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Resolving the interplay between magnetic interactions and structural properties in strongly correlated materials
through a quantitatively accurate approach has been a major challenge in condensed-matter physics. Here
we apply highly accurate first-principles quantum Monte Carlo (QMC) techniques to obtain structural and
magnetic properties of the iron selenide (FeSe) superconductor under pressure. Where comparable, the computed
properties are very close to the experimental values. Of potential ordered magnetic configurations, collinear
spin configurations are the most energetically favorable over the explored pressure range. They become nearly
degenerate in energy with bicollinear spin orderings at around 7 GPa, when the experimental critical temperature
Tc is the highest. On the other hand, ferromagnetic, checkerboard, and staggered dimer configurations become
relatively higher in energy as the pressure increases. The behavior under pressure is explained by an analysis of
the local charge compressibility and the orbital occupation as described by the QMC many-body wave function,
which reveals how spin, charge, and orbital degrees of freedom are strongly coupled in this compound. This
remarkable pressure evolution suggests that stripelike magnetic fluctuations may be responsible for the enhanced
Tc in FeSe and that higher Tc is associated with nearness to a crossover between collinear and bicollinear ordering.
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I. INTRODUCTION

The quest for a microscopic theory of unconventional
or high-temperature superconductivity is a major challenge
in condensed-matter physics. The discovery of iron-based
superconductors in 2006 [1] was an important contribution
to the field since it added a second class of high-temperature
unconventional superconductors to the experimental roster,
along with the cuprate superconductors. Despite their different
electronic structures, their phase diagrams have striking simi-
larities [2,3], particularly the proximity of the superconducting
phase with an antiferromagnetic state. This behavior, along
with other considerations [4–8], makes it likely that spins and
magnetism are important in determining the superconducting
state.

FeSe is a particularly interesting example of the iron-based
superconductors for several reasons. Its critical temperature
is strongly dependent on pressure [8–10], reaching 37 K at
7 GPa. At ambient conditions, FeSe has a simple P 4/nmm

crystal structure with two inequivilent Fe and Se positions
per unit cell. It undergoes a distortion from tetragonal to
orthorhombic symmetry when cooled below 91 K, and
becomes superconducting below 8 K at ambient pressure.
An intriguing peculiarity of FeSe is that, at variance with
most of the iron-based superconductors, it does not show
any long-range magnetic order at ambient pressure [11]. In
spite of this, very strong antiferromagnetic spin fluctuations
have been revealed by neutron scattering experiments (see, for
example, Ref. [12]) in the proximity of the superconducting
phase. Their role in driving the nematic transition and
their connection to superconductivity have been the subject
of intense debate. All these aspects make it attractive for
computational techniques to correlate microscopic electronic
structure with the superconductivity, and it is therefore one
of the most studied iron-based superconductors. However, the

precise calculation of the properties of this material remains
challenging from first-principles methods such as density
functional theory (DFT) due to strong electron correlation.

For example, the Perdew-Burke-Ernzerhof (PBE) band
structure is in poor agreement with experiments which report
a considerably narrower bandwidth [13,14]. Furthermore, the
FeSe lattice constants display an average error of ∼0.1 Å in-
dependently of the exchange correlation functional employed
(see, for instance, Ref. [15] and Table I). Despite useful work
using dynamical mean-field theory [16–27] and GW [28–30]
methods, there is a need for high-quality calculations that can
better describe the electronic and crystal structures of these
materials.

In this paper, we describe the results of first-principles
quantum Monte Carlo simulations of the magnetic behavior
of FeSe under pressure. The main method used in this
paper, fixed-node diffusion Monte Carlo (FN-DMC), has
recently been shown to offer very accurate results on a
number of challenging materials, including VO2 [31], cuprates
[32,33], and other transition-metal oxides, as well as rare-earth
elements such as cerium [34]. Furthermore, a recent work
[35], based on quantum Monte Carlo techniques, successfully
tackled the problem of pairing symmetry in FeSe itself.

We find that, compared to commonly used density func-
tional theory calculations, the FN-DMC calculations obtain
more accurate lattice constants, bulk moduli, and band disper-
sion. By increasing the pressure, the difference in energy of
ordered magnetic states with stripelike order goes to zero with
pressure, while checkerboardlike magnetic states increase in
energy. The convergence of the stripelike magnetic states is
correlated with the increase in Tc in this material under pres-
sure, which offers a tantalizing connection to spin fluctuations
as a potential origin. Such behavior may be a calculable design
principle for new unconventional superconducting materials.
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II. METHODS: FIXED-NODE DIFFUSION MONTE CARLO

Fixed-node diffusion Monte Carlo [36] is a stochastic
approach to solving the exact first-principles imaginary-time
Schrödinger equation. FN-DMC is a variational (upper bound
to the ground state) method with no adjustable parameters.
FN-DMC is a projector-based approach, which projects out
the ground-state wave function via repeated application of the
operator e−(Ĥ−E0)τ on some trial wave function |�T 〉:

|�DMC〉 = lim
τ→∞ e−(Ĥ−E0)τ |�T 〉

= lim
τ→∞

∑
i

e−(Ei−E0)τ |�i〉〈�i |�T 〉

= |�0〉〈�0|�T 〉.
With no further approximation, this method is exact; however,
it suffers from the well-known fermion sign problem. This is
circumvented in FN-DMC with the fixed-node approximation
[37,38], which constrains the projected wave function to have
the same nodes as the starting trial wave function. If the
nodal structure of the trial wave function coincides with the
ground-state one, the method remains exact. In practice, for
accurate trial wave functions, this approximation introduces
small errors that we will estimate.

We used a single Slater-Jastrow trial-wave-function ansatz
as follows:

�(Rel) = Det[φ↑
i (r↑

j )]Det[φ↓
i (r↓

j )] exp

⎡
⎣∑

α,i,j

u(riα,rjα,rij )

⎤
⎦,

(1)

where Rel = {r1,r2,r3, . . .}, i,j refer to electrons, α refers to
nuclei, and ↑/↓ indicate spin up/down, respectively. Since
the FN-DMC result is determined by the nodes of the
determinants in Eq. (1), the orbitals {φ↑/↓

i } determine the
degree of the fixed-node approximation. To test the effect of
these orbitals, we use two approaches. The first optimizes a
parameter in density functional theory used to generate the
orbitals and is the less computationally demanding of the
two. The parameter to be optimized in the Slater determinant
is the amount of exact exchange w, for which we find the
optimal value near w = 0.25. This corresponds to the PBE0
functional, and this optimum is often the case for similar
calculations on transition-metal systems [39]. For consistency,
we used w = 0.25 for all our calculations, and we denote this
method by DMC(PBE0). The details of the optimization of the
functional and of the parameter w are reported in the Appendix.
The second QMC approach used in this work performs a
complete variational optimization of the determinant orbitals
within a relatively small basis set and is more computationally
demanding but, in principle, more accurate. These calculations
are denoted throughout the paper with the label QMC(opt),
where QMC will refer to variational Monte Carlo (VMC) or
DMC depending on the calculation. Further information on the
orbital optimization procedure is provided in the Supplemental
Material [40]. In our tests for FeSe, while the DMC(opt)
technique did obtain lower energies as expected, the energy

differences were consistent between the two techniques, so
most data are obtained from DMC(PBE0).

All DMC(PBE0) calculations were done within the open-
source package QWALK [41], with orbitals generated by DFT
calculations performed with the DFT code CRYSTAL [42]. For
the DMC(opt) method, we used the package TURBORVB [43].

Our only approximation to the Hamiltonian is a Dirac-Fock
pseudopotential designed specifically for quantum Monte
Carlo calculations [44,45]. The energy difference between
the collinear and checkerboard magnetic state is consistent
between an all-electron and pseudopotential PBE0 calculation
within 0.01 eV. The convergence of the most important
parameters in both our QMC methods is shown in the
Appendix. For the FeSe crystal structure, the anion height
above the iron planes is the only internal parameter of the
compound in the tetragonal P 4/nmm phase. This parameter
represents a crucial ingredient to determine the magnetic
behavior of FeSe, but its evaluation by first-principles methods
is a challenging task, as detailed in Sec. III B. The optimization
of the Se height is carried out with two different procedures.
For the DMC(PBE0) method, the relaxed value is obtained
by fitting a total energy curve with a cubic function. In
VMC(opt), the optimized Se height value is obtained by a
direct minimization of the ionic forces within the variational
Monte Carlo framework [46]. By including the cell parameters
in the minimization procedure, we are able to fully relax the
crystal structure of FeSe at different magnetic orderings. We
consider a minimization converged when both the forces and
their error bars are lower than 10−3 Ha/a.u. per atom.

We found that effects due to the finite size of the simulation
cell, or finite-size errors (FSEs), constitute the major source
of systematic error for both DMC(PBE0) and DMC(opt).
We apply several techniques in order to reduce FSEs. All
DMC(PBE0) calculations are twist averaged [47] over eight
twist conditions on the 8-f.u. FeSe supercell; DMC(opt) results
are instead obtained with a larger 16-f.u. supercell averaging
over periodic and antiperiodic boundary conditions. Further
corrections are then applied to cure one-body and two-body
FSEs. In both cases, we managed to reduce the impact of FSEs
below the desired accuracy on energy calculations. A detailed
explanation of the procedures used to control FSEs is given in
the Appendix.

III. RESULTS

A. Trial wave functions and ground state

For the wave function in Eq. (1), there are many local min-
ima both in preparing the Kohn-Sham orbitals using density
functional theory and in optimizing the orbitals directly. These
minima correspond to different magnetic orderings of the Fe
spins. The most relevant ones are presented in Fig. 1. We also
included a type of paramagnetic state in which the up and
down spin orbitals are constrained to be equal, but we found
that state to be more than 0.5 eV/Fe higher in energy than any
magnetically ordered wave function. The ground state thus
seems to require large local moments on the Fe atoms.

While it is known experimentally that FeSe does not
have long-range ordering [11], the calculations here enforce
periodic boundary conditions on a relatively small cell and thus
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FIG. 1. Spin densities of magnetic orderings at ambient pressure: (a) collinear, (b) collinear, one flip, (c) bicollinear, and (d) checkerboard.
Four unit cells of a single iron layer are shown, divided by black lines. “Collinear, one flip” refers to flipping the spin of one iron per unit cell in
the collinear configuration. Since four unit cells are shown above, there are four “flipped” iron moments shown in this plot. The larger red Se
atoms lie above and below the plane and show significantly smaller spin density. Irons are smaller and blue and lie within a larger concentration
of spin. The two colors of the isosurfaces denote density of up and down.

cannot describe long-range fluctuations of the magnetic order
that might be the cause of loss of long-range order. For the
experimental crystal structure, the collinear magnetic ordering
is the lowest in energy in our calculations and is observed to
be the dominant short-range order experimentally [12]. The
energetic cost of introducing a “defect” into the magnetic
order is quite small; we will discuss that aspect later. Both the
DMC(opt) and DMC(PBE0) approaches result in a rather large
magnetic moment on the Fe atom. For the collinear magnetic
ordering we obtain a value of ∼3.4μB for DMC(PBE0) and
a slightly lower ∼3.1μB for the fully optimized calculations.
In both cases the magnetic moment is close to the atomic
limit.

Between the two DMC approaches, the energy difference
between different magnetic orderings is in agreement within
stochastic errors, so there is good reason to believe that the
cheaper DMC(PBE0) technique is accurate. In comparison to
PBE calculations, which are the most common in the literature,
the relative energies according DMC are quite different,
including the lowest-energy magnetic phase, which is the
“staggered dimer” configuration in DFT [50–52] but turns
out to be the collinear configuration in DMC. It appears that
hybrid DFT calculations in the PBE0 approximation obtain
reasonably good magnetic energy differences in comparison
to DMC; since this functional also produced the orbitals that
gave the lowest FN-DMC energy, it may be capturing some of
the correct physics for the magnetic properties of this material.

However, the PBE0 functional predicts an insulating gap [53]
for FeSe for all magnetic orderings, in contrast to DMC and
experiment.

B. Crystal structure

Obtaining the correct crystal structure for FeSe is a major
challenge since the layers interact through nonbonded interac-
tions. The c lattice parameter in particular is affected by van
der Waals interactions, and electron correlation plays a key role
in determining the in-plane physics. The behavior of FeSe’s
superconducting properties under pressure gives another clue
to the importance of structural variations in its description. A
first-principles prediction of the lattice parameters is thus an
important test of the description of this physics. Since the DMC
calculations are computationally costly, we limited our study
to the tetragonal phase of FeSe. Because the low-temperature
orthorhombic distortion is small [10], one might expect that
its effect on the overall electronic structure is also small. We
leave such considerations to another paper.

The equilibrium lattice parameters of FeSe are presented in
Table I. As mentioned in the previous sections, these results
are obtained with a direct optimization of FeSe cell parameters
with the VMC(opt) method. The in-plane FeSe properties
should be well captured by QMC since the a lattice parameter
is in close agreement with experimental results (within ∼4σ )
independently of the chosen magnetic configuration. Both
collinear and paramagnetic wave functions show also a

TABLE I. FeSe optimal structural parameters with different computational methods. DFT calculations have been performed with the
software package QUANTUM ESPRESSO [54] using a 10 × 10 × 10 k-point mesh, an energy cutoff of 75 Ry, and norm-conserving pseudopotentials
for both Fe and Se. The variational Monte Carlo VMC(opt) results are obtained at only the � point with the 16-f.u. FeSe supercell containing
32 atoms.

Source Magnetic ordering a c FeFe zSe

DFT-PBE paramagnetic 3.6802 6.1663 2.6023 1.3862
DFT-PBE collinear 3.8007 6.2363 2.6966 1.4568
VMC paramagnetic 3.71(1) 5.49(1) 2.62(1) 1.437(5)
VMC collinear 3.72(1) 5.68(1) 2.63(1) 1.56(1)
Experiment [55], T 7 K 3.7646(1) 5.479 20(9) 1.4622
Experiment [48], T 8 K 3.7685(1) 5.5194(9) 2.6647(3) 1.5879
Experiment [10], T 300 K 3.7724(1) 5.5217(1) 1.4759
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FIG. 2. Selection of experimental measurements from Margadonna et al. [10], Kumar et al. [48], and Millican et al. [49] of the selenium
height zSe as a function of pressure, along with corresponding QMC (left) and DFT (right) predictions. QMC(opt) refers to calculations done
with a fully optimized Slater determinant, which was VMC for the paramagnetic state (open circles) and DMC for the collinear state (green
diamonds). The fully optimized QMC calculation is done at only the � point but at a 16-f.u. supercell. The DMC(PBE0) points are at 8 f.u.
but are twist averaged over eight twist values and therefore should have comparable finite-size errors. Further discussion of this comparison is
available in the Appendix. Accordingly, the ambient pressure DMC(PBE0) calculation agrees nearly within error bars with the fully optimized
DMC(opt) calculation.

general improvement with respect to DFT concerning the
c lattice parameter. This provides evidence of the accuracy
in treating van der Waals interactions with the QMC wave
function, mainly achieved with the Jastrow factor [56,57]. The
evaluation of the interplane c distance might be affected by the
dispersion along the z axis, which we did not take into account
in our supercell, which always contains only one Fe plane.
We check this dependency by performing a test structural
relaxation on a FeSe supercell with 16 Fe atoms in two planes
and 8 Fe atoms with only one plane considered in the supercell.
We find that the difference between the c parameters obtained
in the two configurations is negligible.

The final internal parameter zSe represents the height of the
selenium anion above the plane, and it has been experimentally
demonstrated [58] to be of key importance in determining
superconducting properties of iron-based superconductors in
general. We collect all our calculations of zSe, as well as some
experimental results, in Fig. 2. We find that both the magnetic
state and the accuracy of the calculation have an important
effect on the prediction of this parameter. At approximately
the same level of finite-size error, our two DMC calculations
agree very closely, determining that fixed-node and basis-set
error is likely to be unimportant. However, we found that zSe

is surprisingly sensitive to finite-size effects, both in the in-
plane and out-of-plane directions. Given the supercells that we
studied, we found a variation in zSe of approximately 0.05 Å,
depending on the twisted boundary conditions and supercell.
With experimental lattice parameters, our best estimate for zSe

is thus 1.54(5) Å, which is quite close to the experimental

range. As we shall see later, the properties of FeSe depend
sensitively on zSe, so to account for this uncertainty, we will
consider properties as a function of selenium height as well as
pressure.

By fitting an equation of state previously used by Anton
and Schmidt [59] to our DMC(PBE0) energies as a function
of volume, we extract the bulk modulus and the pressure
dependence on volume P (V ), shown in Fig 3. The collection of
ambient-pressure bulk-moduli results is reported in the inset of
Fig. 3 (in units of GPa). For all these calculations, experimental
lattice constants [48] have been used. P (V ) and the bulk
modulus show a strong dependence on the magnetic order.

While the experiments report scattered values of P (V ),
they are more consistent in the bulk modulus, so we base
our comparisons of the theoretical calculations on the latter
quantity. The DMC(PBE0) calculation demonstrates excellent
agreement with all three experiments if the collinear magnetic
ordering is imposed, but it is less close to experiment for
the other magnetic orderings. Our PBE0 calculations are also
in somewhat good agreement with DMC(PBE0), except a
notable disagreement for the ferromagnetic ordering. On the
other hand, PBE bulk moduli are significantly lower than both
experiment and the other calculations, generally predicting
bulk moduli between 7 and 10 GPa, depending only slightly
on the magnetic ordering. Since the collinear ordering is
also the lowest energy for DMC(PBE0), for the remainder
of this paper, we use the collinear equation of state to estimate
the pressures that correspond to the volumes used in the
calculations.

035108-4



COMPETING COLLINEAR MAGNETIC STRUCTURES IN . . . PHYSICAL REVIEW B 94, 035108 (2016)

64 66 68 70 72 74 76 78

Cell Volume (Å3)
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FIG. 3. Pressure as a function of volume, computed through an
equation-of-state fit to DMC(PBE0) data and from experiments by
Margadonna et al. [10], Kumar et al. [48], and Millican et al. [49].
All points along the solid line come from the equation of state, and
markers are added purely to distinguish the magnetic state. For the
volumes considered here, regardless of spin ordering, P (V ) falls
within the experimental spread. The inset displays the corresponding
bulk modulus in units of GPa for PBE0, DMC(PBE0), and the
experiments considered. The bulk modulus is strongly coupled to the
magnetic state, and for the collinear state, DMC(PBE0) demonstrates
excellent agreement with all the experiments considered. Bulk
moduli computed from PBE are between 7 and 9 GPa and are
much more insensitive to the magnetic ordering (see Supplemental
Material for tabulated values). Lattice constants used were those of
Kumar et al. [48].

C. Interaction of structure and magnetism

Figure 4 shows the interaction between pressure, magnetic
ordering, and selenium height. As has been found before
[60], the magnetic energies depend strongly on the selenium
height, and this dependence changes with pressure. For a
given pressure, there are two points on the selenium height
curves that are of substantial interest. The first is the minimum
energy (solid vertical line), which, as can be seen in Fig. 2,
does not change very much with pressure (or volume) in our
calculations. The second is the crossing point (dashed vertical
line) between the collinear and bicollinear magnetic orderings,
which are competing low-energy states. This crossing point
depends on the pressure and approaches the minimum-energy
point at higher pressures (lower volumes), as shown on the
rightmost plot in Fig. 4.

Another interesting feature visible in Fig. 4 is that the
checkerboard magnetic ordering intersects the bicollinear and
collinear magnetic orders at zero pressure (78.4 Å3) and large
zSe, but there is a shift of the checkerboard curve to higher
energies once pressure is applied. The underlying physics of
this effect will be discussed in Sec. III E.

Figure 5 shows a cut through the data in Fig. 4 along
the minimum energy zSe [Fig. 5(a)] and the experimentally
determined zSe [Fig. 5(b)]. Along this cut we evaluated many
magnetic orderings to establish a set of trends and checked
finite-size errors by considering an 8-f.u. cell and a 16-f.u.
cell with twist averaging. Further information on finite-size
corrections are available in the Appendix. Under pressure, the
checkerboard, ferromagnetic, and staggered dimer magnetic
orderings rise in energy compared to the lowest-energy
collinear ordering. On the other hand, the stripelike orderings,
including the bicollinear and collinear orderings with defects,
converge with applied pressure.

From Fig. 5 (bottom panels) the failure of PBE to capture
this trend in FeSe energetics under pressure is apparent. Even
with lattice constants fixed to experimental ones, the PBE
energies of magnetically ordered states are quite different from
the FN-DMC energies. In agreement with recent work, PBE
does predict the staggered dimer as the ground state. Despite
the failure of PBE0 in describing the conducting behavior of
FeSe, the magnetic energies are reasonably close to the DMC
results.

Given the data available to us, we can determine some
properties that are robust to the finite-size errors and uncer-
tainty in zSe in our calculations. The first is that the relative
energetics of magnetic orders changes strongly as a function
zSe and pressure. In FN-DMC and PBE0, which would a
priori be expected to be more accurate, the collinear and
bicollinear orders become closer in energy with increasing
pressure for reasonable values of zSe. According to FN-DMC,
this effect is robust against zSe variations, depending mainly
on the change in the relative magnetic energies as a function of
pressure.

The energetic cost of reversing a single spin in the
collinear ordered state, labeled “collinear, flip 1” in Fig. 5(a),
follows the bicollinear energy quite closely. Because this
cost decreases with pressure, we can surmise that magnetic
fluctuations become more energetically available as pressure is
increased.

D. Optical excitations and magnetism

The direct optical gap was calculated by promoting the
highest-energy orbital in the Slater determinant part of the trial
wave function to the next excited-state orbital. This constructs
a wave-function ansatz for an electron-hole excitation. The
results are shown in Fig. 6. The resulting DMC(PBE0) energy
relative to the DMC(PBE0) ground state is our estimation of
the gap. Interestingly, the DMC(PBE0) gap is within statistical
uncertainties of zero despite the fact PBE0 estimates a rather
large gap, regardless of magnetic ordering. Experimentally
[61], the gap is no more than 80 meV at any k point, which is
consistent with our results for the bicollinear and collinear
magnetic ordering. Only the checkerboard state is gapped
according to DMC(PBE0).
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FIG. 4. DMC(PBE0) energies as a function of volume and selenium height zSe for three of the magnetic orderings. The solid vertical line
represents the minimum of the collinear magnetic ordering, while the dashed vertical line represents the predicted crossing of the bicollinear
and collinear energies. These two points converge as the pressure is increased, as shown on the far right.

The charge degrees of freedom are therefore coupled to the
spin degrees of freedom. According to these calculations, in
FeSe there is a coupling between the mobility of charge and the
spin ordering. In the remainder of the paper, we will correlate
these properties with those of the ground state for different
spin orderings.

E. Interaction of charge and orbitals with magnetism

From the energetic properties, we note two classes of
magnetic order in FeSe: ones which are stripelike, and ones
which are not stripelike. The stripelike orderings converge in
energy with pressure, while the checkerboard and staggered
dimer pattern increase in energy relative to those orderings.
Similarly, the gap calculated in DMC(PBE0) distinguishes
between different orderings, with metallic character in the
stripelike ordering. In this section, we will make the following
observations:

(i) Compared to majority electrons, minority-spin electrons
are more mobile and are more affected by the spin ordering.

(ii) The one-particle orbitals are occupied differently
depending on the spin ordering.

These effects combine to give a cartoon picture of the
physics that explains the difference in pressure behavior
between the magnetic orders.

(a) Character of minority- and majority-spin electrons.
To characterize the differences between the spin channels,
we evaluate the local charge compressibility of the Fe sites:
〈(ni,σ − 〈ni,σ 〉)2〉, where niσ is the number of electrons within
a Voronoi polyhedron around the ith Fe site of spin σ . Larger
values of the compressibility indicate electrons are more likely

to hop between atoms. For a Fe atom with net ↑ spin, the ↑
electrons are labeled majority electrons and the ↓ are labeled
minority electrons and vice versa for Fe atoms with net ↓ spin.

Figure 7(a) presents these results. For all magnetic orders,
the majority spin is very similar and shows a low local charge
compressibility, while the minority spin is different between
different magnetic orders, and its local charge compressibility
is larger than the majority channel by around 0.3 n2

e (electron
number squared). This suggests the minority electrons are
more mobile; however, their ability to hop is affected by the
local magnetic order. For the stripelike orders, the minority
electrons are least constrained, and their minority-channel
compressibility is about 0.1n2

e more than the checkerboard and
dimer state. This measure of mobility seems to be correlated
with the optical gap calculations, which predict that the
checkerboard pattern induces a gap, in contrast to the other
magnetic orders.

(b) One-particle orbitals. In Fig. 7(d), we present the
orbital occupation of the d orbitals in different spin orderings.
For stripelike orderings, the xy, xz, and yz orbitals are
occupied, in agreement with angle-resolved photoemission
spectroscopy (ARPES) results [13]. On the other hand, the
3z2 − r2 orbital is occupied for the checkerboard ordering.
This gives a simple explanation for the differences in the local
charge compressibility: The checkerboard pattern causes the
minority spin to occupy the out-of-plane orbital, which would
rise to an insulating state if it were the ground state. This idea
can be confirmed by checking the off-diagonal one-particle
density matrix elements between Fe atoms with parallel and
antiparallel net spins in Fig. 7(e). The atomic orbitals are more
hybridized between parallel spin Fe atoms for the stripelike
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FIG. 5. For each calculation (QMC, PBE, and PBE0), total energies for the 8-f.u. cell for various magnetic orderings, as a function of
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referenced to the collinear energy at around 77 Å3. The DFT calculations are referenced to the zSe minimum energy for that type of calculation.
The DMC paramagnetic energies are ∼0.85 eV/f.u. higher than the reference collinear energy.

orders. The charge degrees of freedom, which are mainly the
minority spins from Fe, interact strongly with the magnetic
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FIG. 6. Gap as a function of twisted boundary conditions cal-
culated within DMC(PBE0). For the stripelike magnetic states, the
gap is zero within statistical error. The unit cell is a 2 × 2 supercell,
expanded in the x-y plane, shown as one of the four outlined boxes
in each of the spin densities of Fig. 1.

ordering. This effect also interacts with the net magnetic
moment and on-site correlations [Figs. 7(b) and 7(c)].

F. A cartoon picture of FeSe

The importance of Hund’s coupling in tuning correlation
effects of multiband materials has been extensively demon-
strated by means of dynamical mean-field theory (DMFT)
calculations [22–24]. These results have highlighted its role
in determining the bad metallic behavior in iron-based super-
conductors [25,26], which are therefore sometimes referred
as Hund’s metals. DMFT studies of BaFe2As2 have predicted
that kinetic energy should be lower in the paramagnetic state,
although the total energy is lower in the spin-polarized states
due to Hund’s coupling [27]. Correspondingly, we find that
comparing the paramagnetic state and collinear state, the
kinetic energy is 21.5(8) eV/f.u. larger in the collinear state,
while the total energy is 1.75 eV/f.u. lower for the collinear
state. Also due to Hund’s coupling, DMFT studies have
predicted that the high-spin state should be the only highly
probable state [17]. Correspondingly, we find that the iron
magnetic moment fluctuates around 3.4μB , with a standard
deviation of 1.5μB .

A simple picture based on Hund’s coupling can explain
the energetics and other properties presented in part D and E
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Cell Volume (Å3)
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FIG. 7. (a) Charge variance, in units of number of electrons squared for different magnetic orderings in the majority- and minority-spin
channels, as a function of cell volume, illustrating that the minority-spin channel is more mobile and additionally that the checkerboard
ordering’s electrons are more constrained to a given iron site. (b) Magnetic moments inside each iron’s Voronoi polyhedron. (c) Magnitude of
on-site correlations, measured by |Cov(n↑,n↓)|/[Var(n↑)Var(n↓)]1/2. (d) Single-particle orbital occupations of the iron d states, measured by
the on-diagonal terms of the 1-RDM. Note the checkerboard’s charge density points mostly out of the iron plane, while the other orderings
point mostly within the plane. (e) Hybridization of different orderings, as measured by an average of the off-diagonal elements of the 1-RDM,
broken down by interactions between antiparallel (Antipar.) aligned iron atoms and parallel (Par.) ones.

of the results section. Hund’s rules dictate that for an atom
with a partially filled shell, we expect the electrons to have
total spin S that maximizes the multiplicity 2S + 1. This is
consistent with our computed magnetic moment, which finds
that the majority channel is mostly filled, bringing the moment
to around 3.1μB–3.4μB . The spin occupation of the d states
in a reference iron atom is diagrammatically shown in the top
row of Fig. 8. Also due to Hund’s coupling, the electron that is
most likely to hop to nearby iron atoms would be the electron
in the minority channel to keep a large S. As illustrated in
Fig. 8, this minority channel is already filled for neighboring
irons that are antiparallel, so only majority-spin electrons can
hop to those atoms. Conversely, minority electrons can hop
to neighboring parallel irons since that spin channel is not
filled. Thus, iron atoms with parallel spins allow the minority
electrons to more easily hop about the aligned iron sites and
therefore decrease the kinetic energy. As seen in Fig. 7(d), the
magnetic ordering affects the occupation of the d states and
hence affects the labeling of the states in Fig. 8, but the basic
idea is unchanged.

While the minority spins require at least some parallel iron
magnetic moments, the large localized magnetic moments
also interact antiferromagnetically, leading to a competition
between these two mechanisms. As a compromise, antiferro-

magnetic configurations with ferromagnetic chains emerge as
the lowest-energy configurations.

This picture unifies many of the observations from our
calculations. The checkerboard state is distinguished from the
other states by its lack of parallel nearest neighbors, similar
to how the ferromagnetic state is distinguished by its lack
of antiparallel neighbors. These two extremes are higher in
energy and are disfavored as pressure increases the importance
of Fe-Fe interactions. Because the checkerboard has no parallel
nearest neighbor, its iron d electrons are more trapped on a
single site, leading to a low charge variance and states that
primarily occupy the dz2−r2 orbital. All stripelike states have
a combination of antiparallel and parallel nearest neighbors
and allow the electrons to delocalize along the irons chains,
leading to higher correlations, higher variance, and more
Fe-Fe hybridization. Although the staggered dimer ordering is
energetically competitive at low pressures, its energy, charge
variance, and magnetic moment are similar to those of the
checkerboard, and at high pressures, it becomes energetically
unfavorable just as the checkerboard ordering does. Although
the staggered dimer does allow some delocalization between
the dimer parallel spins, the itinerant spins are still trapped
on the dimers, and therefore this state’s energetics follow the
checkerboard behavior at higher pressures.
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Reference iron:

Parallel Neighbor:

Antiparallel Neighbor:

FIG. 8. Diagrams depicting the occupations of the d orbitals of
a reference iron, one of its neighbors with parallel net magnetic
moment, and another neighbor with antiparallel magnetic moment.
The minority channel is spin down for the top two and is spin up
for the last one. The minority electron on the reference atom is
most likely to hop to a neighbor, for example, the grayed-out down
electron on dz2−r2 . It may easily hop to its parallel neighbor, which
may fill its dx2−y2 orbital, as suggested by the gray box. It may
not hop to any of the orbitals of the antiparallel neighbor since the
down-spin channel is filled. Any hopping from the reference iron to
its antiparallel neighbor must occur in the spin-up channel, which
consequently violates Hund’s rule for the reference iron.

This competition of interactions sets up a fine balance
between many qualitatively different magnetic configurations.
Parameters in the structure can tilt this balance one way or
another, leading to a strong magnetostructural coupling. This is
evident from the strong magnetic dependence of the bulk mod-
ulus in Fig. 3, as well as in Fig. 4, where zSe can exchange the
ground-state configuration between at least two magnetic con-
figurations. This logic can be straightforwardly applied to iron
telluride (FeTe), the nonsuperconducting parent compound of
FeSe. This material has ground-state magnetic ordering at zTe

of around 1.75 Å, which implies that zTe should be decreased
to force a crossover. By this logic, FeTe would superconduct
if it were put in tensile stress, as has been observed [62].

IV. CONCLUSION

In summary, we have shown that QMC calculations can ob-
tain an accurate description of the electronic structure of FeSe.
The lattice constants, bulk modulus, and bandwidth are all very
close to the experimental values and are significantly improved
over DFT calculations. Our results are substantiated by the
agreement between different and complementary QMC tech-
niques employed. We showed that they yield sufficiently small
statistical and systematic errors to study the relative energetics
of different magnetic orders, which behave differently from

those predicted by DFT. The largest error in the calculations
appears to be due to finite-size supercells, which we checked to
be small enough that the trends presented here are preserved.

As an outcome of the high-accuracy calculations, we have
determined that collinear and bicollinear motifs become close
in energy as pressure increases, while the checkerboard motif
increases in energy with pressure. This behavior is correlated
with delocalization of the minority electrons on the high-spin
Fe atom. Collinear and bicollinear motifs allow for more
delocalization, which increases in importance as the pressure is
increased. This delocalization effect is strong enough to change
the occupation of atomic orbitals in FeSe depending on the
magnetic ordering, so it is larger than the crystal-field splitting
of the orbitals. The spontaneous breaking of C4 symmetry
(or, more properly, S4 symmetry) [35,63] is a result of this
physics. Magnetic configurations which contain spin chains
are thus favored over the whole considered range of pressure.

From the above results, we can see that the magnetic
degrees of freedom are strongly coupled with the charge and
orbital degrees of freedom. In a similar way, since the relative
magnetic energies are dependent on the hopping of minority
electrons from site to site, they are also strongly dependent on
the structure. There is thus both spin-charge and spin-structural
coupling in this system. As one of us showed recently
[32,64], the cuprates also show strong magnetostructural and
magnetocharge coupling. One might speculate that both of
these effects are necessary for high Tc, and it may prove fruitful
to look for similar effects in proposed new superconductors.
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APPENDIX: CONVERGENCE AND VALIDATION

In this appendix we present an extensive study of the
convergence of the main parameters involved in our QMC
calculations. Within DMC(PBE0), the only parameter to be
optimized in the Slater determinant is the amount of exact
exchange w. The optimization of FN-DMC energy as a
function of w is presented in Fig. 9. As already mentioned
in the main text, we notice that the best FN-DMC is
generally obtained with ∼25% of exact exchange for all
magnetic configurations; this corresponds to the PBE0 density
functional. The convergence of the FN-DMC energy with
other parameters of QMC methods is reported in Fig. 10.
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FIG. 11. Finite-size extrapolation near zSe = 1.42 of the energy
differences between collinear and checkerboard magnetic order-
ing for DMC(opt) (thick outline) an DMC(PBE0) (thin outline).
DMC(opt) data points are averaged over periodic and fully an-
tiperiodic boundary conditions, while DMC(PBE0) is averaged over
eight twists. The extrapolations are in agreement within statistical
error.

For the DMC(PBE0) method, in Fig. 10(b), we present energy
convergence as a function of Fe and Se basis-set exponents
by showing the behavior of the exponent of our most diffuse
Gaussian basis exponent as it gets more diffuse. Benchmark
calculations of DMC(PBE0) against the time step used in the
projection are presented in Fig. 10(d). We employed a time step
of 0.01 for all DMC(PBE0) calculations. On the other hand,
the lattice-regularized FN-DMC algorithm employed for the
DMC(opt) method (see Supplimentary Materials) suffers from
the lattice step error in Laplacian discretization. Convergence
with the lattice step is shown for the collinear configuration in
Fig. 10(f). We used a lattice step of 0.125 a.u. for all DMC(opt)
calculations.

We now turn our attention to finite-size errors (FSEs), which
represent the main source of error in our QMC calculations.
We performed several DFT test calculations to determine the
impact of one-body FSEs. For both 8-f.u. and 16-f.u. supercells
[used for DMC(PBE0) and DMC(opt) methods, respectively]
a 4 × 4 × 4 k-point grid is enough to obtain results converged
within 1 meV independently from the density functional used,
as shown in Fig. 10(a). The same k-point grid in the PBE0
wave function is also sufficient to converge FN-DMC energies
within the same threshold. For the DMC(PBE0) calculations,
we twist average over a set of eight twist conditions [47] for
unit cells ranging from 4 to 16 f.u., expanding the supercell
in the x-y plane and the z direction (adding an additional
layer). The resulting finite-size extrapolations are depicted in
Fig. 10(c). The finite-size extrapolation in the z direction is the
checkerboard line above the other checkerboard line. The true
infinite-size limit will likely lie in between these two extrapo-

lations. Although the finite-size effects are relevant, they do not
alter any conclusions of the main text. Going from low to high
pressure, the finite-size errors amplify the change in energy
differences between checkerboard and collinear. Extrapolating
with more than two points is prohibitively expensive for
the bicollinear state, and so how finite-size effects affect
the pressure dependence of the energy differences between
collinear and bicollinear is not clear, as the extrapolations are
within error bars. However, it is certainly clear that bicollinear
remains very close in energy to the collinear state, even in
the extrapolation, whereas the checkerboard’s energy certainly
rises well above the other states.

For DMC(opt), all calculations have been done with a
16-f.u. supercell. Structural optimization was performed with
only periodic boundary conditions. All other calculations
were instead averaged between periodic (PBC) and fully
antiperiodic (APBC) boundary conditions. Further finite-size
corrections to DMC(opt) energies are obtained by adding one-
body corrections estimated from fully converged DFT-local-
density-approximation calculations and two-body corrections
evaluated within the Kwee-Zhang-Krakauer approach [65,66].
Figure 10(e) reports the convergence of DMC(opt) energy in
the paramagnetic phase as a function of the system size after
applying the corrections.

We verified that DMC(PBE0) and DMC(opt) are in agree-
ment when the calculation is carried out with exactly the same
setup. For this purpose, we used a small 4-f.u. supercell in
the collinear configuration at the � point. We computed the
optimal Se height by fitting the total energy curve with both
methods, and we found 1.46(1) Å for the DMC(opt) method
and 1.40(5) Å for the DMC(PBE0) method. The two values lie
within one standard deviation of each other, and we consider
them to be in statistical agreement.

Finally, we check the impact of finite-size errors on the
energy differences between collinear and checkerboard order-
ings. For this purpose, we compared finite-size extrapolations
at a fixed zSe ≈ 1.42 with the typical setup employed for
production runs, i.e., 8 f.u. averaged over eight twists for
DMC(PBE0) and 16 f.u. averaged over periodic and fully
antiperiodic boundary conditions for DMC(opt). The results
are presented in Fig. 11. We found that the extrapolations as
well as the larger cell sizes we used were within statistical error.
This suggests that the fixed-node error of DMC(PBE0) when
compared to the best Jastrow-correlated single-determinant
wave functions is below statistical errors with respect to
magnetic energy differences. It is possible that this fixed node
error is still larger than our statistical errors when compared
to the exact energy differences; however, this would require
investigation beyond Jastrow-correlated single-determinant
trial wave functions, which due to computational complexity,
we leave for another study.
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