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Motivated by the recent experimental progress on the strong spin-orbit-coupled rare-earth triangular
antiferromagnet, we analyze the highly anisotropic spin model that describes the interaction between the
spin-orbit-entangled Kramers’ doublet local moments on the triangular lattice. We apply the Luttinger-Tisza
method, the classical Monte Carlo simulation, and the self-consistent spin wave theory to analyze the anisotropic
spin Hamiltonian. The classical phase diagram includes the 120◦ state and two distinct stripe-ordered phases.
The frustration is very strong and significantly suppresses the ordering temperature in the regimes close to the
phase boundary between two ordered phases. Going beyond the semiclassical analysis, we include the quantum
fluctuations of the spin moments within a self-consistent Dyson-Maleev spin-wave treatment. We find that the
strong quantum fluctuations melt the magnetic order in the frustrated regions. We explore the magnetic excitations
in the three different ordered phases as well as in strong magnetic fields. Our results provide a guidance for the
future theoretical study of the generic model and are broadly relevant for strong spin-orbit-coupled triangular
antiferromagnets such as YbMgGaO4, RCd3P3, RZn3P3, RCd3As3, RZn3As3, and R2O2CO3.
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I. INTRODUCTION

Since the discovery of topological insulator [1], spin-orbit
coupling (SOC) has become one of the central topics in
modern condensed matter physics. While topological insulator
is the band structure topological property of noninteracting
electrons, the interplay of strong spin-orbit coupling and strong
electron correlation is one of the central questions in the field
of strong correlation physics [2]. In recent years, there has
been intense interest and activities in the heavy-element-based
materials where both strong spin-orbit coupling and strong
electron correlations are present. The spin-orbit entanglement
in strongly correlated electron systems can give rise to
unprecedented and realistic models that may support novel
phases and phenomena.

Magnets with rare earth elements are natural physical
systems to search for strong correlation physics with strong
SOC. In the rare-earth magnets, the correlation is often
quite strong and the 4f electrons are very localized. The
atomic spin-orbit coupling entangles the spin and orbital
angular momenta and leads to spin-orbit-entangled local
moments. Recently, a Ytterbium-based rare-earth magnet,
YbMgGaO4, has been synthesized and characterized [3,4].
The magnetic ions, Yb3+, form a perfect triangular lattice.
The SOC and the crystal electric field together lead to a
Kramers’ doublet for the Yb3+ ion. This Kramers’ doublet
is described by an effective spin-1/2 local moment. The
thermodynamic and NMR measurements found that the
system remains disordered down to 60 mK [3]. More recently,
another rare-earth triangular antiferromagnet CeCd3P3 was
studied experimentally [5]. Although this material remains
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paramagnetic down to 0.48 K and this temperature is probably
not very low by the 4f electrons’ standard, as we show in
Table I, CeCd3P3, together with the rare-earth oxycarbonates
R2O2CO3, represents a new family of rare-earth triangular
antiferromagnets that need further investigation [5–8]. Like the
Yb3+ ion in YbMgGaO4, the Ce3+ ion in CeCd3P3 experiences
the same D3d crystal field and is also described by an effective
spin-1/2 Kramers doublet [5]. Partly motivated by these
experiments, in this paper we consider the generic spin model
that generally describes the spin-orbit-entangled Kramers’
doublets on the triangular lattice and study the magnetic
phase diagram and the magnetic excitation of this new
model.

Due to the spin-orbit-entangled nature of the Kramers’ dou-
blets, the interaction between the effective spin-1/2 moments
is anisotropic both in the effective spin space and in the position
space [2,10–16]. Therefore, the spin interaction depends on
the bond orientations. This is one of the key properties of
the strong spin-orbit-coupled magnets. The most generic spin
Hamiltonian allowed by the space group symmetry of the
rare-earth triangular system is given by [3]

H =
∑
〈ij〉

JzzS
z
i S

z
j + J±(S+

i S−
j + S−

i S+
j )

+ J±±(γijS
+
i S+

j + γ ∗
ij S

−
i S−

j )

− iJz±
2

[(γ ∗
ij S

+
i − γijS

−
i )Sz

j

+ Sz
i (γ ∗

ij S
+
j − γijS

−
j )], (1)

where S±
i = Sx

i ± iS
y

i and γij = γji = 1, ei2π/3, e−i2π/3 are
the phase factors for the bond ij along the a1, a2, a3 directions,
respectively (see Fig. 1). The first line of Eq. (1) is the standard
XXZ model and is invariant under the global spin rotation

2469-9950/2016/94(3)/035107(12) 035107-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.94.035107


YAO-DONG LI, XIAOQUN WANG, AND GANG CHEN PHYSICAL REVIEW B 94, 035107 (2016)

TABLE I. A list of rare-earth triangular antiferromagnets. Note the Curie-Weiss temperatures (�CW) for the second to the sixth
compounds are obtained from the magnetic susceptibility measurments above 50 K. Here, “PM” refers to paramagnetic and “AFM” refers to
antiferromagnetic. The frustration parameter f is defined in Sec. III B.

Compound Magnetic ion Space group Local moment �CW (K) Magnetic transition Frustration para. f Refs.

YbMgGaO4 Yb3+(4f 13) R3̄m Kramers doublet −4 PM down to 60 mK f > 66 [4]
CeCd3P3 Ce3+(4f 1) P63/mmc Kramers doublet −60 PM down to 0.48 K f > 200 [5]
CeZn3P3 Ce3+(4f 1) P63/mmc Kramers doublet −6.6 AFM order at 0.8 K f = 8.2 [7]
CeZn3As3 Ce3+(4f 1) P63/mmc Kramers doublet −62 Unknown Unknown [8]
PrZn3As3 Pr3+(4f 2) P63/mmc Non-Kramers doublet −18 Unknown Unknown [8]
NdZn3As3 Nd3+(4f 3) P63/mmc Kramers doublet −11 Unknown Unknown [8]
Nd2O2CO3 Nd3+(4f 3) P63/mmc Kramers doublet −21.7 AFM order at 1.25 K f = 17.4 [9]
Sm2O2CO3 Sm3+(4f 5) P63/mmc Kramers doublet −18 AFM order at 0.61 K f = 31 [9]
Dy2O2CO3 Dy3+(4f 9) P63/mmc Kramers doublet −10.6 AFM order at 1.21 K f = 8.8 [9]

around the z direction. Here we have chosen the coordinate
system for the spin components to be identical with the one
for the position space (see Fig. 1). The J±± and Jz± terms of
Eq. (1) define the anisotropic interactions that arise naturally
from the strong SOC.

To study the generic spin model, we first carry out the
semiclassical analysis of the generic spin Hamiltonian in
Sec. III. Using the combined Luttinger-Tisza method and
classical Monte Carlo simulation, we first determine the
classical ground-state phase diagram of the model. We find
that the anisotropic J±± and Jz± interactions compete with the
XXZ part of the model and drive the system into two distinct
stripe-ordered phases. Then we implement the classical Monte
Carlo simulation to uncover the classical magnetic orders
at low temperatures. The ordering temperatures of different
phases are determined as well. We find that the ordering
temperatures are strongly suppressed near the phase bound-
ary between different ordered phases, suggesting the strong
frustration in these regions.

The existing experiments in YbMgGaO4 suggest a dis-
ordered quantum ground state. Our generic spin model is
expected to describe the interaction between Yb3+ local
moments. Therefore, it is of importance to understand whether
the generic model may support a disordered ground state in
the quantum regime, and in which parameter regime such
a disordered ground state may exist. For this purpose, in
Sec. IV we study the quantum fluctuation through a self-
consistent Dyson-Maleev spin-wave analysis and find that

a1

a2

a3

x

y

�
z

FIG. 1. Triangular lattice and the three nearest neighbors. The
inset defines the coordinate system for the spin components.

the quantum fluctuation is very strong and could melt the
magnetic order in the parameter regimes near the phase
boundary. We thus expect these regions may turn into a
disordered ground state when the quantum nature of the spins is
considered.

Since the generic spin model applies broadly to any other
triangular system with Kramers’ doublet and the long-range
order should survive deep inside the ordered regions even for
the quantum spins, these magnetic orders should be relevant
for other triangular lattice magnets with strong SOC, such as
the RCd3P3, RZn3P3, RCd3As3, RZn3As3 family, where R is
a rare-earth element. It is likely that the magnetic order may
appear in some of these materials. In Sec. V, we compute the
spin-wave excitation in different ordered phases. Moreover,
because the energy scale of the exchange coupling for the
rare-earth triangular magnets is usually very small, it is ready to
apply strong magnetic fields to fully polarize the spin moments.
This allows a direct comparison between the theoretical results
and the inelastic neutron scattering measurements in the
future experiments both in YbMgGaO4 and other relevant
materials.

The remainder of the paper is organized as follows. In
Sec. II, we explain the symmetry operation on the spin-
orbit-entangled local moments and derive the generic spin
model for the rare-earth triangular systems. In Sec. III, we
carry out both Luttinger-Tisza analysis and classical Monte
Carlo simulation and determine the classical phase diagram. In
Sec. IV, we implement the self-consistent Dyson-Maleev spin
wave calculation to study the quantum fluctuation in different
ordered phase. In Sec. V, we compute the spin-wave excitation
in the presence and absence of magnetic fields. Finally, in
Sec. VI, we discuss the connection with the experiments and
future theoretical directions.

II. THE GENERIC SPIN HAMILTONIAN
FOR KRAMERS’ DOUBLET

We start with the symmetry transformation properties of the
Kramers’ doublet. While the discussion in this section is about
the Yb3+ ion in YbMgGaO4, the symmetry analysis applies
generally to any other Kramers’ doublet that shares the same
symmetry properties on the triangular lattice.

The Yb3+ ion contains 13 4f electrons. According to
the Hund’s rule, we should have the total spin s = 1/2 and
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FIG. 2. The formation of the local ground-state Kramers’ doublet
under the combination of spin-orbit coupling (SOC) and the crystal
electric field (CEF). Please refer the text for the detailed description.

the orbital angular momentum L = 3 for the Yb3+ ion. The
14-fold spin and orbital degeneracy is lifted when the atomic
SOC and the crystal electric field are considered. For the 4f

electrons, the atomic SOC should be considered before the
crystal electric field. As we show in Fig. 2, the atomic SOC
entangles the orbital angular momentum and the total spin,
leading to a total angular momentum J = 7/2 with eightfold
degeneracy. Just like the Yb3+ ion for the pyrochlore ice
material Yb2Ti2O7 [17], the crystal electric field of the D3d

point group further splits the eight J = 7/2 states into four
pairs of Kramers’ doublets. The ground-state doublet is well
separated from other excited doublets with an energy gap
� ∼ 420 K and thus can be treated as an effective spin-1/2
degree of freedom at the temperature that is much lower than
the energy gap [4,17]. We introduce an effective spin-1/2 local
moment, Si , that operates on the local ground state Kramers’
doublet. This effective spin-1/2 degree of freedom for the
Yb3+ ion is well supported by the low-temperature magnetic
entropy that is measured to be R ln 2 per spin [3,4].

This effective spin, S, results from the spin-orbit entan-
glement of the Yb3+ 4f electrons. As a consequence, both
the position and the orientation of the spins are transformed
together under the space-group symmetry operation, and the
transformation is given as

Sr → Det[Ô] · Ô−1 · SÔ·r+t, (2)

where Ô and t are the matrix and the vector that specify
the rotation part and the translation part of the space-group
operation, respectively. In contrast, in a magnetic system
whose local moment is purely given by the total spin, the spin
rotational symmetry would be decoupled from the space-group
symmetry operation. The latter merely acts on the positions of
the spin moments and does not rotate the spin components.
This is the key difference between the strong spin-orbit
coupled Mott insulators and a conventional Mott insulator with
quenched orbital degrees of freedom.

In YbMgGaO4, the Yb3+ ions form a perfect triangular
lattice. The interlayer separation between nearby Yb triangular
layers is 8.4 Å and is much larger than the intralayer Yb lattice
constant that is 3.4 Å [3]. Because the Yb 4f electron is
very localized spatially, one can safely neglect the interlayer
coupling and focus on the intralayer coupling between the
Yb local moments. We thus keep the symmetry operation of
the space group within each triangular layer. As we show
in Fig. 3, the R3̄m space group of YbMgGaO4 contains two
translations, T1 and T2, along the two crystallographic axes,

FIG. 3. The space group symmetry operation for the Yb triangular
layer.

the threefold rotation, C3, around the z direction, the twofold
rotation, C2 around the diagonal direction, and an inversion,
I, about the triangular lattice site. With these symmetries and
their transformations on the spin operators, it is ready to obtain
the generic spin Hamiltonian in Eq. (1) that describes the
interaction between the local moments.

III. SEMICLASSICAL ANALYSIS: LUTTINGER-TISZA
METHOD AND CLASSICAL MONTE CARLO

SIMULATION

To obtain the first understanding of the ground-state
properties of the generic spin model, in this section we will
implement the standard Luttinger-Tisza method and classical
Monte Carlo simulation to uncover the magnetic-ordered
ground states and to obtain the classical ground-state phase
diagram.

A. Luttinger-Tisza method

Here we treat the effective spin Si as a classical vector
that satisfies the hard-spin constraint |Si | = 1/2. Following
Luttinger and Tisza [18], we first replace the hard-spin
constraint with a global constraint, such that∑

i

|Si |2 = N

4
, (3)

where N is the total number of spins. The classical spin
Hamiltonian is then minimized under this global constraint. If
the energy minimum turns out to satisfy the local hard-spin
constraint as well, then this energy minimum is the true
classical ground state.

There are four parameters, Jzz, J±, J±±, Jz±, in the generic
spin model. We first consider the parameter regime when the
anisotropic interaction vanishes with J±± = 0 and Jz± = 0.
In this regime the spin model reduces to the XXZ model.
From the Curie-Weiss temperature results on single crystal
YbMgGaO4 samples [3], one finds that both Jzz and J± are
antiferromagnetic and J±/Jzz ≈ 0.915, which is fixed to this
value throughout the paper. The ground state of this XXZ
model is simply the well-known 120 ◦ ordered state with the
spins orienting in the xy plane. The ordering wave vector of
the 120◦ state is at

kc =
(

4π

3
,0

)
, (4)

or its symmetry equivalent wave vectors.
Now we discuss the effect of the anisotropic spin inter-

actions. With a small |J±±|, the minimum of the classical
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Hamiltonian under the global constraint slightly deviates
from the 120◦ state and occurs at incommensurate wave
vectors. In strong spin-orbit coupled insulators, however, the
incommensurate ordering is generically not favored. Because
of the intrinsic spin anisotropy that originates from the strong
spin-orbit coupling [19], to optimize the spin anisotropy, the
ordered spin moments cannot orient freely like the case for
an incommensurate state. As a result, we generically have the
commensurate spin orders in the strong spin-orbit coupled
insulators. Apart from the general understanding, we here
provide more specific reasons. Due to the low symmetry of
the spin Hamiltonian, the eigenstate that corresponds to the
minimum is generically unique, hence one cannot find two
orthogonal eigenvectors to construct an incommensurate spiral
state that satisfies the hard-spin constraint on every lattice site.
Therefore, the incommensurate state cannot be a true classical
ground state, and we tentatively regard the 120◦ state as the
candidate classical ground state in the regime with a small J±±.

With a large |J±±| and/or a large |Jz±|, the minimum of the
classical spin Hamiltonian occurs at

ks =
(

0,
2π√

3

)
, (5)

or its symmetry-equivalent wave vectors. Remarkably, this
minimum state satisfies the hard-spin constraint and is thus a
true ground state. The spin configuration with this ordering
wave vector has a stripe order, i.e., the spins order ferromag-
netically along one lattice direction and antiferromagnetically
along the remaining two lattice directions. To obtain the
classical phase diagram in Fig. 4(a), we compare the energies
of the 120◦ state and the stripe-ordered phases. In region I of
the phase diagram, the 120◦ state is obtained. In regions II
and III, we find two stripe-ordered phases with different spin
orientations. Without loss of generality, we fix the ordering
wave vector of the stripe phase to be ks = (0,2π/

√
3). Due to

the locking of the spin orientation and the ordering wave vector,
the spin configuration is fixed as well. With this choice of the
ordering wave vector, the spins are pointing in the yz plane [20]
and x direction in regions II and III, respectively (see Fig. 4).

Here we elucidate the structure of the classical ground-state
phase diagram. The magnetic phases for a negative Jz± can be
simply generated from the ones in the positive Jz± case by a
180◦ rotation around the z axis in the spin space. Under this
spin rotation,

Sz
i → Sz

i , (6)

S±
i → −S±

i , (7)

the coupling Jz± → −Jz±, while other couplings stay invariant
[21]. Therefore, we only consider the phase diagram with a
positive Jz± in Fig. 4(a). In addition, on the horizontal axis
with Jz± = 0, the magnetic phases are symmetric about the
origin. This is seen by rotating the spins around the z axis by
90◦. It transforms the spins as

Sz
i → Sz

i , (8)

S±
i → ±iS±

i , (9)

(a) T = 0 phase diagram

J±±/Jzz

J z
±
/J

zz

(b)

kc

ks

(c)

(d) (e)

FIG. 4. (a) The classical phase diagram in the zero temperature
limit. The solid phase boundaries are determined by the Luttinger-
Tisza method, and the colored regions are determined by classical
Monte Carlo simulation. (b) Ordering wave vectors kc and ks drawn
in the first Brillouin zone (the hexagon) for the three phases. (c)
The 120◦ order in region I with spins pointing in the xy plane. (d)
The stripe order in region II with spins pointing in the yz plane.
(e) The stripe order in region III with spins pointing along the x

direction.

and the coupling as J±± → −J±±. The above properties of
the classical phase diagram hold even for the quantum case.

B. Classical Monte Carlo simulation

To further investigate the structure of the classical phase
diagram and to extract finite-temperature magnetic properties,
we implement the classical Monte Carlo simulation of the
classical spin Hamiltonian [22,23]. As we previously ex-
plained, the system prefers the commensurate spin orders.
So one does not need a large system size to carry out the
classical Monte Carlo simulation. The simulation is performed
on 6×6 and 12×12 triangular systems. It starts with a randomly
chosen initial spin configuration, followed by 5000 transient
Monte Carlo steps (MCS) for the system to equilibrate. Within
each step, the Metropolis algorithm [24,25] is implemented
for sampling, and a method proposed in Ref. [26] is used
for updating the spin configurations in the canonical ensem-
ble. The observables are averaged within a sample of size
MCS = 50 000.

Since the 120◦ state (the stripe-ordered phase) has an
ordering wave vector kc (ks), we evaluate the spin-spin
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FIG. 5. Spin-spin correlation functions Sαβ

c/s at zero temperature are displayed. (a) Sxx
c + Syy

c at T → 0. The region with large Sc suggests
the 120◦ order of spins. (b) A finite z-z correlation for the stripe phase helps us distinguish two stripe phases (Fig. 4) due to different signs of
J±±. (c) x-x plus y-y correlation for the stripe phase.

correlation functions at the corresponding wave vectors,

Sαβ

c/s = 1

N2

∑
i,j

〈
Sα

i S
β

j

〉
eikc/s·(rj −ri ), (10)

where α,β = x,y,z. The result is summarized in Fig. 5. In the
zero temperature limit, we observe a significant stripe order
that signifies the stripe phases away from the central region
of the phase diagram. We also notice that as both J±± and
Jz± increase on the positive side, the spins develop a finite
component in the yz plane, distinguishing it from the stripe
order with spins pointing along x direction in the negative J±±
region (see Fig. 4).

Near the phase boundaries, not only the neighboring
ordered phases are very close in energies, but a large number
of classical spin configurations have rather close energies. As a
result, thermal fluctuations can easily populate the low-energy
spin configurations, even at a temperature much smaller than
|�CW|, such that the system may not favor any obvious
magnetic order. Therefore, we expect the ordering temperature
to be strongly suppressed in these frustrated regions.

The classical Monte Carlo simulation allows us to access the
finite-temperature magnetic properties. We can still perform
the calculation of the spin correlation function as the temper-
ature is raised from zero. At zero temperature, the system is
frozen at its ground state, therefore the deviation of a physical
observable Ô (chosen to be Sαβ in this case), 〈Ô2〉 − 〈Ô〉2,
vanishes. However, at finite temperatures, due to the possibility
for spins to flip to another configuration with similar energy, Ô
can develop a nonzero deviation. Therefore, the Binder ratios
[27,28], defined for the spin-spin correlation functions,

rαα =
〈(

Sαα
c/s

)2〉
〈
Sαα

c/s

〉2 , (11)

should attain the value 1 at zero temperature and saturate to a
larger value in the high temperature limit. The Binder ratios
are scale-independent quantities at the critical temperature Tc,
hence Tc can be estimated by finding the crossing of rαα-T
curves for different lattice sizes. The thermal transition is found
to be continuous and no other thermal phases are found in
our numerical study of finite-size systems. The result of our
simulation is summarized in Fig. 6.
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FIG. 6. Cuts through constant Jz± lines of the three-dimensional finite-temperature phase diagram in the main text. The white region is the
high-temperature paramagnetic phase. The solid line indicates the transition temperatures.
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FIG. 7. The frustration parameter f ≡ |�CW|/TN of the corresponding plots in Fig. 6.

It is found that in the parameter regimes near the phase
boundary the magnetic ordering temperature is in fact strongly
suppressed compared to the Curie-Weiss temperature |�CW|.
The local moments do not order down to very low temper-
atures, which indicates the strong spin frustration in these
regions. In Fig. 7, we evaluate the frustration parameter,

f ≡ |�CW|
Tc

, (12)

which is an empirical measure of the frustration [29]. Because
of the spin anisotropy, the Curie-Weiss temperature depends
on the direction of the external magnetic field. To be specific,
we choose the Curie-Weiss temperature to be the one when the
external field is applied in the xy plane, so we have �CW =
−3J± [3]. Indeed, the frustration parameter is as large as 20
near the phase boundaries between two neighboring phases
(see Fig. 7).

IV. QUANTUM FLUCTUATION AND SELF-CONSISTENT
DYSON-MALEEV SPIN-WAVE THEORY

The semiclassical analysis in the previous section gives the
classical ground-state phase diagram. When the ground state
does support magnetic ordering, the semiclassical treatment
does provide a qualitative understanding of the magnetic
phases. In this section, we go beyond the semiclassics and
access the quantum mechanical nature of the local moments.
By considering the quantum fluctuation in the magnetic-
ordered phases, we try to understand the stability of the
magnetic order in the presence of quantum fluctuations and
find out where the disordered state may occur in the phase
diagram.

Deep inside each ordered phase, the magnetic order is
clearly very robust, and we expect that the quantum fluctuation
would merely renormalize the magnetic order. In contrast,
near the phase boundary, many classical spin configurations
have rather close energies and may strongly enhance the
quantum fluctuations. To demonstrate this explicitly, we apply
the Dyson-Maleev transformation for the spin operators and
solve for the quantum correction to the magnetic order within
a self-consistent spin-wave theory [30,31]. To be specific, we

focus the analysis on the stripe-ordered phase in region III,
and the spin-wave theory in other ordered regions can be
obtained likewise. As we show in Sec. III, the spins in region
III orient in the ±x̂ directions. We introduce the Dyson-Maleev
representation for the spin operators [30,31]:

Si · m̂i = S − a
†
i ai , (13)

Si · [m̂i × ẑ] = 1
2 [a†

i (2S − a
†
i ai ) + ai ], (14)

Si · ẑ = 1

2i
[a†

i (2S − a
†
i ai ) − ai ], (15)

where the spin magnitude S = 1/2, m̂i is the direction of the
classical spin order and orients along x̂ or −x̂. Because the
stripe-ordered state has two magnetic sublattices, there are two
flavors of Dyson-Maleev bosons that describe the magnetic
excitation and quantum fluctuation in region III.

In the usual linear spin-wave approximation, one neglects
the cubic boson terms in the Dyson-Maleev transformation by
setting

Si · m̂i = S − a
†
i ai , (16)

Si · [m̂i × ẑ] ≈ (a†
i + ai )/2 (17)

Si · ẑ ≈ (a†
i − ai )/(2i). (18)

This approximation is valid when 〈a†
i ai 〉 � S. We substitute

the spin operators with the Dyson-Maleev bosons, keep the
quadratic part of the spin-wave Hamiltonian, and diagonalize
it with the standard Bogoliubov transformation. We proceed
to evaluate the quantum correction δmi ≡ 〈a†

i ai 〉 and find that
δmi is comparable to the spin magnitude in the parameter
regime near the phase boundary. Clearly, the strong quantum
fluctuation in these regions invalidates the assumption of the
linear spin-wave theory that neglects the boson interaction in
the formalism.

To fix the drawbacks of the linear spin-wave approximation,
we implement a self-consistent spin-wave calculation in the
following. The Dyson-Maleev transformation in Eqs. (13)–
(15) has proven to be convenient for studying spin-wave
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interaction [32]. With the Dyson-Maleev transformation for
the spin operators, we obtain the spin-wave Hamiltonian. In
this Hamiltonian, there exist cubic, quartic, quintic, and sextic
terms in terms of the Dyson-Maleev bosons. To reduce the

spin-wave Hamiltonian down to the quadratic level, we make
the mean-field decoupling of the quartic and sextic terms. The
quartic and sextic terms are decoupled into various onsite and
intersite boson bilinears,

a
†
i ai a

†
j aj → [a†

i ai − 〈a†
i ai 〉]〈a†

j aj 〉 + 〈a†
i ai 〉[a†

j aj − 〈a†
j aj 〉] + 〈a†

i a
†
j 〉[ai aj − 〈ai aj 〉] + [a†

i a
†
j − 〈a†

i a
†
j 〉]〈ai aj 〉

+ 〈a†
i aj 〉[a†

j ai − 〈a†
j ai 〉] + [a†

i aj − 〈a†
i aj 〉]〈a†

j ai 〉 + 〈a†
i ai 〉〈a†

j aj 〉 + 〈a†
i a

†
j 〉〈ai aj 〉 + 〈a†

i aj 〉〈a†
j ai 〉, (19)

a
†
i a

†
j a

†
j aj → [a†

j a
†
j − 〈a†

j a
†
j 〉]〈a†

i aj 〉 + a
†
j a

†
j [a†

i aj − 〈a†
i aj 〉] + 2[a†

j aj − 〈a†
j aj 〉]〈a†

i a
†
j 〉 + 2〈a†

j aj 〉[a†
i a

†
j − 〈a†

i a
†
j 〉]

+〈a†
j a

†
j 〉〈a†

i aj 〉 + 2〈a†
j aj 〉〈a†

i a
†
j 〉, (20)

a
†
i a

†
i ai a

†
j a

†
j aj → [a†

i a
†
i − 〈a†

i a
†
i 〉]〈ai a

†
j a

†
j aj 〉 + 2[a†

i ai − 〈a†
i ai 〉]〈a†

i a
†
j a

†
j aj 〉 + [a†

j a
†
j − 〈a†

j a
†
j 〉]〈a†

i a
†
i ai aj 〉

+ 2[a†
j aj − 〈a†

j aj 〉]〈a†
i a

†
i ai a

†
j 〉 + 4[a†

i a
†
j − 〈a†

i a
†
j 〉]〈a†

i ai a
†
j aj 〉 + 2[a†

i aj − 〈a†
i aj 〉]〈a†

i ai a
†
j a

†
j 〉

+ 2[ai a
†
j − 〈ai a

†
j 〉]〈a†

i a
†
i a

†
j aj 〉 + [ai aj − 〈ai aj 〉]〈a†

i a
†
i a

†
j a

†
j 〉 + 〈a†

i a
†
i ai a

†
j a

†
j aj 〉, (21)

where the expectation “〈· · · 〉” is evaluated with respect to the ground state of the quadratic spin-wave Hamiltonian that is defined
later, and we have

〈a†
i a

†
i ai a

†
j a

†
j aj 〉 = 2〈a†

i a
†
i 〉〈ai a

†
j 〉〈a†

j aj 〉 + 〈a†
i a

†
i 〉〈a†

j a
†
j 〉〈ai aj 〉 + 4〈a†

i ai 〉〈a†
j aj 〉〈a†

i a
†
j 〉

+ 2〈a†
i ai 〉〈a†

j a
†
j 〉〈a†

i aj 〉 + 4〈a†
i a

†
j 〉〈a†

i aj 〉〈ai a
†
j 〉 + 2〈a†

i a
†
j 〉〈a†

i a
†
j 〉〈ai aj 〉, (22)

and

〈ai a
†
j a

†
j aj 〉 = 2〈ai a

†
j 〉〈a†

j aj 〉 + 〈ai aj 〉〈a†
j a

†
j 〉, (23)

〈a†
i a

†
j a

†
j aj 〉 = 2〈a†

i a
†
j 〉〈a†

j aj 〉 + 〈a†
i aj 〉〈a†

j a
†
j 〉, (24)

〈a†
i a

†
i ai aj 〉 = 2〈a†

i ai 〉〈a†
i aj 〉 + 〈a†

i a
†
i 〉〈ai aj 〉, (25)

〈a†
i a

†
i ai a

†
j 〉 = 2〈a†

i ai 〉〈a†
i a

†
j 〉 + 〈a†

i a
†
i 〉〈ai a

†
j 〉, (26)

〈a†
i ai a

†
j aj 〉 = 〈a†

i ai 〉〈a†
j aj 〉 + 〈a†

i a
†
j 〉〈ai aj 〉 + 〈a†

i aj 〉〈a†
j ai 〉,

(27)

〈a†
i ai a

†
j a

†
j 〉 = 〈a†

i ai 〉〈a†
j a

†
j 〉 + 2〈a†

i a
†
j 〉〈ai a

†
j 〉, (28)

〈a†
i a

†
i a

†
j aj 〉 = 2〈a†

i a
†
j 〉〈a†

i aj 〉 + 〈a†
i a

†
i 〉〈a†

j aj 〉, (29)

〈a†
i a

†
i a

†
j a

†
j 〉 = 2〈a†

i a
†
j 〉〈a†

i a
†
j 〉 + 〈a†

i a
†
i 〉〈a†

j a
†
j 〉. (30)

The decoupling of the cubic and quintic terms leads to
linear terms in the Dyson-Maleev bosons that should all cancel
out by the stability requirement of the classical ground state.
Therefore, the decoupling of the cubic and quintic terms
does not introduce extra quadratic terms into the spin-wave
Hamiltonian.

After defining the Fourier transform of the Dyson-Maleev
boson operators, the quadratic spin-wave Hamiltonian can be
organized as

Hsw =
∑

k∈BZ′
(A†

k,A−k)

(
Fk G

†
k

Gk F−k

)(
Ak

A
†
−k

)
, (31)

where Ak = (a1k,a2k) is the vector of the Dyson-Maleev boson
annihilation operator, the subindices “1” and “2” label the two

sublattices of the magnetic unit cell, and BZ′ is the magnetic
Brioullin zone of the stripe-ordered phase. Fk and Gk are
2×2 matrices and depend on the mean-field parameters that
were introduced as boson bilinears. The quadratic spin-wave
Hamiltonian is diagonalized by the standard Bogoliubov
transformation Qk [33],(

Bk

B
†
−k

)
= Qk

(
Ak

A
†
−k

)
, (32)

where Bk = (b1k,b2k) refers to the set of Bogoliubov bosons,
and Qk is a 4×4 matrix that defines the Bogoliubov transfor-
mation. From the ground state of the quadratic spin wave
Hamiltonian, we evaluate the mean-field boson bilinears
(〈a†

i ai 〉, 〈a†
i aj 〉, 〈a†

i a
†
i 〉, and 〈a†

i a
†
j 〉). As the spin-wave Hamil-

tonian depends on these boson bilinears, so we solve for them
self-consistently by an iteration method.

The quantum correction to the magnetic order is evaluated
by

δm = 〈a†
i ai 〉 = 1

N

∑
i

〈a†
i ai 〉

= 1

2

{
1

N

∑
k

2∑
i=1

[Q†
kQk]

ii
− 1

}
, (33)

where N is the number of lattice sites and we have used
the simple fact that the state in region III is invariant under
the combined operation of time reversal and the translation
T2. If δm > S, the quantum fluctuation is very strong and
completely melts the magnetic order. As we show in Fig. 8,
the quantum fluctuation is indeed quite strong and melts the
magnetic order in the regions near the phase boundary. This
suggests the ground state is likely to be disordered in these
regions.
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±
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FIG. 8. Quantum correction (δm) to the magnetic orders that is
calculated within the self-consistent spin-wave theory on a 80×80
lattice. The region near phase boundary where δm exceeds the spin
magnitude with δm � 1/2 is marked in beige.

V. MAGNETIC EXCITATIONS WITH AND WITHOUT
EXTERNAL MAGNETIC FIELDS

In this section, we study the properties of the magnetic
excitations in different ordered phases as well as in the
presence of strong magnetic fields.

A. Linear spin-wave theory for the three ordered phases

Since the quantum fluctuation is found to be very weak
deep inside each ordered phases, it is legitimate to apply the
linear spin-wave theory to study the magnetic excitation in the
strongly ordered regimes. In Fig. 9, we plot the representative
spin-wave dispersions for the three ordered phases. Due to
the anisotropic spin interaction, the system does not have any
continuous symmetry, so generically the spin-wave spectrum is
fully gapped. This is indeed the case for the two stripe-ordered
phases in Figs. 9(a) and 9(b). In Fig. 9(c), the parameters are
chosen that the spin model reduces to a XXZ model. Due to the
continuous U(1) symmetry breaking, the spin-wave spectrum
has one gapless mode. As one moves away from this special
point, we expect the spectrum should be gapped.

B. Polarized phases and strong magnetic fields

For the rare-earth magnets, the 4f electrons are very
localized. As a result, the exchange interaction between
the rare-earth local moments are usually very small. For
YbMgGaO4, the couplings in the spin Hamiltonian are of
the order of 1–4 K. Therefore, an external magnetic field of
the order of 10 T is probably sufficient to polarize the local
moments. For the magnetic field that is applied along the z

direction, we have the spin Hamiltonian,

HZ = H − hz

∑
i

Sz
i . (34)

Here hz ≡ gzμBBz and the gz is the Landé factor for magnetic
field in z direction. When the field hz is strong enough, the
spin is polarized along z. To obtain the magnetic excitation
of this polarized state, we use the linear spin-wave theory and

Γ
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M

K
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6

8

KΓ M Γ

ω
/J

zz

(a)

0

2

4

6

8

KΓ M Γ

ω
/J
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(b)

0
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8

KΓ M Γ

ω
/
J z

z

(c)

FIG. 9. Spin-wave dispersion along high symmetry momentum
points. (a) Spin-wave dispersion in x-stripe phase, at J±± = − 0.9Jzz,

Jz± = 0.1Jzz. Inset: The first Brillouin zone, with red loop of
high-symmetry points along which we plot the dispersion indicated.
(b) Spin-wave dispersion in yz-stripe phase, at J±± = 0.8Jzz, Jz± =
0.8Jzz. (c) Spin-wave dispersion in 120◦ phase, at J±± = Jz± = 0.

transform the spin operators as

Sz
i = 1

2 − c
†
i ci , (35)

S+
i = ci , (36)

S−
i = c

†
i . (37)

We then plug this transformation in the Hamiltonian HZ and
keep the bilinear terms of boson operators. The magnetic
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excitation only has one branch and is simply given by

	Z,k =
⎧⎨
⎩

[
hz − 3Jzz + 2J±

3∑
i=1

cos(k · ai)

]2

− 4J 2
±±| cos(k · a1) + e−i 2π

3 cos(k · a2)

+ ei 2π
3 cos(k · a3)|2

}1/2

. (38)

The Jz± coupling is absent in the above spin-wave dispersion.
This is because the Jz± interaction does not generate any
quadratic term to the spin-wave Hamiltonian.

For the external field in the x direction, we have

HX = H − hx

∑
i

Sx
i , (39)

where hx ≡ gxμBBx and gx is the Landé factor for magnetic
field in x direction. Due to the planar geometry of the lattice,
we have gx �= gz [3]. In the strong field limit, the local moment
is polarized along the x direction, and we transform the spin
operators as

Sx
i = 1

2 − d
†
i di , (40)

S
y

i = 1
2 (di + d

†
i ), (41)

Sz
i = 1

2i
(di − d

†
i ). (42)

Under the linear spin wave approximation, the magnetic
excitation is given as

	X,k =
({

(hx − 6J±) +
(

J± − J±± + Jzz

2

)
cos(k · a1)

+
(

J± + J±±
2

+ Jzz

2

)
[cos(k · a2) + cos(k · a3)]

}2

−
∣∣∣∣
(

J± − J±± − Jzz

2
+ iJz±

)
cos(k · a1)

+
(

J± + J±±
2

− Jzz

2
− i

Jz±
2

)

× [cos(k · a2) + cos(k · a3)]

∣∣∣∣
2)1/2

, (43)

where all the four couplings enter into the dispersion. In
Fig. 10, we plot the spin-wave dispersion along high-symmetry
momentum points. In practice, it is ready to measure the
dynamic spin structure factor in YbMgGaO4 and other rare-
earth triangular antiferromagnets to extract the spin-wave
dispersion in the strong magnetic fields. By comparing the
dispersion with the theoretical prediction, one may fully
specify the microscopic spin Hamiltonian and quantitatively
determine all the couplings.

VI. DISCUSSION

Our initial treatment of the generic spin model in Sec. III
is semiclassical, and the classical ground states that we found

0

2

4

6

8

10

12

KΓ M Γ

ω
/J

zz

FIG. 10. Spin-wave dispersion when applying external magnetic
field along x direction (upper yellow line) and z direction (lower
blue line). Here the external field hz and hx is taken to be 10Jzz, and
anisotropic exchange couplings Jz± and J±± are taken to be 0.3Jzz

and 0.2Jzz, respectively.

are magnetically ordered. Due to the strong spin anisotropy
that arises from the strong SOC, the orientation of the local
moments is locked with the ordering wave vector in these
classical orders. The magnetic excitations in different ordered
phases generically have an excitation gap. Again, this is the
spin anisotropy that completely breaks all the continuous spin
rotational symmetry.

Our results are quite suggestive for identifying the parame-
ter regime of possible disordered ground states of the generic
model for the quantum spins. As we show in Sec. IV, the
quantum fluctuation is indeed quite strong in certain parameter
regimes and could, in fact, completely destroy the magnetic
order. Therefore, if a quantum spin liquid state does appear in
the phase diagram of the generic spin model for the triangular
lattice, it would most likely occur in these frustrated regions
near the phase boundaries between different ordered states.

A. Materials survey

Here we turn to a discussion of relevant materials that have
been studied experimentally.

1. YbMgGaO4

The Yb3+ local moments in YbMgGaO4 were found to
be disordered down to the lowest measurable temperature
in the existing experiments. It was suggested to be a U(1)
quantum spin liquid with a spinon Fermi surface [34] by
one of the author and collaborators [3]. Whether it is a
quantum spin liquid or not is not quite clear at this stage.
To elucidate the nature of the disordered ground state, an
inelastic neutron-scattering measurement at low temperatures
is certainly more desirable. On the theoretical side, however,
it is more helpful to know precisely the actual parameters in
the generic model for YbMgGaO4. The parameters that were
determined from the early thermodynamic measurements do
overlap significantly with the disordered parameter region in
Fig. 8. As we discuss in Sec. V, in the future experiment
one could apply strong magnetic fields to polarize the spin
and measure the spin-wave dispersion in an inelastic neutron-
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scattering measurement. After the disordered parameter region
and the actual parameters are determined, the numerical
approaches such as variational wave function and density
matrix renormalization group may be applied.

2. RZn3P3, RCd3P3, RZn3As3, and RCd3As3

In the RZn3P3, RCd3P3, RZn3As3, and RCd3As3 materials’
family, the rare-earth ions, R3+, form triangular layers [5–8].
Since the interlayer separation is much larger than the
intralayer lattice constant, one can safely neglect the interlayer
coupling. In CeCd3P3, the intralayer lattice constant is 4.28 Å,
while the interlayer distance is 10.5 Å [5]. As we show in Ta-
ble I, almost all compounds in the RZn3P3, RCd3P3, RZn3As3,
and RCd3As3 family have the space group P63/mmc. After we
restrict the space-group symmetry of P63/mmc to a single tri-
angular layer, the remaining symmetry elements are identical
to the ones that are listed for YbMgGaO4 in Sec. II. Therefore,
if the rare-earth local moment in this family of materials is the
same kind of Kramers’ doublet as the Yb3+ ion in YbMgGaO4,
the local moment interaction is described by the same generic
model in Eq. (1). From the crystal electric field analysis in
Ref. [5], the ground-state doublet of the Ce3+ ion in CeCd3P3

does belong to the same kind of Kramers’ doublet as the Yb3+

ion in YbMgGaO4. Because the system remains paramagnetic
down to 0.48 K, the authors in Ref. [5] proposed a possible
quantum spin-liquid ground state. One may thus wonder
whether the possible quantum spin liquid in CeCd3P3 is in the
same phase as the one that was proposed for YbMgGaO4. More
experiments such as neutron scattering or NMR measurements
on single-crystal samples are certainly needed.

Among this family of materials, CeZn3P3 is known to
develop an antiferromagnetic order at 0.8 K [7]. The precise
magnetic-ordering structure is not known from the existing
experiments. It is thus of great interest to examine whether
the antiferromagnetic order in CeZn3P3 belongs to one of the
orders in our phase diagram.

If the rare-earth ion contains even number of 4f electrons
like the Pr3+ ion in PrZn3As3, the local ground-state doublet
is a non-Kramers’ doublet. For such a doublet, the in-plane
components, Sx and Sy , of the effective spin are even under
time reversal symmetry, while the out-of-plane component,
Sz, is odd under time-reversal symmetry. This property
immediately forbids the presence of the Jz± term in Eq. (1) for
the local moment interaction. In the simplified model, there are
only three parameters: Jzz, J±, and J±±. The analysis of the
full phase diagram of the simplified model for non-Kramers’
doublets will be left for future work.

Finally, we point out one special Kramers’ doublet that was
dubbed dipole-octupole Kramers’ doublet in Ref. [35]. Dipole-
octupole Kramers’ doublet occurs when the two ground-state
wave functions of the doublet are linear superpositions of
states that have J z equal to odd integer multiples of 3/2. Each
ground state corresponds to the one-dimensional irreducible
representation of the D3d point group. The twofold Kramers’
degeneracy is protected by time reversal symmetry. Dipole-
octupole doublet is found to exist in the Nd3+ ions of various
Nd-based pyrochlore materials and the Ce3+ ion of Ce2Sn2O7

[35–41]. If the R3+ ion in some compounds in the triangular
antiferromagnets belongs to dipole-octupole doublet, the local

moment interaction would be described by an XYZ-like model.
We will discuss the dipole-octupole doublet in a forthcoming
work. Nevertheless, the Yb3+ ion in YbMgGaO4 and the Ce3+

ion in CeCd3P3 are not dipole-octupole doublets [4,5].

3. R2O2CO3

Rare-earth oxycarbonates R2O2CO3 (R = Nd, Sm, Dy)
is another layered triangular antiferromagnet family that is
discovered quite recently. All these materials crystallize in a
hexagonal structure with the same space group as CeCd3P3.
Although all three magnetic ions are Kramers’ doublet, the
crystal-field ground states are not carefully studied in the
existing experiments [9]. If these Kramers’ doublets are not
dipole-octupole doublets, the local moment interaction is given
by our anisotropic model in Eq. (1). The precise magnetic
ordered structure is unknown, so it is of interest to study
the magnetic structure and the magnetic excitation of these
systems in the future.

B. Summary

To summarize, we analyzed the generic spin Hamiltonian
that describes the interaction between the spin-orbit-entangled
Kramers’ doublet local moments. We have obtained the
magnetic phase diagram that includes three distinct ordered
phases. We have further identified the possible disordered
region that might host disordered ground states for the Yb
local moments in YbMgGaO4 [3]. We carefully studied the
magnetic excitation in different ordered phases as well as in
the presence of strong magnetic fields. The ordered phases and
the magnetic excitations may be detected in future experiments
in the strong spin-orbit-coupled triangular antiferromagnets.

As the generic model applies to any other Kramers’ doublet
with the same symmetry properties, to further justify the
applicability of this model, it is thus of great interest to
experimentally study the magnetic properties of other rare-
earth-based triangular materials and access the magnetic orders
in the phase diagram and the magnetic transition from the
possible disordered states. Apart from the rare-earth systems,
the spin-orbit-entangled Kramers’ doublet local moments can
appear in the partially filled t2g shells such as triangular lattice
iridates [2]. Given the 4d or 5d nature of the local moments, the
exchange interaction is certainly enhanced, and thus one could
probe the magnetic properties at a much higher temperature
than the rare-earth systems.
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