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Accurate ionization potential of semiconductors from efficient density functional calculations
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Despite its huge successes in total-energy-related applications, the Kohn-Sham scheme of density functional
theory cannot get reliable single-particle excitation energies for solids. In particular, it has not been able to
calculate the ionization potential (IP), one of the most important material parameters, for semiconductors. We
illustrate that an approximate exact-exchange optimized effective potential (EXX-OEP), the Becke-Johnson
exchange, can be used to largely solve this long-standing problem. For a group of 17 semiconductors, we have
obtained the IPs to an accuracy similar to that of the much more sophisticated GW approximation (GWA), with
the computational cost of only local-density approximation/generalized gradient approximation. The EXX-OEP,
therefore, is likely as useful for solids as for finite systems. For solid surfaces, the asymptotic behavior of the vxc

has effects similar to those of finite systems which, when neglected, typically cause the semiconductor IPs to be
underestimated. This may partially explain why standard GWA systematically underestimates the IPs and why
using the same GWA procedures has not been able to get an accurate IP and band gap at the same time.
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I. INTRODUCTION

The ionization potential (IP) of a semiconductor is one
of the most important material parameters which govern its
optics, transport, electrochemistry, and interface properties
in heterostructures. Although, in principle, the IP can be
calculated by the many-body Green’s function method in
the GW approximation (GWA) [1], due to the heavy com-
putational cost, in practice, further approximations have to
be made, which has remained unjustified to this date. For
finite systems, it is usually more convenient to use density
functional theory (DFT) to calculate the neutral and ionized
systems separately and then obtain an accurate IP from their
total energy difference. This approach, however, cannot be
used for infinite solids for which DFT can only treat neutral
systems.

Luckily enough, in DFT there exists an “IP theorem”
[2,3] which states that the negative eigenvalue of the highest
occupied Kohn-Sham orbital, −εN , happens to be equal to the
IP. The reason for the existence of this theorem is because the
electron density at r = ∞ is contributed by the most extended
orbital in space, which happens to be the highest occupied one.
In both the quasiparticle theory and DFT, the corresponding
orbital density decays exponentially, with the exponent being
related in the same way to the IP and −εN , respectively.
Therefore, for both theories to give the same density at r = ∞,
IP and −εN must be equal.

However, the IP theorem relies on the exact exchange-
correlation potential vxc, which is unknown and must be
approximated. Popular approximations such as the local-
density approximation (LDA) or generalized gradient approx-
imations (GGA) suffer from the self-interaction (SI) error [4],
which pushes up occupied states and causes LDA/GGA to
systematically underestimate the IP. For atoms and molecules
[5], the IP error (hereafter, “IP error” specifically refers to the
deviation of −εN of LDA/GGA from the true IP) can be as
large as 5–10 eV, while for semiconductors [6,7] it is typically
1 eV. Consequently, the powerful DFT-Kohn-Sham scheme
has not been able to get reliable IPs for semiconductors even
as simple as silicon.

This paper takes one major step forward: We will show
that the IP theorem when used with an approximate optimized
effective potential [8–10] can predict the IPs of semiconductors
to an accuracy similar to that of the much more sophisticated
GWA. As vxc is a simple, local potential, our whole procedure
is restricted to the DFT-Kohn-Sham realm, and therefore, the
computational cost is as low as LDA/GGA. This has made it
possible to calculate the IP of a complex system composed of
hundreds of atoms.

Strictly speaking, for infinite solids there is no exact IP
theorem anymore. That is to say, in general, IP is not equal to
−εvbm, the negative eigenvalue of the valence-band maximum
(VBM). This is because out of a solid surface the most extended
orbital is generally not the VBM but the highest occupied
orbital at the � point of the planar Brillouin zone. This fact
was first noted by Engel [11]. We hereby use it to show that
the exactness of the DFT density far away from the surface has
nothing to do with the VBM energy, unless the VBM happens
to locate at �. Nevertheless, the possible deviation of −εvbm

from the true IP is likely small and is not considered in this
work.

The condition for an accurate IP is much more stringent
than for accurate total energy since vxc depends on every
detail of the exchange-correlation hole, while total energy only
requires the spherical average of the hole to be correct. This
explains why the same LDA/GGA behave drastically different
for the two quantities. For finite systems, it has long been
established [5] that the exact vxc must decay as slowly as
−1/r away from the physical system. However, due to the
SI error, LDA/GGA decay exponentially fast. Consequently,
a large negative portion of vxc is missing which is responsible
for most of the eigenvalue overestimation. Often, the accuracy
of IP can be improved by correcting the wrong asymptotic
behavior of the vxc. However, for solid surfaces asymptotically
long-range potentials are very hard to use with the supercell
method [12], so that the role of the long-range part of vxc has
remained unexplored. As revealed by this work, the effects are
not as strong as for finite systems but still too significant to be
simply ignored.
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The exact-exchange optimized effective potential (EXX-
OEP, or simply OEP, as in this work) is the local multiplicative
potential minimizing the Hartree-Fock expression of total
energy. Using OEP to calculate a semiconductor IP is inspired
by the fact that most SI resides in the exchange part of vxc,
while OEP is self-interaction free [13] and satisfies many
exact conditions, especially the desired −1/r asymptotic
behavior [14]. For neutral and ionized atoms [15] as well
as small molecules [6], OEP removes the IP errors by more
than 80%.

The capability of OEP to calculate the IP for semiconduc-
tors is not trivially seen because its success for atoms and
molecules seems to rely on the overwhelmingly dominant role
of exchange, while in solids correlation is much stronger. In
fact, so far there has been only one work [11] using OEP to
calculate the IPs of two semiconductor, Si (111) and graphene.
For Si, the obtained value is 5.45 eV. However, this case
is questionable because the slab used in the calculation is
too thin and the surface is not relaxed. Let us explain both
reasons in more detail: First, to get a reliable IP, the slab
used in the calculation must be thick enough. Convergence
testing has shown that the minimum thickness is nine atomic
layers, while in Ref. [11] the slab only contains three bilayers.
Second, the IP sensitively depends on the formation of the
surface dipole, which means that the surface density must be
determined to high accuracy. For this reason the surface of
the slab has to be relaxed since the density of the unrelaxed
surface is highly unrealistic. In fact, a comparison between
relaxed and unrelaxed surfaces has shown that their IPs can
differ by as much as 0.5 eV [7]. The other case, graphene,
is simpler [16] because there is no issue of slab thickness
or surface relaxation. Nevertheless, the obtained IP is 8.13 eV,
which severely overestimates the experimental value of 4.6 eV.
To compensate for the huge 3.53 eV difference, the author had
to conclude that the correlation potential for graphene must be
strongly repulsive. In general, according to this only existing
work [11], OEP does not seem to be useful for semiconductor
IPs. This paper, however, will arrive at a different conclusion.

The application of OEP for solids has not become popular
mainly because the construction of the exact OEP is technically
very challenging: OEP is computationally costly and is
extremely sensitive to the subtle balance of the basis sets
[17–19]. For semiconductor IP the problem is more agonized
due to its extra surface dependence, which therefore requires
the OEP of the complex surface structure. Moreover, OEP
decays as slowly as −1/z from the surface. Like other
long-range potentials, it is very hard to use with the supercell
method [11,12].

This work is made possible by implementing an approxi-
mate OEP, the Becke-Johnson 2006 (BJ06) exchange potential
[20], to the authentic slab geometry (ASG) [21,22], which is
a surface technique suitable for both short- and long-range
potentials [12]. Even for simple systems, using approximate
OEP to avoid the intricacy of the exact OEP is common. For
example, the Krieger-Li-Iafrate (KLI) approximation [23] has
been much more popular than the exact OEP itself. Compared
to KLI, BJ06 is less accurate. But for the following reasons
BJ06 will well represent the performance of OEP: (i) For
atoms BJ06 approaches the exact OEP very closely. (ii) For
solids it satisfies the uniform electron-gas limit. (iii) For finite

systems BJ06 decays as −1/r + C (C is positive and system
dependent), and it is found [24] to reduce the IP errors by
as much as 60%. (iv) For solid surfaces BJ06 decays as
[12] −1/z + C, which will be shown to be equivalent to the
asymptotic behavior of the exact OEP. To account for the
stronger correlation in solids, in this work BJ06 is amended
by the LDA correlation [25]. The total vxc is called BJ06c
throughout this paper.

The rest of this paper is organized as follows: Sec. II
explains the major technological issues, first the method for
calculating semiconductor IPs and then the details of our
calculations. Section III presents the main IP results, which
are also compared to GWA and experiment. Discussion of the
performance of our method is offered, which is then followed
by analysis of the effects of the long-range part of the vxc.
After that, we comment on the existing GWA calculations
of semiconductor IPs. Finally, Sec. IV summarizes the major
achievements of this work.

II. TECHNOLOGICAL ISSUES

A. Method for semiconductor IP calculations

The IP calculation follows the usual two-step procedure:
first a bulk calculation (with the primitive cell) to get εvbm,
and then a surface calculation using a slab like Fig. 1 for the
alignment of the Coulomb potential. The surface calculation
is needed since in the bulk calculation the Coulomb potential
is determined only up to a global constant due to the use of
periodic boundary conditions. The expression of IP used in
this work is

IP = −ε
p.cell
vbm + v

p.cell
Coul − vs.cell

Coul , (1)

in which v
p.cell
Coul is the average Coulomb potential of the bulk

and vs.cell
Coul is the drop of the average Coulomb potential from

the vacuum edge to the center of the slab. We emphasize that
vs.cell

Coul is caused by the formation of surface dipoles; therefore,
it is very sensitive to the surface charge distribution. This is the
first hint that the long-range part of vxc will play an important
role in the final IP.

B. Details of the surface calculations

The 17 semiconductors belong to the diamond, wurtzite,
and zinc-blende structures; for surface calculations the slab
thickness is set to 15, 23, and 24 atomic layers, respectively.
To account for the long-range character of BJ06, the vacuum
thickness is set to the huge value of 440 bohrs, facilitated
by the authentic slab geometry [21,22]. The two-dimensional
Brillouin zone integrations are performed by the special
k-point method using a Monkhorst-Pack mesh of 6 × 8 for

Coul
s.cellv

vacuum

z

edge

FIG. 1. A ZnS slab of 15 atom layers. The highlighted region is
used for macroscopic averaging [26].
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diamond and zinc blende and 8 × 8 for wurtzite. All above
parameters are either the same as or more stringent than those
used in the earlier works [7,27,28]. Geometry relaxation is
performed with GGA, although atoms within the slab cell are
kept fixed to avoid too much distortion of the density in the
cell. Note that even so, the density near the cell boundary is
still unavoidably affected. For this reason, one extra atom layer
on both sides of the slab cell is also kept fixed to minimize the
effect. Both the bulk and the slab calculations are iterated
to self-consistency until the final distances of the density
and the potential are both smaller than 0.01 atomic units.
The full-potential linearized augmented plane wave (FLAPW)
method [29] is used for all calculations with spin-orbital effects
included.

III. RESULTS AND DISCUSSIONS

Using BJ06c within ASG, we have calculated the IPs of 17
semiconductors. The results are presented in Table I and Fig. 2
and are compared to GWA [7,27] and experiment. Through the
two-step procedure, the accuracy of the IP is determined by
the surface part of the calculation, which may be checked by
comparing Eq. (1) with −εslab

vbm, the negative eigenvalue of the
VBM of the slab. This is because, providing surface states do
not cover up the bulk VBM, Eq. (1) and −εslab

vbm give the same
IP value unless the slab is not sufficiently thick. Indeed, for 14
semiconductors Eq. (1) and −εslab

vbm differ by less than 0.1 eV.
The exceptions are BN, SiC, and CdS, for which the VBM is
from a surface state. Therefore, the numerical accuracy of our
IPs is better than 0.1 eV.

TABLE I. The GGA and BJ06c IPs of the 17 semiconductors
calculated from Eq. (1) and the negative of the VBM eigenvalue of
the slab. The GW results are calculated by GW@GGA (Ref. [7])
and GW�@HSE (Ref. [27]). Experimental results are collected from
these two works. For the original reports see references therein. Units
are eV.

GGA BJ06c GW

Eq. (1) εslab
vbm Eq. (1) εslab

vbm Ref. [7] Ref. [27] Experiments

Si 4.66 4.68 5.36 5.38 5.45 5.47 5.13, 5.33, 5.1,
5.25, 5.35

Ge 4.08 4.07 5.09 5.03 4.55 5.07 4.75, 4.8, 4.74
GaN 5.73 5.68 6.60 6.53 6.97 7.12 6.6, 6.8, 7.75
GaP 5.06 5.04 5.87 5.83 5.82 6.10 5.95, 6.01
ZnO 5.95 6.00 6.87 6.88 7.46 8.19 7.82
ZnS 5.93 5.90 6.86 6.81 7.01 7.40 7.5
ZnSe 5.53 5.50 6.41 6.37 6.40 6.92 6.82
ZnTe 4.71 4.69 5.79 5.76 5.67 5.89 5.76, 5.75
CdS 5.89 5.79 6.79 6.62 6.83 7.14 6.1, 7.26
CdSe 5.43 5.38 6.42 6.33 6.29 6.79 6.62
CdTe 4.79 4.75 5.90 5.82 5.90 5.93 5.78, 5.8
BN 6.87 6.51 7.93 7.57 8.52
AlP 5.57 5.51 6.37 6.32 6.62
AlAs 5.10 5.03 6.06 5.99 6.26
AlSb 4.57 4.52 5.57 5.51 5.36 5.22
C 5.45 5.53 6.41 6.49 6.74 5.85, 6.0, 6.5
SiC 5.80 5.60 6.66 6.45 7.00 5.9, 6.0
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FIG. 2. IPs of the 17 semiconductors from GGA (black solid line)
and BJ06c (red solid line) calculated by Eq. (1). The experimental
data (black dots) and the GW results (blue and green dotted lines) are
the same as in Table I.

Consistent with earlier works, GGA [30] consistently
underestimates the experimental IPs by about 1 eV. With
BJ06c, all IPs are upshifted, and the corrections upon GGA are
from 0.70 eV (for Si) to 1.11 eV (for CdTe). Experimentally,
the IP measurement is extremely sensitive to the sample’s
surface condition, which has led to large scattering of the IP
data. Consequently, a strict quantitative comparison between
theories and experiment is impossible. Nevertheless, the extent
of the corrections by BJ06c is in the desired range and is
similar to that of GWA. The largest discrepancy is found for
ZnO [31], which is also a difficult case for GWA. In general,
the performance of BJ06c is quite impressive since it is a local
potential, requiring essentially negligible computational cost
compared to GWA.

From Table I and Fig. 2 the performance of BJ06c is
about equally good for solids as for atoms [15] and small
molecules [6]. This seems to be inconsistent with the only
earlier work [11] which implies that OEP may not be useful
for semiconductor IPs. In fact, we have also calculated the IP of
graphene by BJ06c and obtained 4.6 eV, which is in excellent
agreement with experiment. Therefore, a strongly repulsive
correlation potential is not needed. We note in Ref. [11] the
OEP was generated by supercell. Limited by the low efficiency
of the supercell method, the sheet separation is only 14 bohrs,
which is definitely not sufficient to achieve the asymptotic
value of the OEP at the vacuum edge.

The long-range part of vxc has been well understood for
finite systems but is widely ignored in surface calculations
for which the erroneously short range LDA/GGA are almost
exclusively used. To check its effects for a solid surface, we
have decomposed �IP, the total IP correction upon GGA,
into the three individual contributions of �ε

p.cell
vbm , �v

p.cell
Coul ,

and �vs.cell
Coul , following Eq. (1). With this decomposition the

effects of the long-range part of vxc are only reflected in
the surface term since in the bulk calculation there is no
asymptotic region. Note that the electron self-energy also
shares a similar asymptotic behavior [32]; the existing GWA
studies [7,27,28] can therefore be used as convenient examples
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TABLE II. Total IP correction �IP and the individual contribu-
tions of �ε

p.cell
vbm , �v

p.cell
Coul , and �vs.cell

Coul from Eq. (1). PCT gives the
percentages of the contributions. Units are eV.

�ε
p.cell
vbm �v

p.cell
Coul �vs.cell

Coul

�IP Value PCT Value PCT Value PCT

Si 0.70 − 0.62 89 − 0.03 −4 − 0.11 16
Ge 1.00 − 0.88 88 − 0.08 −8 − 0.20 20
GaN 0.87 − 0.78 90 − 0.02 −2 − 0.11 13
GaP 0.80 − 0.56 70 − 0.02 −3 − 0.27 34
ZnO 0.93 − 1.07 115 − 0.03 −3 0.11 −12
ZnS 0.93 − 0.73 78 − 0.02 −2 − 0.22 24
ZnSe 0.88 − 0.74 84 − 0.04 −5 − 0.18 20
ZnTe 1.07 − 0.75 70 − 0.13 −12 − 0.45 42
CdS 0.90 − 0.75 83 − 0.06 −7 − 0.21 23
CdSe 1.00 − 0.76 76 − 0.07 −7 − 0.30 30
CdTe 1.11 − 0.78 70 − 0.15 −14 − 0.47 42
BN 1.06 − 0.83 78 0.01 1 − 0.22 21
AlP 0.80 − 0.64 80 − 0.02 −3 − 0.18 23
AlAs 0.96 − 0.72 75 − 0.04 −4 − 0.28 29
AlSb 1.00 − 0.80 80 − 0.12 −12 − 0.33 33
C 0.96 − 0.73 76 0.01 1 − 0.22 23
SiC 0.87 − 0.72 83 − 0.01 −1 − 0.16 18

to assist our analysis. For this purpose, let us recall that all
GWA calculations are only applied to the bulk, while the slabs
are always treated by GGA so that

IPGWA = IPGGA − �ε
p.cell
vbm + �v

p.cell
Coul . (2)

In this way, �vs.cell
Coul , together with all the effects of the long-

range part of vxc, is completely ignored. In fact, if the GWA
of the bulk is performed in the one-shot fashion, i.e., without
self-consistency, then �v

p.cell
Coul is also ignored. Since Coulomb

potential is uniquely determined by density, the underlying
assumption is that the GGA densities are already accurate
enough to be directly used for the IP calculations.

From Table II, the average contributions of the three terms to
the total �IP are 82%, 23%, and −5%, respectively. Therefore,
the bulk part of the corrections indeed accounts for most of the
�IP, which lends fundamental support to the GWA treatment.
Especially, the smallness of �v

p.cell
Coul implies that the GGA bulk

density may be indeed of high quality. A problem, however,
exists for �vs.cell

Coul since its 23% contribution to the total �IP is
certainly non-negligible. Especially, for the two Te compounds
the contributions are larger than 40%. This means that the GGA
slab density is not sufficiently accurate.

The reason why the two GGA densities are of different
quality is because SI behaves differently in the bulk and
the slab: Within the bulk, SI usually causes the density
to overly delocalize. However, this problem mostly affects
strongly correlated materials, while for weak to intermediate
correlations it is not very serious. In fact, within the bulk the SI
error is largely screened out by the response of the Coulomb
potential, as illustrated by Li et al. [14]. On the other hand,
in the slab case the Coulomb potential cannot compensate for
the missing tail of GGA since it decays even faster than vxc.
Consequently, the SI error is more prevailing in the slab than
in the bulk.
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FIG. 3. vxc of the GGA (black) and BJ06c (red) for the ZnS slab
in Fig. 1 along (0,0,z). The plot path is between atomic sites to
avoid the divergence of the GGA at the nuclei. The inset shows the
difference of the macroscopically averaged [26] slab density �ρ̄(z) =
ρ̄BJ06c(z) − ρ̄GGA(z). Black dots indicate the location of the atomic
planes.

To make sure that �vs.cell
Coul is indeed related to the long-range

part of BJ06c, we have plotted the two vxc for Fig. 1 together
with the difference of their macroscopically averaged [26]
densities. Figure 3 shows that within the bulk BJ06c is deeper
than GGA, which explains the downshift of εvbm. The most
obvious distinction, however, is around the slab surface: While
GGA already decays to zero at about z = 40, BJ06c climbs up
very slowly to its 0.20 value at the vacuum edge of z = 247 (not
shown). Correspondingly, within the bulk the electron density
is essentially unchanged. Only near the surface does the slow
variation of BJ06c strongly perturb the surface density. For
the relaxed slab, this enhances the surface dipole and changes
vs.cell

Coul by −0.22 eV, which contributes positively to the total
�IP of 0.93 eV.

Compared to atoms and molecules, the effects of the
long-range part of the vxc are weaker for the solid surface. This
is because the wave functions are mainly bound to the slab but
less exposed to the vacuum or the asymptotic region. At this
point, it is necessary to point out that the exact asymptotic
behavior of vxc for the solid surface is still unresolved [11,12].
In BJ06c, the asymptotic behavior −1/z + C of the exchange
part is exact according to the form found in Ref. [3] since an
overall shift of the potential by the C constant has no effect
on the slab density or �vs.cell

Coul . On the other hand, the LDA
correlation is still erroneously short ranged. Consequently,
the �vs.cell

Coul data in Table II contain systematic errors which
are hard to evaluate. Nevertheless, �vs.cell

Coul is at least system
dependent, and there is no apparent reason why it can be
universally neglected. For example, it is found that GGA can
successfully line up the Coulomb potential at the interface
of heterostructures. This is frequently cited to support the
similar use of GGA for the potential alignment in the IP
calculation by GWA [7,27,28]. However, the two interfaces
are fundamentally different: The asymptotic behavior of vxc is
operative only at the slab-vacuum interface but has little effect
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at the interface of heterostructures because, again, there is no
asymptotic region.

Indirect evidence supporting non-negligible �vs.cell
Coul may be

found in existing GWA results. As Table II shows, except for
ZnO, all �vs.cell

Coul contribute positively to �IP. Therefore, by
neglecting this term GWA shall systematically underestimate
the semiconductor IPs. Indeed, it has been consistently found
[7,27,28] that semiconductor IPs calculated by GWA starting
from GGA are systematically too low. Nevertheless, since the
same GWA procedure also underestimates the band gaps, it is
envisioned that both problems are due to the same origin of
insufficient quasiparticle corrections.

If �vs.cell
Coul is indeed universally negligible, then by merely

improving GWA it will be possible to achieve accurate
band gaps and accurate IPs at the same time. To enhance
quasiparticle corrections, hybrid functionals have been used
to replace the GGA starting point [27,28]. As they seem to
overcorrect the problems, the fraction of the Fock exchange
is changed to an adjustable parameter [28]. Alternatively, the
vertex function from certain cross diagrams is included to scale
down the corrections [27]. Also, quasiparticle self-consistency
[33] with the screened interaction of GGA [28] is also
attempted. It is found, however, that when the IPs seem to agree
with experiment, the band gaps are unevenly overestimated
[27]. On the other hand, when the band gaps seem to agree with
experiment, half of the IPs are overestimated [28]. Although
in both cases it is claimed that further vertex corrections would
reconcile the conflicts, it is not clear how the extra corrections
would affect only either the IPs or the band gaps while leaving
the other set unchanged.

IV. SUMMARY

This work has shown that it is indeed possible to stay within
the DFT-Kohn-Sham realm while calculating semiconductor
IPs to far better accuracy than LDA/GGA by using simple,

local potentials. This achievement is very inspiring since it has
greatly reduced the challenge of large-scale IP calculations for
very complex systems containing, for example, hundreds of
atoms. Moreover, the improvement of the excitation energy is
actually not limited to only the VBM but is also transferred
to neighboring k points in the Brillouin zone. This is because
the dispersions of the DFT bands are often quite accurate.
Therefore, following the downshift of the VBM, a bunch of
valence bands near the Fermi level are also pushed closer to
their true excitation energies. Consequently, we expect that
the present work shall be very useful for a large range of
applications.

In addition to the above, we have also performed a
systematic study of the long-range effects of the vxc. Although
a similar topic on finite systems has been under extensive
discussion for at least two decades, for solid surfaces much less
has been done. Theoretically, the asymptotic behavior of the
total vxc has not been made clear. Our work has warned that the
effects of the long-range part of vxc on the excitation energies
of solids cannot simply be ignored, although the strength is
not as strong as for atoms and molecules because the wave
functions are less exposed to the vacuum region.

The closeness of BJ06 to the exact OEP for atoms has been
well established and is likely inherited in solid environment.
Therefore, the performance of BJ06 for semiconductor IPs
revealed in this work will reflect well that of the exact OEP. So
far, construction and applications of the OEP for solids have
not become common. The success of the present work will
invite more studies in this direction.
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