≡ EG(v) −

∑
l

�lgl(v) + μ

2

∑
l

[gl(v)]2,

(B2)
which contains Lagrange parameter terms (∼�l) and penalty
terms (∼μ). In a pure “penalty method” one would set �l =
0 and minimize (B2) for a given value of μ > 0. If, in the
minimum v = v0, the constraints are sufficiently well fulfilled,
i.e., ∑

l

gl(v0)2 < g2
c (B3)

with some properly chosen value of gc, we may consider
E0 = EG(v0) as a decent approximation for the Gutzwiller
ground-state energy. Otherwise, we increase μ and start
another minimization.

For our Gutzwiller energy functional it turns out that the
convergence to the minimum is much faster when we use a
full PALM algorithm with Lagrange parameters �l �= 0. This
method works as follows [32].

(i) Start from some initial values �l = �l;0 and μ =
μ0, e.g., �l;0 = 1 and μ0 = 50|EG(vnc)|, where vnc

l are the
variational parameters in the noninteracting limit, i.e., with
λ	,	′ = δ	,	′ .

(ii) Minimize

LPALM
G;0 (v) ≡ LPALM

G (v,{�l;0},μ0) (B4)

with respect to v. For this step we use the method of steepest
descent combined with the BFGS method; see Sec. B 1 b. We
denote the minimum found in step (ii) by v0.

(iii) Set

�l;k+1 = �l;k − μkgl(v0), (B5)

μk+1 = βμk (B6)

with some properly chosen number β > 1. In our calculations
we worked with β = 2.

(iv) Go back to step (ii) until Eq. (B3) is satisfied.

(b) Steepest descent and BFGS method

We still have to choose a method for the unconstrained
minimization in step (ii) in the PALM. It is a major advantage
of our Gutzwiller minimization that calculating gradients of the
energy or of the constraints works just as fast as the calculation
of these objects themselves. Of course, this is only the case
when we use Eq. (A30) and do not try to calculate the gradients
numerically from the difference quotient.

Let E(v) be our functional and

F0 = ∂vE(v)|v=v0
(B7)

its gradient at the point v0. Then the simplest way of
minimizing E(v) is the “method of steepest descent” where
the one-dimensional function

�E(α) = E(v0 + αF0) (B8)
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is minimized with respect to α. Instead of the optimal value
α = α0, in practical numerics we use a value α̃0 that reduces the
value of our functional E(v). We calculate a new point v0 →
v0 + α̃0 F0 and reiterate the procedure until |F0| is below a
predetermined threshold. It is the decisive advantage of this
method that it always converges towards a (potentially local)
minimum as long as the functional is well behaved, which we
can take for granted in physics. The main disadvantage of the
method is its rather slow convergence. Therefore, we found
it necessary to combine it with a faster algorithm, the BFGS
method, which, however, works reliably only in the vicinity of
the minimum.

The starting point of the BFGS method is a second-order
expansion of the functional

E(v0 + δv) ≈ E(v0) + F0 · δv + 1
2δvT · H̃0 · δv, (B9)

where H̃0 is the Hessian matrix of second derivatives at the
point v0. Provided that H̃0 is positive definite, the right-hand
side is minimized for

δv = −B̃0 · F0, (B10)

where B̃0 = H̃−1
0 . Making iterative steps in the variational

parameter space by means of Eq. (B10) is a multidimensional
version of the Newton method.

The main obstacle of the Newton method is the numerical
calculation of H̃0 and the solution of Eq. (B10). Therefore, it
is better to use a so-called “quasi-Newton-method” of which
BFGS is one example. This method employs Eq. (B10) without
calculating B̃0 (or H̃0) exactly. It works as follows [32]:

(i) Start at some point vk and calculate the gradient Fk

and the inverse B̃k of the Hessian matrix. Due to the benign
structure of our functional we can afford this initial calculation
of B̃k because it is done only once.

(ii) Calculate the new point

vk+1 = vk − B̃k · Fk. (B11)

(iii) Calculate Fk+1 from

Fk+1 = ∂vE(v)|v=vk+1
(B12)

and an approximate update of B̃k from

B̃k+1 = (
1̃ − αksk yT

k

)
B̃k+1

(
1̃ − αk yksT

k

) + αksksT
k , (B13)

where
sk ≡ vk+1 − vk,

yk ≡ Fk+1 − Fk, (B14)

αk ≡ yT
k sk.

(iv) Go back to step (ii) until |Fk| is below some pre-
defined threshold.

Within the BFGS method it is not ensured that going from vk

to vk+1 always leads to a decrease of our functional. Therefore,
we need the method of steepest descent as a backup to reach
a region in the variational parameter space where the BFGS
method converges.

2. Outer minimization

Given the optimum variational parameters v0 from the inner
minimization we need to determine a new single-particle state
by means of Eqs. (42)–(46). All derivatives in Eqs. (45)–(46)
are calculated with the formulas given in Eq. (B7). Then,
the remaining problem is the calculation of the Lagrange
parameters �l from Eqs. (46). The number nv of these
linear equations is usually much larger than the number of
Lagrange parameters nc. Due to a possible interdependence
of the constraints, the solution of the equations may not be
unique. Hence, we cannot use the trick of Ref. [25] (see
Sec. 4.2.1 of that work), which led to a number of nc linear
equations.

Here, we choose to determine one of the infinitely many
possible sets of Lagrange parameters by minimizing the
functional

Y ({�l}) =
∑
Z

(
∂EG

∂vZ

∣∣∣∣
v=v0

−
∑

l

�l

∂gl

∂vZ

∣∣∣∣
v=v0

)2

(B15)

with respect to �l . Note that the lack of uniqueness for the
Lagrange parameters �l has no consequences for the fields
(45). The latter are always uniquely defined, apart from a total
energy shift that can be absorbed in the chemical potential.

With the fields (45) and the renormalization matrix deter-
mined, we diagonalize (42) and determine |
0〉 by means of
the standard tetrahedron method.
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