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Since the earliest implementations of the various GW approximations and cumulant expansion in the
calculations of quasiparticle propagators and spectra, several attempts have been made to combine the
advantageous properties and results of these two theoretical approaches. While the GW-plus-cumulant approach
has proven successful in interpreting photoemission spectroscopy data in solids, the formal connection between
the two methods has not been investigated in detail. By introducing a general bijective integral representation
of the cumulants, we can rigorously identify at which point these two approximations can be connected for
the paradigmatic model of quasiparticle interaction with the dielectric response of the system that has been
extensively exploited in recent interpretations of the satellite structures in photoelectron spectra. We establish a
protocol for consistent practical implementation of the thus established GW + cumulant scheme and illustrate it
by comprehensive state-of-the-art first-principles calculations of intrinsic angle-resolved photoemission spectra
from Si valence bands.
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I. INTRODUCTION

In the past two decades a number of attempts have been
made to combine the algorithms developed for calculating the
band structure and quasiparticle properties in solids within the
so-called GW approximations (GWAs) for the quasiparticle
self-energy [1–12] with the powerful cumulant expansion or
linked cluster approach [13–19] used for treating multiple
excitation processes in the coupled quasiparticle-heat-bath
systems [20–44]. The major rationale for combining these
two approaches in the treatment of spectral properties of
multiply excited systems stems from the empirically verified
property of GWA to describe well the quasiparticle spectrum
at the excitation threshold, on the one hand, and of cumulant
expansion to reliably reproduce the multiexcitation structures
where GWA fails, on the other hand. Here the relevant
comparisons and assessments of the performance of two
methods are made for the same generic interaction. In the
GWA this is the dynamically screened electronic interaction
W calculated in the the linear response. The ensuing cumulant
approach is generated by the dynamic component of the same
interaction which has the properties of a boson propagator.
Thereby the problem maps onto the treatment of the coupled
quasiparticle-boson system. The transition from all-electron to
quasiparticle-boson model in the context of cumulant approach
was discussed in Refs. [18,19,27].

In the context of ab initio calculations cumulant expansion
was first employed in combination with the GW approximation
to study the satellites in the photoemission spectra of simple
metals [30]. Subsequent studies revealed that this approach
may also prove useful to describe the plasmon satellites of
silicon [35,45], graphene [37,46], and model systems [38,39].
Recently, the application of cumulant expansion to the
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calculation of angle-resolved spectral function of simple semi-
conductors highlighted the dispersive character of plasmonic
satellites [41]. In particular, it was found that the simultaneous
excitation of a plasmon and a hole leads to the emergence
of “plasmonic polaron bands,” which are broadened replicas
of the valence bands blueshifted by the plasmon energy.
This observation was recently confirmed by theoretical and
experimental work [42,43,47]. These recent developments call
for a detailed analysis of cumulant expansion, as well as its
relation to the standard GWA.

The inequivalence of the results of GWA and cumulant
approaches was demonstrated already in their earliest appli-
cations to the paradigmatic problem of photoemission spectra
of core holes coupled to the linear electronic response of the
medium [2] for which cumulant expansion provides the exact
solution [18]. The existence of exact solution also made it
possible to estimate the error incurred by the application of a
concrete form of GWA. In the studied core hole case [2] the
GWA solution was obtained from self-consistent calculation
of the second-order self-energy induced by the dynamically
screened Coulomb interaction W in the electron gas, and on
the complete neglect of vertex corrections induced by W . This
produced a compound structure in the core hole spectrum
consisting of a narrow quasielastic peak at the blueshifted
core hole spectral threshold and a much broader satellite
or “plasmaron” structure starting at plasmon frequency ωp

below the threshold and reaching the maximum further down
at approximately 2ωp (cf. Fig. 2 in Ref. [18]).

In contrast to the GWA, the second-order cumulant ex-
pansion provides an exact multiexcitation solution for the
spectrum of a core hole coupled to the bosonlike dynamic
component of W [18]. The obtained spectral structure exhibits
the blueshifted main quasiparticle peak that is followed
by a series of satellites located at redshifted multiples of
the plasmon excitation energy. All spectral peaks exhibit
infrared asymmetric broadening arising from the multiple
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excitation of low-energy electron-hole (e-h) pairs present in
the dielectric response of electron gas (cf. Fig. 4 in Ref. [18]).
Comparison of the cumulant and GWA solutions shows that
the latter has the effect of forcing all the satellite peaks into
a single one centered at the energy exceeding the plasmon
excitation threshold by a factor �1.5 and carrying their total
weight. This fundamental difference between the two types
of spectra arises from the different classes of processes the
two approaches take into account. Cumulant expansion treats
the processes described by boson-induced self-energy and
vertex corrections on equivalent footing to all orders in the
interaction and correlation between the successive scattering
events. By contrast, the GWA solutions take into account
only the self-energy corrections, either to lowest order(s) [24]
or self-consistently to all orders in the noncrossing boson
interaction lines [48], thereby leaving out all vertex corrections
with crossing boson lines. This means that in order to exploit
the results of GWA calculations for construction of cumulants,
special care must be taken to select the appropriate GWA
form which does not lead to overcounting of correlated
higher-order self-energy-like contributions in cumulant expan-
sion. This requires unambiguous identification of the levels
of approximation at which GWA and cumulant expansion
can be connected. Such a procedure is discussed in the
forthcoming sections on the example of a single quasiparticle
propagating in band states in which it is subject to the screened
interaction W .

While cumulant expansion has been discussed in previous
works (cf. Refs. [17,23,24,27,29,32,36], given the renewed
interest in this technique and its use in conjunction with the
GWA [29,30,35,37,41–44], it seems appropriate and timely
to systematically develop and discuss the key aspects of the
GW + cumulant (GW + C) theory for interpretations of the
results of both the stationary and time-resolved spectroscopies.
This program is carried out in Secs. II–V and critically assessed
in Sec. VI. For the benefit of GW practitioners who may want
to directly employ the results of the presented formalisms
without going into the details of its derivation, we outline in
Sec. VII a protocol for a consistent combined use of the ab
initio GWA and cumulant expansion generated by the same
dynamic interaction. Finally, as an illustrative example of the
power of the developed approach, we apply it in Sec. VIII to
investigate the effects of electron interactions with the charge
density fluctuations in the spectral function of silicon.

II. PROPAGATORS OF QUASIPARTICLES AND
BOSONIZED RESPONSE OF THE SYSTEM

A large class of many-body problems involving the interac-
tions of quasiparticles (electrons or holes) with excitations
in solids can be mapped onto the paradigmatic model of
quasiparticle interactions with bosons. The justification for
applying this model in the present studies of quasiparticles
coupled to electronic excitations via the screened interaction
W is the bosonic character of its dynamic component [34,44].
Since our attention is focused on excitations with energies
ranging over the entire bandwidths we assume zero tempera-
ture of the system. Generalization to finite temperatures is a
well-established procedure.

The generic Hamiltonian of the interacting particle-boson
system reads

H = H 0
qp + H 0

bos + λV = H 0 + λV. (1)

We express the components of (1) in the second quantization
form in terms of the fermion creation and annihilation
operators c

†
k and ck for the electron state with momentum k,

respectively, and the boson creation and annihilation operators
a
†
q,j and aq,j for the state of the j th mode with wave vector q,

respectively. Using these operators we have for the unperturbed
Hamiltonian of the quasiparticles

H 0
qp =

∑
k

ε0
kc

†
kck, (2)

where ε0
k in the unperturbed band-state energy. The Hamilto-

nian of unperturbed bosons is

H 0
bos =

∑
q,j

ωq,j a
†
q,j aq,j , (3)

where ωq,j is the energy (dispersion) of the j th mode. The
particle-boson interaction is given by

λV = λ
∑
k,q,j

V
j

k−q,kc
†
k−qcka

†
q,j + H.c. (4)

Spectral properties of quasiparticles (electrons and holes)
whose dynamics is governed by the Hamiltonian (1) are most
conveniently obtained from the diagonal component of a causal
(time-ordered) quasiparticle propagator or Green’s function
Gk(t,t ′). At zero temperature this is defined by [17,49–51]

Gk(t,t ′)=−i〈0|T [ck(t)c†k(t ′)]|0〉=−iθ (t−t ′)〈0|ck(t)c†k(t ′)|0〉
+ iθ (t ′ − t)〈0|c†k(t ′)ck(t)|0〉 (5)

= −iθ (t − t ′)
∫ ∞

0
dωN>

k (ω)e−i(ω+μ)(t−t ′)

+ iθ (t ′ − t)
∫ ∞

0
dωN<

k (ω)ei(ω−μ)(t−t ′), (6)

where |0〉 denotes the ground state of the system, the operators
c
†
k(t ′) and ck(t) are expressed in the Heisenberg picture, and

T is the time-ordering operator. The first term in (5) describes
the probability amplitude that the electron created (injected) at
time instant t ′ in an initially unoccupied eigenstate |k〉 of the
unperturbed Hamiltonian H 0 of the system is found in the same
state at a later instant t . The second term gives the analogous
probability for the hole created in an initially occupied state k
at instant t to be found in the same state at a later instant t ′. Here
N>

k (ω) andN<
k (ω) are the spectral densities of the particle and

the hole, respectively, and μ is the chemical potential. In the
absence of interactions of quasiparticles with the heat bath (4)
the noninteracting quasiparticle Green’s function reads

G
(0)
k (t − t ′) = −iθ (t − t ′)e−i(ε0

k−iη)(t−t ′)(1 − nk)

+ iθ (t ′ − t)e−i(ε0
k+iη)(t−t ′)nk, (7)

where nk = 〈0|c†kck|0〉 is the occupation number of the one-
particle k states in the ground state |0〉 and η = 0+. This yields
the Fourier transform (FT) of the unperturbed Green’s function

035103-2



On THE COMBINED USE OF GW APPROXIMATION AND . . . PHYSICAL REVIEW B 94, 035103 (2016)

in the form

G
(0)
k (ω) = 1 − nk

ω − ε0
k + iη

+ nk

ω − ε0
k − iη

. (8)

In the following we consider systems containing a single
quasiparticle coupled to bosons. Since a single quasiparticle
cannot give rise to renormalization of the boson field [17], the
propagator Dq(t − t ′) of the (q,j )th boson mode in the system
described by (1) should be equal to the unrenormalized one
which at zero temperature takes a simple form [17],

D
(0)
q,j (t − t ′) = − iθ (t − t ′)e−iωq,j (t−t ′)

− iθ (t ′ − t)eiωq,j (t−t ′). (9)

However, in view of the forthcoming discussions of bosonic
excitations of the electron gas, we must assume a more general
form,

Dq(t − t ′) = − iθ (t − t ′)
∫ ∞

0
dω′Dq(ω′)e−iω′(t−t ′)

− iθ (t ′ − t)
∫ ∞

0
dω′Dq(ω′)eiω′(t−t ′), (10)

where Dq(ω′) is the mode density of bosonized heat-bath
excitations of wave vector q that lie in the energy interval
dω′ around ω′. Thus, for quasiparticle interactions with the
heat bath represented by the surrounding electron liquid,
this is obtained from the imaginary part of the correspond-
ing electron density-density response function χq(ω′), viz.
Dq(ω′) = 1

π
|Imχq(ω′)|. In this case we also have V

j

k−q,k =
Vk−q,k. The thus formulated model describes equally well the
propagation of quasiparticles in the bulk and in the quasi-
two-dimensional (Q2D) surface bands where they couple also
to surface localized excitations (surface plasmons, surface
phonons, etc.) [36,52].

Expressions (8) and (10), together with the interaction
matrix elements Vk−q,k, represent the point of departure for
calculations of Gk(t − t ′) renormalized by the interactions
with bosonized electronic excitations in the system. Its FT
yields the k-resolved quasiparticle spectrum

Nk(ω) = 1

π
|ImGk(ω)| = N>

k (ω)θ (ω − μ)

+N<
k (ω)θ (μ − ω). (11)

The knowledge of (11) is needed in the determination
of the various experimentally observable properties of the
coupled quasiparticle-boson system. A characteristic ex-
ample are photoemission yields from occupied electronic
states of atomic, molecular, and condensed-matter systems
which are directly related to the spectra of photoexcited
holes [17,18,21,22,27,31,52–54].

Several methods of renormalization of (7) by the interaction
with bosons (10) to yield (6) have been followed in the
literature. The standard procedure is based on the expansion
of Gk in Dyson series involving the proper self-energy correc-
tions 	k in ascending powers of the interaction [17,49–51].
Here one of the most popular approximation schemes is the
GW approximation in which the quasiparticle self-energy
beyond the first order is represented by Feynman diagrams
involving only noncrossing boson interaction lines (10).

Depending on the complexity of the problem and the level
of approximation [5], the effective number of interaction lines
may range from one [1,2,24] to infinity in the self-consistent
(SC) calculations [1,48,55]. The GWA results are considered
to reliably reproduce the spectrum (11) near the quasiparticle
excitation threshold, whereas they have been shown to be
inadequate in the description of inelastic wings or satellite
region [18,30]. To remedy this deficiency of GWA, another
powerful method based on cumulant expansion [13,16] has
been considered. The major rationale for this approach lies in
the fact that cumulant expansion provides exact solutions in the
limiting cases of (1) [18], or a rapidly converging closed-form
solution in the general case [23,27,32,36]. Advantageous
features of both approaches have been combined by a number
of authors who have employed the GWA self-energies as an
input for cumulant representation of quasiparticle propagators
so as to achieve a better description of satellite structure
in the spectra [27,29,30,33–37,41–44]. However, an explicit
identification of the approximations underlying the combined
use of GWA and cumulant expansion is still missing. In the
following sections we make such a connection clear by using
the model Hamiltonian (1).

The identification of a contact or “seam” between the GWA
and the cumulant expansion in a joint GW + C approach can
be most clearly identified by resorting to a system for which
a closed-form solution for Gk(t,t ′) is available. Following
this argument, we analyze in the following the propagation
of a single quasiparticle whose dynamics is governed by the
Hamiltonian (1) [36]. In effect, this means that the considered
electron (hole) is injected into an empty (occupied) band
or into a state sufficiently above (below) the Fermi level.
This simplification introduces two important consequences
in the propagators (5) and (8) describing the motion of
quasiparticles.

(i) The quasiparticle propagates only in one time direction;
i.e. only one term survives in (5), either the first one describing
particles and proportional to θ (t − t ′) [implying the survival
of only the first term in (8) with nk = 0] or the second one for
holes and proportional to θ (t ′ − t) [implying analogously the
survival of only the second term in (8) with nk = 1].

(ii) As a consequence of (i) all the quasiparticle-boson
interaction vertices are restricted to the interval of quasiparticle
propagation (t,t ′).

Subject to these conditions, cumulant expansion provides
a tractable and asymptotically exact closed-form solution for
the quasiparticle propagators (see Sec. IV below), which then
allows equally tractable comparison with the results of GWA
approach.

III. QUASIPARTICLE SELF-ENERGY IN THE G0W0

APPROXIMATION

A convenient representation of the general solution for
Green’s function (5) in the case of homogeneous and conser-
vative systems is usually formulated for its Fourier transform
Gk(ω). The integral Dyson equation for a diagonal Green’s
function in the four-coordinate space transforms into an
algebraic equation in the reciprocal (k,ω) space, where it can
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be represented in the form [17,49–51]

Gk(ω) = G
(0)
k (ω) + G

(0)
k (ω)	k(ω)Gk(ω). (12)

Here the proper self-energy 	k(ω) is given by the sum of all
irreducible components involving the powers of interactions
that perturb the initial noninteracting Hamiltonian H 0.

In the first application of GWA the lowest term of proper
self-energy of the interacting electron gas was written “on the
energy shell” ω = ε0

k in the form [56]

	
G0W0
k

(
ε0

k

)
=

∫
d3q

(2π )3

∫
dω′

2π
G

(0)
k−q(ω−ω′)W (0)

q (ω′))
∣∣∣∣
ω=ε0

k

=
∫

d3q

(2π )3

∫
dω′

2π

vq

εq(ω′)
1

ω − ω′ − ε0
k−q ± iη

∣∣∣∣∣
ω=ε0

k

,

(13)

and subsequently elaborated “off the energy shell” [1] and
termed G0W0 self-energy [5]. Here G(0) denotes the unper-
turbed propagator of the electron or hole with ±iη in the
denominator, respectively, and

W (0)
q (ω′) = vq/εq(ω′) (14)

stands for the matrix element of the bare Coulomb interaction
vk−q,k = vq linearly screened by the dielectric function of the
electron gas εq(ω′).

Using (13) as a point of departure, we can invoke the def-
inition of dielectric function in the linear response formalism
and write (14) in the form

W (0)
q (ω′) = vq + vqχq(ω′)vq, (15)

where χq(ω′) is the electronic density-density response func-
tion calculated in the standard random-phase approximation
(RPA) or one of its generalized versions [44]. Now it is
easy to verify that the function χq(ω′) calculated within
the linear response formalism has the properties of a boson
propagator (10) with the spectrum of excitations given by
Dq(ω′) = (1/π )|Imχq(ω′)| [33]. This makes it possible to
represent the off-the-energy-shell form of expression (13) as

	
G0W0
k (ω) = 	

(1)
k + 	

(2)
k (ω). (16)

The first component on the right-hand side (RHS) of (16) reads

	
(1)
k =

∫
d3q

(2π )3
vq

∫
dω′

2π
G

(0)
k−q(ω − ω′) (17)

and represents the ω-independent Fock-like correction equal
to the first-order exchange self-energy [17]. This static
contribution can be associated with other static contributions
that renormalize ε0

k, but it will be of no further interest in
the context of dynamical particle-boson interactions studied
within the cumulant approach. On the other hand, the second
component (upper and lower signs stand for electrons and
holes, respectively),

	
(2)><
k (ω) =

∫
d3q

(2π )3

∫
dω′ v2

qDq(ω′)

ω − ε0
k−q ∓ ω′ ± iη

, (18)

FIG. 1. (a) Diagram for the second-order contribution in the
expansion of a Green’s function (5) of an electron injected with
the initial wave vector k into an empty band. Solid lines denote
the unperturbed propagators, wavy lines denote the unscreened
Coulomb interaction, and the bubble denotes the electronic response
function χq(t2,t1) of the system. (b) Equivalent diagram in the
quasiparticle-boson model outlined in Sec. II. Solid circles denote
the interaction matrix element vq from Eq. (15) and the dash-dotted
line denotes the boson propagator Dq(t2 − t1) in the intermediate state
interval (t1,t2). (c) Example of a second-order diagram involving two
electrons above and one hole below the Fermi level in the same
interval. This term cannot be generated within the single-particle
limit of the Hamiltonian (1).

is dynamic as it gives ω-dependent contribution to (16) shown
diagrammatically in the time domain as a self-energy insertion
in Fig. 1(a). This has also been referred to as the correlation part
or polarization contribution in Refs. [6] and [8], respectively.
Therefore, the term (18) can be considered as describing the
quasiparticle (electron or hole) interaction with the field of
bosonized excitations of the surrounding electron gas. This
passage is illustrated in Figs. 1(a)–1(c).

Expressions (13)–(18) enable us to establish a rigorous
correspondence between the partial solution of the problem
of dynamic interactions of a quasiparticle obtained within
the GWA and cumulant approach. We note that it is also
possible to extend the G0W0 approximation by dressing
G(0) through the self-energy insertions induced by W (0) and
solve self-consistently the equation for the thus-defined G

[5,48]. First-principles calculations using the self-consistent
GW formalism were reported in Refs. [57–61]. However, we
demonstrate in the next sections that the results of such higher-
order renormalizations cannot be mapped onto the standard
cumulant expansion in ascending powers of the coupling
constant λ [13,17]. Hence, they should not be pursued in the
combined GW + C treatment of quasiparticle propagators.
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IV. SINGLE-QUASIPARTICLE PROPAGATORS FROM
CUMULANT EXPANSION

A. Cumulant expansion for a coupled particle-boson system

The dynamics of a quasiparticle injected into a state in
an empty band state of the system is conveniently extracted
from the quasiparticle propagator (22). Here we follow the
notation and conventions of Refs. [16] and [17] and, for the
sake of easier visualization, derive first the cumulants for
electron propagators in the time domain. The cumulants for
the propagators describing hole dynamics in occupied bands
are derived by analogy in Sec. IV C.

We start from the Hamiltonian (1) and assume that the
eigenstates {|k〉} of H0 which define the initial one-electron
band structure of the system are known, i.e., that this part of
the problem has been solved first. In the single-particle limit
the ground-state average in (5) can be conveniently calculated
by using two standard hints. First, on noticing that before
the injection of the particle into a band state described by
the quantum number k, one has H |0〉 = H 0|0〉 = E0|0〉. This
is in contrast to many-particle systems in which the initial
ground state |0〉 is also renormalized by the interaction λV .
Second, the evolution operator governing the time dependence
of the operators c

†
k(t) = eiHtc

†
ke

−iH t and c
†
k(t) = eiHtcke

−iH t

is represented in the form

e−iH t = e−i(H 0+λV )t = U (t) = e−iH 0tUI (t). (19)

Here UI (t) = eiH 0t e−iH t is the evolution operator in the
interaction picture generated by the perturbation λV and
satisfying the integral equation

UI (t) = 1 − i

∫ t

0
dt ′VI (t ′)UI (t ′), (20)

where VI (t ′) = eiH 0t ′λV e−iH 0t ′ . Now, since the unperturbed
single-particle Green’s function in the absence of the interac-
tion λV reads

G
(0)
k (t − t ′) = −iθ (t − t ′)e−i(ε0

k−iη)(t−t ′), (21)

we can write the full single-particle Green’s function (5)

Gk(t − t ′) = G
(0)
k (t − t ′)〈k|UI (t − t ′)|k〉, (22)

where, in shorthand notation, |k〉 = c
†
k|0〉. Thus, the calcula-

tion of the single-particle propagator deriving from (5) reduces
to the evaluation of the diagonal matrix elements of UI (t) in
the unperturbed basis. Thereby a perturbative solution to (5)
involves the unperturbed propagators (10) and (21) and the
matrix elements of λV .

The evolution operator UI (t) can always be expressed in an
exponential form [62] and the averages of such generalized
exponential operators are most conveniently calculated by
using cumulant expansion in powers of the coupling constant λ
of the perturbation that generates UI (t) [13]. This gives [62,63]

〈k|UI (t − t ′)|k〉 = eCk(t−t ′) (23)

and hence

Gk(t − t ′) = G
(0)
k (t − t ′)eCk(t−t ′). (24)

In the present problem defined by the Hamiltonian (1) the
cumulant function

Ck(t − t ′) =
∞∑
l=2

C
(l)
k (t − t ′) (25)

is an infinite ascending series of cumulants in even powers
of λ, viz. C

(l)
k (t − t ′) ∝ λl . They can be evaluated by directly

employing the cumulant averaging of time-ordered products
of operators VI (t) [13,23,32], or by equating the λl th-order
terms of the Dyson expansion for the Green’s function on
the left-hand side (LHS) with the same powers of expanded
exponential on the RHS of Eq. (24) [17,28]. The series (25)
can converge fast even for strong coupling provided the
correlations between successive quasiparticle-boson scattering
events in higher-order cumulants are small [64,65], e.g.,
under the conditions of small relative transfers of energy
and momentum from or to the quasiparticle during its
propagation [23,32,36]. This is a consequence of a general
theorem [13] which states that higher-order cumulants are
expressed as differences between correlated and uncorrelated
averages of the time-ordered products of operators VI (t).
Thus, in the limit of infinite quasiparticle mass, which is
realized for holes created in deep core levels of solids or
adsorbates, already the second-order cumulant provides an
exact result to (24) and (25) [18,27,52]. This is in stark contrast
to the standard Dyson expansion of the Green’s function
(or the corresponding self-energy), where such an additional
small expansion parameter does not exist. This has a very
important practical implication in that the approximate Green’s
function (24) calculated by including only a small number
of low-order cumulants gives a very accurate result, whereas
the Dyson expansion of similar accuracy usually requires an
infinite number of terms.

From the general properties of the evolution operator (20)
generated by the Hamiltonian (1) one derives the following
relations [36] satisfied by the cumulants (25)

Ck(0) = 0, (26)

Ċk(0) = 0, (27)

where the dot denotes the time derivative. The properties (26)
and (27) apply to the whole series (25) as well as separately
to its constituents. Expression (26) reflects the conservation of
the norm of the spectrum Nk(ω) (unitarity). Relation (27) is a
consequence of the property C

(l�2)
k (t → 0) ∝ t l arising from

the generating interaction (4) and reflects the conservation
of the first moment of the spectrum Nk(ω) (zero work sum
rule [19,36]).

For the quasiparticle-boson model interaction (4) the
second-order cumulant C

(2)
k (t) can be readily calculated [36]

and for further convenience and reference its explicit derivation
is presented in Sec. IV B. Following the procedures outlined
in Ref. [13], the contributions from higher, fourth-order cumu-
lants were calculated in Refs. [23] and [32] for nondispersive
and dispersive bosons, respectively, and for all reasonable
values of the coupling constants they have in both cases
been found negligible relative to the ones from second-order
cumulants. This property has been widely assumed as a
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general feature in all later modelings of single-quasiparticle
interactions with bosonic-type excitations based on cumulant
expansion [16,21,29,30,33,35–37,41–43]. This approach has
also proved extremely useful in the descriptions of ultrafast
phenomena that can be revealed by time-resolved electron
spectroscopies [33,34,36,44,66].

At this point a note is in order on the use of unperturbed
quasiparticle Hamiltonians Hqp, which are diagonal on the
Kohn-Sham (KS) one-particle state basis and thus embody
the electronic exchange-correlation (xc) effects in the corre-
sponding KS one-particle energies. In order to avoid in this
case the overcounting of xc effects in Eqs. (24) and (25), one
should introduce the first-order cumulant C

(1)
k (t − t ′) which

subtracts these effects from the renormalized energies in
Gk. This is analogous to the treatment of static initial-state
interactions described in Fig. 8(b) of Ref. [18] and in Sec. II B.
of Ref. [34]. In the case of KS states obtained within the
local-density approximation (LDA) scheme, this is achieved
by extending (25) with the term

C
(1)
k (t − t ′) = −i

[−vxc
k (t − t ′)

]
, (28)

where vxc
k is the diagonal matrix element of the local KS

LDA exchange-correlation potential in the state k. This gives
a stationary contribution to the quasiparticle energy that
can be associated with ε0

k in G
(0)
k , thereby allowing further

treatment of the dynamic features of cumulant expansion
without limitations imposed on the unperturbed basis. Note
in passing that the property (27) does not apply to the ad hoc
added cumulant (28).

B. Second-order cumulant

The Feynman diagram corresponding to the second-order
process in λV that is common to cumulant and Dyson
expansion of Green’s function (5) governed by (1) is shown in
Fig. 1(b). It involves the unperturbed propagators (10) and (21)
and the matrix elements Vk−q,k of the interaction V in the
basis of quasiparticle and boson eigenfunctions diagonalizing
H 0. For interactions (4) constrained to the interval (t ′,t),
this gives the first nonvanishing correction to the unperturbed
single-electron Green’s function to order λ2:

iG
(2)
k (t − t ′) =

∫ t

t ′
dt2

∫ t

t ′
dt1iG

(0)
k (t − t2)

[∑
q

(−iλVk−q,k)2iDq(t2 − t1)iG(0)
k−q(t2 − t1)

]
iG

(0)
k (t1 − t ′) (29)

= iG
(0)
k (t − t ′)

[∑
q

(−iλVk−q,k)2
∫

dω′Dq(ω′)
1 − e−i(ε0

k−q+ω′−ε0
k)(t−t ′) − i

(
ε0

k−q + ω′ − ε0
k

)
(t − t ′)

(ε0
k−q + ω′ − ε0

k)2

]
(30)

= iG
(0)
k (t − t ′)C(2)

k (t − t ′). (31)

To obtain (30) and (31), we have exploited the single particle-imposed time ordering t > t2 > t1 > t ′. The thus-obtained
G

(2)
k (t − t ′) serves as a definition of the second-order self-energy given in the time domain through the expression in the square

brackets on the RHS of (29) and of the second-order cumulant generated by the same interaction and given by expression in the
square brackets in (30). Respectively, they are given by the expression

−i	
(2)
k (t2 − t1) =

∑
q

(−iλVk−q,k)2iDq(t2 − t1)iG(0)
k−q(t2 − t1), (32)

which constitutes the diagram in Fig. 1(b) and whose FT yields (18), and

C
(2)
k (t − t ′) = −

∑
q

(λVk−q,k)2
∫

dω′Dq(ω′)
1 − e−i(ε0

k−q+ω′−ε0
k)(t−t ′) − i

(
ε0

k−q + ω′ − ε0
k

)
(t − t ′)(

ε0
k−q + ω′ − ε0

k

)2 . (33)

The factorization appearing in the last line of (31) is a direct
consequence of the simple exponential form of unperturbed
G

(0)
k (t) given by (21), which allows propagation in one time

direction only. Such a factorization can be established in all
orders of perturbation and enables the rearrangement of the
Dyson series for a single-particle propagator into a product
of iG

(0)
k (t − t ′) and the terms that can be directly related to

exponentiated sum of cumulants (25) [17,28]. We stress that
this property does not generally hold for causal, time-ordered
quasiparticle propagators; therefore, time-ordered propagators
cannot be represented in simple cumulant form. This implies
that the use of the cumulant expansion is fully justified only
when considering the quasiparticle Green’s functions propa-
gating in one time direction only [15,18,21,23,27,32,36,38].

Another important property of the thus-derived G
(2)
k (t −

t ′) is the absence of the factor iη from explicit expression
for C

(2)
k (t − t ′) and its presence only in the factorized term

G
(0)
k (t − t ′). This is due to cancellations of exponents in the

products of factors e−ηtj e+ηtj arising from two successive G
(0)
k s

in each j th interaction vertex. Note that for this to occur η

need not be infinitesimal but only constant. Therefore, in order
to study the temporal properties of C

(2)
k (t − t ′), it would be

inappropriate to introduce at the outset the factor iη into the
denominator on the RHS of (33), the more so because the
whole expression is nonsingular for (ε0

k−q + ω′ − ε0
k) → 0.

These subtle properties of C
(2)
k (t − t ′) are further elaborated

below.
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C. Integral representation of Ck(t − t ′)

Expression (33) can be brought to a more compact form by
making use of definition (10) and by introducing the interaction
weighted joint density of excitations ρ

(2)>
k (ν) for electron

propagation with ε0
k and ε0

k−q above the Fermi level [16,36].
Introducing the matrix elements λVk−q,k = vk−q,k we obtain
by using (10) and (18)

ρ
(2)>
k (ν) =

∑
q

v2
k−q,k(1 − nk)(1 − nk−q)

∫ ∞

0
dω′Dq(ω′)

× δ
[
ν − (

ω′ + ε0
k−q − ε0

k

)]
= − 1

π
Im	

(2)>
k

(
ε0

k + ν
)
. (34)

The thus-defined ρ
(2)>
k (ν) is bounded from below at ν =

−(ε0
k − Elow) � 0 when the particle is scattered to the lowest

unoccupied state of energy Elow, which is the supremum of the
band bottom energy ε0

k−q = 0 and the Fermi energy εF = μ.

The other limit ρ
(2)>
k (ν → ∞) is dictated by the asymptotic

behavior of Imχq(ν) [67].
In the case of single-hole propagation (symbol <) the

corresponding joint density of excitations takes the form

ρ
(2)<
k (ν)

=
∑

q

v2
k−q,knknk−q

∫ ∞

0
dω′Dq(ω′)δ

[
ν−(

ω′−ε0
k−q + ε0

k

)]

= 1

π
Im	

(2)<
k

(
ε0

k − ν
)

(35)

and is lower bounded at ν = −(Eup − ε0
k) � 0, where Eup is

the infimum of the upper occupied band edge and εF .
Definitions (34) and (35) enable us to write the second-order

cumulant for electron and hole propagation in a compact form,

C
(2)><
k (t) = −

∫
dνρ

(2)><
k (ν)

1 − e∓iνt ∓ iνt

ν2

= −
∫

dν

[
∓ 1

π
	

(2)><
k

(
ε0

k ± ν
)]1 − e∓iνt ∓ iνt

ν2
.

(36)

Here it should be observed that ρ
(2)><
k (ν) are not on-the-energy-

shell quantities so that the energy conservation contained in

C
(2)><
k (t) is determined solely by the properties of the long-time

limit t → ∞ of expression (36).
Although the integral representation (36) of the cumulant

function has been here established for the second-order term
in (25), it can be shown (see Sec. A of the Supplemental
Material [68]) that the whole cumulant series (25) can be
formally obtained through the mapping ρ(ν) ↔ C(t) using
the same integral transform as in (36) [36], viz.,

C
>
<

k (t) = −
∫

dνρ
>
<

k (ν)
1 − e∓iνt ∓ iνt

ν2
. (37)

In both cases (hereafter in the present subsection we drop the
superscripts > and <)

ρk(ν) =
∞∑
l=2

ρ
(l)
k (ν), (38)

with ρ
(l)
k (ν) ∝ λl and where ρ

(2)
k (ν) is the lowest term of the

series from which (28) is excluded. Owing to the bijection
properties of the integral transform (37), here each ρ

(l)
k (ν)

can be uniquely obtained from the inverse transform of the
corresponding C

(l)
k (t) [36] defined by

ρ
(l)
k (ν) = − 1

2π

∫ ∞

−∞
C̈

(l)
k (t)eiνtdt, l > 1, (39)

where double dot denotes second-order time derivative. Ex-
pressions (37) and (38) also enable a compact semidiagonal
representation of the initial Hamiltonian (1) in terms of particle
interaction with drag bosons formulated in Sec. B of the
Supplemental Material [68]. This representation facilitates
direct constructions of the diagonal single-quasiparticle prop-
agators (5) and cumulant series (25).

Despite the fact that (39) now extends the applicability
of (36) to the entire series (25), it again poses the question of
tedious derivations of higher-order cumulants and the ensuing
ρ

(l)
k (ν) by the standard cumulant expansion of the evolution

operator [13,32]. Therefore, the importance of the general
integral representation defined by (37)–(39), and proven in
Sec. A of the Supplemental Material [68] is in the domain
of the existential theorem for representation of the cumulant
series generated by the Hamiltonian (1) and the discussion
of its global properties in the various temporal intervals of
physical relevance (see Sec. V). However, as pointed out
in Sec. IV D, all higher-order terms give rise to negligible
corrections in the case of systems that dynamicswise can be
mapped to particle-boson model Hamiltonians with standard
coupling strengths [23,32].

D. Range of validity and limitations of the second-order
cumulant expansion

Cumulant expansion is of great practical importance for the
class of problems or model systems for which the low-order
cumulants provide either the full or the dominant contribution
to the series (25). A typical example of the former case is
the core hole problem described by (1) with the single core
level Hamiltonian H 0

c = ε0
c c

†
ccc and the factorized coupling

of the hole density to the boson field, viz., λV ∝ −ccc
†
c (see

Refs. [18,52]). Here the sum of the first- and second-order
cumulants provides an exact solution due to the absence
of any correlations between the successive boson emission
and absorption events because the source of perturbation on
the boson field, i.e., the localized core hole, is dynamically
structureless. Its only degree of freedom is its energy εc, which,
likewise the matrix elements vk−q,k → vq, is not affected by
the quasiparticle recoil in the boson excitation processes. This
gives rise to cancellation of all higher-order cumulants which
measure correlations among the interaction vertices [13] and
to a reduction of cumulant series (25) to the second-order
term (36). This feature has been successfully employed in the
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interpretations of core level line shapes in the bulk [18,27] and
at surfaces [52].

The above discussion gives a clue as to the validity of
approximate treatment of the problem posed by quasiparticle-
boson Hamiltonian (1). Inspection of the expressions for the
fourth-order cumulants [23,32] shows that in the presence of
translational invariance in the phase space which applies to the
energy differences

ε0
k+q+p − ε0

k+q ↔ ε0
k+p − ε0

k (40)

and to the interaction matrix elements

Vk+q+p,k+q ↔ Vk+p,k, (41)

the fourth- and higher-order cumulants turn to zero. These
invariances are characteristic of the absence of correlations
between successive boson emission and reabsorption events.
Hence, in the complete absence of such correlations, as is
the case with boson fields perturbed either by structureless or
classical time dependent potentials, the cumulant series (25)
reduces to a single term given by the second-order cumu-
lant (33) in which Vk−q,k → Vq and ε0

k−q − ε0
k → 0. This

exactly solvable limit of the particle-boson Hamiltonian is
known as the forced oscillator model [16,17,69,70]. If the
correlations are nonvanishing but small, then the second-order
cumulant expansion provides a good approximation for the
calculation of quasiparticle amplitudes (24) [23,32].

The translational invariances (40) and (41) are expected
to hold well in two extreme situations. The first is the case
of very large quasiparticle mass, or equivalently very narrow
quasiparticle band, which is the core hole limit elaborated
above. The second is the case of a very broad quasiparticle
band and initial ε0

k far from the band edges (or from the Fermi
level). In this case the variations of ε0

k may be considered to be
nearly linear, and the variation of the matrix elements of λV

nearly zero for small variations of the quantum number |k|,
which altogether makes all C

(l>2)
k (t) very small. Therefore,

the convergence of the cumulant series (25) is system specific
as it depends on the trade-off between the strength of the
interaction (i.e., the magnitude of the coupling constant λ) and
the correlations between successive scattering events.

Second-order cumulant expansion becomes increasingly
worse as the quasiparticle energy moves closer to the band
edges where correlations between subsequent scattering events
induced by λV may become large. In this regime the low-order
self-energy corrections may represent a better approximation
to the quasiparticle propagator, particularly in relation to
its asymptotic time behavior characterized by the so-called
quasiparticle collapse [36,71–74]. Moreover, near the Fermi
level the single-particle approximation which separates elec-
tron from hole motion and leads to (34) and (35) becomes
unrealistic and the processes like those shown in Fig. 1(c)
need be considered. In principle, there is no difficulty with
their implementation because they also generate the same form
of second-order cumulant provided t1 and t2 are restricted to

the time interval (t ′,t), and the corresponding ρ
(2)><
k (ν) is also

readily obtainable from the G0W0 self-energy contained in
Fig. 1(c). Rather, the problem arises in that the analogous
W -induced fluctuations across the Fermi surface exist also
outside this interval and hence in a consistent approach should

be coupled to the quasiparticle injected into the same region
of the phase space. This leads to the standard, adiabatic
formulation of Green’s function (6) amenable to usual per-
turbation treatment which, in general, is not representable
in cumulant form [21]. An analogous argument holds also
for holes created near the Fermi surface. However, cumulant
representation with partly restored afore-required consistency
is regained by resorting to a hybrid approach in which the
renormalization of one-particle states in the intervals (−∞,t ′)
and (t,∞) is accounted for through their representation by
stationary KS states and within the excitation interval (t ′,t)
through dynamical renormalization by the generically same
interaction W using cumulant expansion. The second-order
cumulant is in this case generated by the full G0W0 self-
energy, as implemented in [30] and extensively used thereafter.
However, the degree of consistency of this matching near
the Fermi level is not a priori clear and deviations from the
standard Feynman-Dyson perturbation expansion remain to be
explored.

V. TEMPORAL EVOLUTION OF THE AMPLITUDE AND
PHASE OF THE QUASIPARTICLE PROPAGATOR

Using the closed-form solution (24) for the propagator
in cumulant representation, one can introduce the quantities
which conveniently measure temporal evolution of the quasi-
particle upon its promotion into the initial state |k〉. Again
we first discuss the case of electron propagators and spectra
and then deduce the corresponding quantities for holes. In
this context the quantity of primary interest is the survival
probability of the quasiparticle initial state,

Lk(t) =| Gk(t) |2= exp[2ReCk(t)], (42)

and the evolution of its phase defined by

φk(t) = −Im ln [iGk(t)] = ε0
kt − ImCk(t) = ε0

kt + ϕk(t).

(43)

In this notation the derivative ∂ϕk(t)/∂t describes the relax-
ation of quasiparticle energy in the course of time.

Of particular interest is the behavior of (42) and (43) on
the various time scales characteristic of the studied system.
Quite generally, the quasiparticle evolution generated by the
Hamiltonian (1) and described by (42) and (43) exhibits three
distinct consecutive stages [36]:

(i) early time non-Markovian evolution characterized by
the initial off-the-energy-shell transients;

(ii) intermediate-stage quasistationary Markovian evolu-
tion characterized by the exponential decay of quasiparticle
probability amplitude (42) and stationary derivative of the
phase ∂ϕk(t)/∂t ;

(iii) collapse of the quasiparticle amplitude and phase in
the asymptotic limit t → ∞.
The remainder of this section discusses the characteristics of
these evolution regimes.

A. Initial transients and the crossover to quasistationary regime
of quasiparticle propagation

The early quasiparticle propagation past its injection into
the eigenstate |k〉 of H 0 is before the establishment of
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energy conservation governed by initial off-the-energy-shell
transients. The first transient is the Zeno decay,

Lk(t → 0) = exp
( − t2/τ 2

Z

)
, (44)

where τZ is the so-called Zeno time, which measures the con-
vexity of the initial drop of the amplitude of the quasiparticle
during its earliest ballistic propagation in the band [75]. This is
followed by virtual excitation of the modes that constitute the
response of the heat bath described by H 0

bos. Since the coupling
to coherent collective modes of the heat-bath-like plasmons is
usually strong, the initial transients in (42) and (43) may be
dominated by oscillations with the period of inverse plasmon
frequency. The onset of steady-state quasiparticle propagation
is governed by the establishment of energy conservation; this
happens when the functionals (1 − cos νt)/ν2 and sin νt/ν in
the general integral representation of Ck(t) defined by (37)
can be replaced with their equivalent long-time asymptotic
forms πδ(ν)|t | and πδ(ν), respectively. Since this strongly
depends on the structure of ρk(ν) the onsets are very system
specific. Illustrative examples of such specificities pertaining
to holes excited in Q2D bands on Ag(111) and Cu(111)
surfaces are presented in Figs. 4 and 5 of Ref. [44]. To grasp
their emergence, it is of utmost importance to note that the
description of establishment of steady-state propagation does
not require the introduction of an additional infinitesimal iη

into the denominator of the integrand on the RHS of (37) as
long as the oscillating terms are retained. Namely, the neglect
of oscillatory terms and simultaneous introduction of iη in
the denominator is an auxiliary procedure in the treatments
based on the assumption of adiabatic temporal boundary
conditions. The latter are typical of the scattering experiments
in which the projectile-target interaction is switched on and
off adiabatically, whereas in the present problem we deal
with the instantaneous switching on of λV that is typical of
photoemission boundary conditions. It is only in the long-time
or asymptotic limit that the two types of temporal boundary
conditions may give the same results. In other words, the
kernel of the integral transform on the RHS of (37), viz.,
the function (1 − e−iνt − iνt)/ν2, takes a proper account of the
passage of the quasiparticle from the initial transient, energy
nonconserving interval to a subsequent quasistationary regime
of propagation in which the energy of the quasiparticle-boson
system is conserved.

B. Quasistationary regime

1. Polarization energy shift

Once the quasistationary regime is reached one can single
out from Ck(t) its imaginary part linear in t that determines the
long-time behavior of ϕk(t) in (43). This gives the polarization
or energy relaxation shift �k of the unperturbed level energy
ε0

k, viz.,

C
pol><
k (t) = −i

[
∓

∫
dν

ρ
>
<

k (ν)

ν

]
t = −i�

>
<

kt. (45)

The integral is taken in the sense of principal value with the
range of integration extended over the whole bandwidth of
ρ

>
<

k (ν). This is in accord with the notion of polarization or
relaxation energy involving all virtual, off-the-energy-shell

excitations embodied in ρ
>
<

k (ν). Thus, substituting the leading

cumulant joint density of excitations ρ
(2)><
k (ν) given by (34)

and (35) into expression (45), one obtains the second-order
Rayleigh-Schrödinger (RS) perturbation theory correction
to the unperturbed quasiparticle energy ε0

k derived from
expression (18), viz.,

�
(2)><
k = Re	(2)><

k

(
ε0

k

) ∝ λ2, (46)

and analogously so for the fourth-order terms ∝λ4 [17].
This illustrates that the natural basis for cumulant represen-
tation (24) is the space spanned by the one-particle eigenstates
and eigenenergies of H 0 [13,17], and not by any partially
renormalized quantities (e.g., like those derived from SC
Brillouin-Wigner perturbation theory), as that would lead to
overcounting of the terms of the same powers in λ. This
could have been inferred also from the explicit form of the
second-order cumulant (33).

2. Quasistationary propagation of recoiling quasiparticles

The cumulant function Ck(t) may embody another contri-
bution linear in t besides the purely imaginary term (45), yield-
ing the polarization energy. This arises from the long-time limit
of (1 − cos νt)/ν2 → πδ(ν)|t | in the integral representation
of Ck(t) [cf. expression (37)], which is nonvanishing provided
there exists a quasiparticle component ρ

qp
k (ν) of ρ

>
<

k (ν) with
smooth low-energy behavior,

ρ
qp
k (ν → 0) = ρ

qp
k (0) + ν∂ρ

qp
k (ν)/∂ν|ν=0. (47)

Such a quasistationary property of ρ
qp
k (ν) requires that the

quasiparticle recoil energy ε0
k−q − ε0

k be degenerate with the
continuum of heat-bath excitations like the electron-hole pairs,
acoustic phonons, etc. This yields the long-time behavior of
the quasiparticle component C

qp
k (t) of Ck(t) comprising the

terms linear in t and a complex constant, viz.,

lim
t→±∞ C

qp>
<

k (t) = −i
(
�

qp>
<

k ∓ i�
qp>

<

k

)
t − w

qp>
<

k . (48)

Here

�
qp>

<

k = πρ
qp>

<

k (0) (49)

has the meaning of the quasiparticle decay rate per unit
time and is an on-the-energy-shell quantity, in contrast to

the polarization energy �
qp>

<

k . The structure of the complex

constant w
qp>

<

k , which derives from quasistationary ρ
qp>

<

k (ν)
around the excitation threshold ν = 0, can be deduced by using
the equivalence of long-time limits of the kernel of integral
transformation (37) and its stationary representation

w
qp>

<

k = lim
t→±∞

∫
dν

1 − e∓iνt

ν2
ρ

qp>
<

k (ν) →
∫

dν
ρ

qp>
<

k (ν)

(ν ± iη)2

= −
∫

dνρ
qp>

<

k (ν)
∂

∂ν

1

ν ± iη
=

∫
dν

∂
∂ν

ρ
qp>

<

k (ν)

ν ± iη
. (50)

In the case of second-order cumulants we substitute expres-
sions (34) and (35) into (45) and (50), change the integration
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variables, and use the Kramers-Kronig relations to obtain

�
qp>

<

k ∓ i�
qp>

<

k = Re	qp>
<

k

(
ε0

k

) + iIm	
qp>

<

k

(
ε0

k

)
, (51)

w
qp>

<

k = − ∂

∂ν
	

qp>
<

k (ν)|ν=ε0
k
. (52)

Relations (48), (51), and (52) signify that the analytic proper-
ties of G

qp
k (ω) deriving from (48) are determined dominantly

by the pole located at ω = ε0
k + �

qp>
<

k ∓ i�
qp>

<

k in the complex

plane, with the weight (residue) Zk = exp(−w
qp>

<

k ). Note that
other nonanalytic structures that may appear in the full Gk(ω),
e.g., like those associated with the cuts in complex plane, give
rise to different temporal asymptotic behavior of Gk(t) that
cannot be represented by the simple form (48) (see Sec. V C).

For later convenience we may generalize these results
to several bands. This implies that all intermediate-state
summations should also include allowed interband transi-
tions (k,n) → (k′,n′). Then the asymptotic behavior of the
cumulants (48) and (28) produces a peak in the quasiparticle
spectrum in the nth band described by

N qp>
<

k,n (ω) =
( 1−nk,n

nk,n

)
π

× e−wk,n
[�k,n cos αk,n−(ω − Ek,n) sin αk,n]

(ω−Ek,n)2 + �2
k,n

,

(53)

where in the shorthand notation wk,n = Rewqp>
<

k,n , αk,n =
Imw

qp>
<

k,n , Ek,n = ε0
k,n + �

qp>
<

k,n − vxc
k,n, and �k,n = �

qp>
<

k,n . The
weight of (53) is reduced by the Debye-Waller-factor-like
expression exp(−wk,n), whereas its nonvanishing imaginary
part αk,n gives rise to deviations of the spectral shape from a
pure Lorentzian. The remaining spectral weight is shifted to the
inelastic wings and satellite structure. Note also that, contrary
to popular belief, owing to the short-time behavior (44) the
wings of the spectrum far from the quasiparticle energy Ek,n

do not acquire a Lorentzian line shape. Moreover, in the case
of electron promotion into the lowest unoccupied (or of hole
into the highest occupied) band state |k,n〉, the threshold peak
of the quasiparticle spectrum reduces to a δ function followed
by the one-sided inelastic wing [16,36].

Exponential decay of the quasiparticle amplitude (48)
cannot continue indefinitely in bands of finite width. Once
the electron (hole) reaches the lowest unoccupied (highest
occupied) level, its evolution collapses from exponential to
power-law asymptotic decay [71]. This is illustrated in Fig. 2
of Ref. [72] and Fig. 10 of Ref. [36].

C. Temporal evolution of recoilless quasiparticles

For the behavior of ρk(ν) around ν = 0 that is different from
that outlined in Sec. V B 2, the long-time limit of Ck(t) may
acquire a nonlinear time dependence (cf. Sec. 3 of Ref. [36]).
This, in turn, produces a profound effect on the quasiparticle
spectrum (11). The most familiar case is the forward-scattering
limit of recoilless quasiparticles arising from their infinite
effective mass in flat bands so that ε0

k−q − ε0
k 
 0. A classical

example of such a reduction of the Hamiltonian (1) is provided

by a core hole coupled to the continuum of incoherent e-h
excitations constituting the system heat bath [18,52]. In this
case the low-energy or infrared (IR) limit of the joint density
of states (38) takes the form [16]

ρIR(ν) = ν
∂ρ

∂ν

∣∣∣∣
ν=0

= αν, ν � �IR, (54)

where, due to the infinite mass of the source, the subscript k
is omitted and �IR denotes the cutoff parameter for the linear
dependence in (54). Taking for calculational convenience the
exponential form of the cutoff, exp(−ν/�IR), we obtain an
exact result,

CIR(t) = −i(∓α�IR)t − α ln(1 ± i�IRt), (55)

where again the upper and lower signs refer to electrons
(positive t) and holes (negative t), respectively. Substitution
of (55) into (24) leads to the quasiparticle propagator

GIR(t) = ∓iθ (±t)e−iε0t e±iα�IRt

(1 ± i�IRt)α
. (56)

This exhibits the correct short-time limit (44), which is directly
succeeded by the long-time limit of asymptotic power-law
decay ∝1/tα , i.e., without the passage through the stage of
exponential decay ∝ exp(−�t) characteristic of the recoiling
quasiparticle regime described by Eq. (48). This is due to
the absence of pole(s) from the FT of (56), whereby its
(non)analytical properties arise exclusively from the cut along
the positive (negative) real axis in the ω plane. This renders
the spectrum exhibiting the IR power-law divergence at the
excitation threshold

N
>
<

IR(ω) = e−(ω−ε0±α�IR)/�IRθ (ω − ε0 ± α�IR)

�α
IR�(α)(ω − ε0 ± α�IR)1−α

, (57)

where �(α) is the � function, and α plays the role of critical
exponent of the IR power-law divergence. A peculiar property
of the spectrum (57) in comparison with (53) is the complete
suppression of the elastic component at the quasiparticle
threshold excitation energy (since the corresponding Debye-
Waller exponent (DWE) is divergent, i.e., RewIR → ∞ for
t → ∞) and the removal of the entire spectral weight to the
IR divergent inelastic side wing.

D. Satellite structure in the quasiparticle spectrum

The joint density of excitations ρk(ν) may embody, besides
the quasiparticle component ρ

qp
k (ν) that is continuous around

ν = 0 and leads to (48), also the components that exhibit sharp
peaks located at ωsat away from ν = 0 (cf. Fig. 3 in Ref. [76]),
viz., that we have

ρk(ν) = ρ
qp
k (ν) +

∑
sat

ρsat
k (ν). (58)

In electron gas such components ρsat
k (ν) may originate from

plasmon modes of frequency ω
pl
q . A prerequisite for the

occurrence of a prominent peak in ρsat
k (ν) around ν = ωsat is

the small quasiparticle recoil energy ε0
k − ε0

k−q � ω
pl
q 
 ωsat.

This gives rise to strong contributions from the oscillating term
in the integrand on the RHS of (36), the so-called satellite
generator, and produces contributions to Ck(t) oscillating
with ωsat.
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1. Satellites in the plasmonic polaron model

To demonstrate the occurrence of satellite structures,
we first introduce the simple plasmonic polaron model
based on the ansatz for plasmon-pole(s)-dominated Dpl

q (ω′) =
1
π
|Imχ

pl
q (ω′)| = Spl

q δ(ω′ − ω
pl
q ). Here Spl

q and ω
pl
q are the

weight (residue) of a particular plasmon pole. In the limit
of small recoil this leads to

ρsat><
k (ν) =

∑
q

v2
k−q,kSpl

q δ
[
ν − (

ωpl
q ± ε0

k−q ∓ ε0
k

)]


 wsat
k

(
ωsat

k

)2
δ
(
ν − ωsat

k

)
, (59)

in which the thus-defined wsat
k is generally strongly k depen-

dent, whereas the k dependence of ωsat
k is expected to be weak;

i.e., ωsat
k 
 ωsat as it originates from weakly dispersive ω

pl
q .

Substituting this into (37) we obtain

Csat><
k (t) = −i�sat><

k t + wsat><
k e∓iωsatt − wsat><

k , (60)

where

�sat><
k = �sat><

k

(
ε0

k

) 
 ∓
∑

q

Spl
q v2

k−q,k/ω
sat, (61)

�sat><
k = �sat><

k

(
ε0

k

) = 0, (62)

wsat><
k 


∑
q

Spl
q

(
vk−q,k

ωsat

)2

=
∣∣�sat><

k

∣∣
ωsat

. (63)

Thereby each source peak in ρsat
k (ν) gives rise to the corre-

sponding energy shift (61), the satellite generator wsat
k e∓iωsatt ,

and the DWE (63), and they are all additive in Ck(t) and
hence multiplicative in (24). Consequently, the spectrum (11)
obtained from the FT of the product of e−wsat

k and the expanded
exponential exp(wsat

k e∓iωsatt ) acquires the form of a series of
discernible maxima or satellites located at integer multiples
∓lωsat of the fundamental satellite frequency and weighted
by e−wsat

k (wsat
k )l/ l!. Their shapes are given by the convolution

of the narrow satellite-generating peak with the quasiparticle
peak given by (53) or (57). In other words, each satellite
peak in the spectrum (11) replicates the convolution with the
structure of the quasielastic threshold peak [18,30]. Therefore,
the quasiparticle spectrum in the plasmonic polaron model can
be represented by a generic multiboson excitation expression
frequently cited in the literature [17,18,23,35,52,77,78] (for
generality we restore the band index n),

N
>
<

k (ω) =
∞∑

n,l=0

e−wsat
k,n

(
wsat

k,n

)l

l!
N qp>

<

k,n

(
ω − ε0

k,n − �k,n ∓ lωsat
)
,

(64)

where N qp>
<

k,n (ω) is given by (53) and

�k,n = �
qp
k,n + �sat

k,n (65)

is determined from (51) and (61) or from a single cal-
culation (45). The spectrum described by (64) follows the
general pattern shown in Fig. 2. A completely analogous
formula applies also in the limit of recoilless quasiparticles, in
which case N qp(ω) is replaced with NIR(ω) [18,36,52]. Note
that in the opposite limit, in which the quasiparticle recoil
blurs the plasmon-induced satellite in ρsat

k,n(ν) and gives rise

FIG. 2. Illustration of the quasiparticle spectrum NK(ω) corre-
sponding to propagation of a hot electron in an initially empty
Q2D surface band completely above the Fermi level. The electron is
coupled to the electronic charge density excitations in the underlying
substrate whose spectrum consists of incoherent e-h pairs and surface
plasmons of energy �ωs = 2 eV. The calculation is performed for
intermediate coupling strength and initial 2D electron momentum
K = 0.06 a.u., which produces nearly equal strengths of the threshold
and first satellite peak. The satellites appear approximately at
multiples of the surface plasmon energy above the threshold energy
εK = ε0

K + �K of the leftmost peak (denoted by the vertical line
at ω 
 −2 eV). Energy zero corresponds to the first moment of the
spectrum which measures the energy shift �K < 0 of the unperturbed
level ε0

K.

to �sat><
k (ε0

k) > 0, the regime described by Eq. (48) is also
applicable to descriptions of excitation of real plasmons by
the propagating quasiparticle (cf. Ref. [79] and Figs. 3 and 4
in Ref. [32]).

2. Satellites in ab initio GW + C approach

The situation becomes more complex when, instead of the
plasmon-pole ansatz (59), the corresponding GW self-energy
derived from first principles is used. In this case the satellite-

generating component of C
(2)><
k,n (t), which avoids overcounting

of contributions leading to (48), reads

Csat><
k,n (t) = −

∫
dν

[
ρ

(2)><
k,n (ν) − ρ

(2)qp>
<

k,n (ν)
]

ν2
(1 − e∓iνt )

= −wsat><
k,n + Ssat><

k,n (t), (66)

where ρ
(2)qp>

<

k,n (ν) is approximated with (47). Here the lth
satellite in the quasiparticle spectrum is generated by the
lth term in the expansion of exp[Ssat><

k,n (t)] in a power series.
This requires calculations of the l-fold convolutions of the
FT of Ssat><

k,n (t) with the quasiparticle peak (53), and this is
practically intractable for higher l’s. However, since in the
majority of systems of interest the quasiparticle coupling to
plasmons is relatively weak (as measured by the effective
wsat

k,n < 1 in practical applications only the first satellite need
be computed. This is rather advantageous because the FT of
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Ssat><
k,n (t) is obtained in a simple form [30],

N sat><
k,n (ω) = β

>
<

k,n(ω) − [
β

>
<

k,n

(
ε0

k,n

) + (
ω − ε0

k,n

)
∂

∂ω
β

>
<

k,n

(
ε0

k,n

)]
(
ω − ε0

k,n

)2 ,

(67)

where β
>
<

k,n(ω) = ∓ 1
π

Im	
(2)><
k,n (ω). Hence, the quasiparticle

spectrum obtained by combining the ab initio G0W0 self-
energy and cumulant approach takes the form

N
>
<

k (ω) =
∑

n

e−wsat
>
<

k,n

{
N qp>

<

k,n (ω) + N qp>
<

k,n (ω) ∗ N sat><
k,n (ω)

+O
[(

wsat><
k,n

)2]}
, (68)

where ∗ denotes convolution. The quantitative difference
between the spectra (64) and (68) computed for a concrete
system is illustrated in Sec. VIII.

VI. CONNECTION OF CUMULANT EXPANSION WITH
GW APPROXIMATIONS

Using expressions derived in Secs. IV and V, we are now
in a position to assess the desired connection between the
standard self-energy and cumulant expansion of the single-
particle propagator (5) whose time evolution is governed by
the dynamic interaction W (14). To this end we consider the
regime of small but finite particle recoil in which the analytic
properties of the renormalized propagator (12) are dominated
by isolated simple poles, with only small contribution(s) from
the cut(s). Thereby we avoid the limit (55) and allow for
the appearance of distinct plasmon-generated peaks in the
quasiparticle spectra. In this case we find that the long-time
behavior of the second-order cumulant, which dominantly
determines the quasiparticle spectral properties, is given
by expressions (48) and (66). Their gross features should,
according to (37), persist also in higher-order cumulants. This
means that the temporal properties of the cumulant series,
and thereby of ensuing Gk(t), are already determined by the
G0W0-generated second-order cumulant (36). As pointed out
in Ref. [17], this usually yields the best results for the physics
of the unbound polaron problem described by (1).

Now, in view of the same form of integral representation of
the general cumulant expression (37) and of the second-order
term (36), it would be tempting to extrapolate the second-order
result to the whole cumulant series (25) and replace it with
expressions calculated from some higher-order terms of the
GW self-energy 	GW

k,n (ω). However, for the present problem
defined by (1), this procedure is not justified and should be
avoided. This is easily verified by examining the explicit
forms of the next-higher, fourth-order cumulants C

(4)
k,n(t) ∝ λ4

that have been calculated for the present model [23,32]. The
corresponding diagrams encompass the contributions with two
noncrossing boson lines (GWA generic), two crossing boson
lines (vertex corrections), and a product of two uncorrelated
second-order corrections in the time domain (cf. Fig. 6.4
in Ref. [17]). All these terms are needed to construct the
correct C(4)

k,n(t), whose long-time limit encompasses the on-the-
energy-shell fourth-order Rayleigh-Schrödinger self-energy
terms rather than solely the GWA-generated self-energy
terms [17]. The same conclusion regarding the noncrossing

and crossing boson line diagrams applies to higher-order
cumulants [13] and thereby also to the whole cumulant
series (25). This means that the replacement of the long-
time limit of Ck,n(t) in (25) by expressions deriving from
self-consistent or higher-order 	GW

k,n (ω) and its derivatives
would first lead to erroneous terms that are nonlinear in
t [17] and, second, to miscounting of the correlated self-
energy corrections. This introduces spurious features in the
quasiparticle propagator (24) and its spectrum (11).

The only exception to the above counterexample is the
contribution represented by the generic G0W0 diagram of
Fig. 1, which is common to both the second-order self-energy
and cumulant series. Its two vertices are fully correlated
through momentum conservation and in the long-time limit
also through the energy conservation. For the present interac-
tion W there is no subtraction of uncorrelated processes from
the second-order cumulant and this leads to expressions (48)
and (66). Therefore, if the second-order cumulant gives the
dominant contribution to the series (25), as is the case in weakly
correlated multiexcitation processes, then the results of G0W0

calculations can be efficiently exploited in the calculations
of threshold and satellite properties of the spectra (11). In
contrast, the use of GW approximation with G renormalized
through some approximate or self-consistent form of self-
energy 	GW

k,n going beyond the G0W0 level would give
rise to unreliable results for G obtained from the cumulant
representation (24).

Last, we note that in the calculations of optical response
functions, i.e., the e-h pair propagators, the situation regarding
the consistency of employing higher-order GW corrections
for the one-particle propagators is different. Namely, here the
inclusion of e-h vertex corrections calculated in the ladder
approximation is consistent with the use of higher-order
GW self-energies for the propagators [5], and this route has
been followed in the calculations of optical properties of
solids [80–84].

VII. PROTOCOL FOR IMPLEMENTATION OF THE
GW + C APPROACH

In this section we summarize the results of this work in the
form of a protocol for consistent implementation of ab initio
GW and cumulant (GW + C) approach to the calculations of
quasiparticle propagators and spectra. It encompasses several
steps.

(i) The one-particle eigenstates |k,n〉 and eigenenergies
ε0

k,n that diagonalize the effective one-particle Hamiltonian (2)
and define the band structure of the solid in the absence
of screened interaction W are obtained using some well-
established scheme. In practice, these are most often the
Kohn-Sham (KS) one-particle states and energies calculated
within the density-functional theory (DFT) employing a static
(either local, semilocal or nonlocal) exchange and correlation
potential vxc(r).

(ii) Using the one-particle states and energies obtained
in (i), the dynamic electronic response function χq(ω′) of
the system is calculated within the RPA or one of its im-
provements. From this one determines the excitation spectrum
Dq(ω′) needed in the calculation of the G0W0 quasiparticle
self-energy defined in (16)–(18).

035103-12



On THE COMBINED USE OF GW APPROXIMATION AND . . . PHYSICAL REVIEW B 94, 035103 (2016)

(iii) Following the arguments presented in Secs. IV and V
and summarized in Sec. VI, the only justifiable consistent
connection of the ab initio GW input and cumulant expansion
can be established on the level of the G0W0 self-energy
combined with the second-order cumulant. Otherwise, un-
controllable overcounting effects may be encountered. This
GW + C procedure yields for quasiparticles in the Bloch states
in the nth band

C
>
<

k,n(t) = −
∫ ∞

μ

μ
−∞

dω′ ∓ 1
π

Im	
>
<

k,n(ω′)(
ω′ − ε0

k,n

)2

[
1 − e−i(ω′−ε0

k,n)t]

− i
[
Re	

>
<

k,n

(
ε0

k,n

) − ivxc
k,n

]
t. (69)

Here the upper and lower symbols refer to electron and hole,
respectively, and 	

>
<

k,n(ω′) is the full G0W0 quasiparticle self-

energy satisfying ∓Im	
>
<

k,n(ω′) � 0. The second term on the

RHS of (69) follows from Kramers-Kronig relations applied
to the linear t term of C

>
<

k,n(t) from which vxc
k,n of Eq. (28) is

subtracted if the unperturbed |k,n〉 and ε0
k,n are the KS states

and eigenenergies, respectively. Calculations of the ultrafast
phenomena involving quasiparticle propagators should use
this nonasymptotic form of the cumulants [33,34,44]. If the
first term on the RHS of (69) is treated separately from the
other terms, the factor ±iη may be added ad hoc into the
denominator in order to remove spurious divergences from the
expressions for satellite spectra.

(iv) Calculations of the quasiparticle spectra for compar-
ison with the results of steady-state measurements (e.g., cw
photoemission) may use the simpler long-time limit of (69)
based on the ansatz used in (50). This enables carrying out
the analytical treatment much farther and leads to the spec-
trum (68), whose practical implementation is demonstrated in
Sec. VIII.

FIG. 3. Spectral function of silicon (in eV−1 units) evaluated using (a) the G0W0 approximation, (b) the G0W0 + cumulant (G0W0 + C)
approach, (c) DFT-LDA, and (d) the plasmonic polaron model (PPM). For comparison, we report in panel (c) a replica of the DFT-LDA band
structure redshifted by the plasmon energy ωpl (ωpl 
 16.6 eV for silicon). All energies are relative to the Fermi level.
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VIII. SPECTRAL FUNCTION OF SILICON VALENCE
BANDS IN THE GW + C APPROACH

We now proceed to discuss the application of cumulant
expansion in the context of ab initio calculations of spectral
functions of solids. In particular, we study the spectral
properties of silicon and the signatures of electron-plasmon
interaction based on three different approaches: the G0W0

approximation, the G0W0 + C approach, and the plasmonic
polaron model [43].

In the G0W0 approximation the spectral function is evalu-
ated as

Nk(ω) = 1

π

∑
n

	′′
k,n(ω)

[ω − εk,n − �	′
k,n(ω)]2 + [	′′

k,n(ω)]2
,

(70)

where 	′ and 	′′ are the real and imaginary parts of the G0W0

self-energy, which we evaluate within the Sternheimer-GW
approach [85,86]. ε0

k,n denote Kohn-Sham DFT [87,88] eigen-
values in the nth band and �	′

k,n(ω) ≡ 	′
k,n(ω) − vxc

nk, where
vxc

k,n is the exchange-correlation potential. The G0W0 + C
spectral function has been obtained following the procedure
leading to expression (68).

Finally, in the plasmonic polaron model the following
approximations are introduced in order to circumvent the
numerical cost of G0W0 calculations: (i) The quasiparticle
linewidth is assumed to increase quadratically with the energy
difference from the Fermi energy; (ii) the quasiparticle correc-
tion to the DFT eigenvalues are ignored; (iii) the imaginary part
of the self-energy is approximated through a simple Lorentzian
model. A detailed description of this procedure may be found
elsewhere [43].

Density-functional theory calculations [87,88] in the
Perdew-Zunger local density approximation (LDA) [89] are
performed using the QUANTUM-ESPRESSO code [90]. We used
a norm-conserving Troullier-Martins pseudopotential [91] and
an 18-Ry kinetic energy cutoff to describe the wave functions.
The Brillouin zone is discretized on a 6 × 6 × 6 Monkhorst-
Pack grid. The dielectric matrix of silicon has been evaluated
using a 10-Ry kinetic energy cutoff, whereas we used an
18-Ry cutoff for the exchange part of the self-energy (see Eqs.
(16)–(18) or Ref. [86] for the breakdown of the self-energy
into its contributions from correlation and exchange). The
frequency dependence of the screened Coulomb interaction
was determined using a Padé approximant fit to 100 points
along the imaginary frequency axis on a uniform grid from
0 to 25 eV. The Sternheimer-GW self-energy has been
evaluated on a discrete frequency grid with a 25-meV spacing.
The high-symmetry lines are computed with a momentum
spacing of 0.025 × 2π/a, where a = 10.26 bohr is the lattice
constant of silicon.

In Fig. 3(a), we show the G0W0 spectral function of silicon.
At binding energies between 0 and 12 eV, the spectral function
exhibits intense features which correspond to quasiparticle
excitations in the absence of plasmons. These spectral features
define the ordinary valence bands of silicon. At binding ener-
gies larger than 18 eV, the spectral function reveals additional
spectral features with a well-defined dispersion that resembles
that of the quasiparticle bands. These spectral features are
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FIG. 4. Spectral function of silicon at the � (a) and W (b) high-
symmetry points evaluated using the Sternheimer-GW method (G0W0

approximation) and the G0W0 + cumulant (GW + C) approach.

the band structures of plasmonic polarons [41,43] and stem
from the simultaneous excitation of a hole and a plasmon.
In the G0W0 approximation, plasmonic polaron bands are
found at a binding energy of approximately 1.2–1.5ωpl below
the quasiparticle bands (in silicon ωpl 
 16.6 eV). Overall,
the G0W0 approximation overestimates the energy of these
spectral features, which are typically found at ∼ωpl below the
quasiparticle bands in photoemission experiment [42,46].

As compared to G0W0 calculations, the quasiparticle bands
are left essentially unaffected by the G0W0 + C approach,
as illustrated in Figs. 3(b) and 4. On the other hand, the
plasmonic polaron bands are redshifted by ∼ωpl with respect
to the quasiparticle bands, and are thus compatible with
the energy range of plasmon satellite observed in X-ray
photoemission spectroscopy (XPS) measurements [46]. To
further emphasize the differences between the G0W0 and
G0W0 + C spectral function, we compare in Fig. 4 the
spectral function of silicon at the � and W high-symmetry
points. Overall, the plasmonic polaron bands appear as a
broadened low-intensity replica of the quasiparticle band
structure, redshifted by the plasmon energy ωpl. The prediction
of plasmonic polaron band structures [41] was subsequently
confirmed by angle-resolved photoemission spectroscopy
experiments [42].

The spectral function obtained from the plasmonic polaron
model [Fig. 3(d)] reproduces the main qualitative features of
the G0W0 + C approach at a very small computational cost. As
compared to G0W0 + C calculations, the plasmonic polaron
bands appear slightly more smeared out as a consequence of
quadratic dependence of the linewidth on the binding energy.
For comparison, Fig. 3(c) reports the DFT-LDA band structure
and a replica of the full valence band structure redshifted by
the plasmon energy ωpl.

IX. SUMMARY

It is argued that under the conditions of weakly correlated
successive scattering events the propagator of a quantum
particle (single electron or hole) in interaction with bosonized
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excitations of the heat bath of a solid (single and col-
lective electronic excitations, phonons, etc.) is obtained to
a high level of accuracy from the second-order cumulant
expansion. The second-order cumulant, which is proven to
encompass the relevant dynamic features of the complete
cumulant series (25), can be conveniently calculated from
the corresponding G0W0-approximation expression for the
quasiparticle self-energy [5,30,56]. The direct connection is
established via Eqs. (34) and (35), which yield the G0W0-
derived joint densities of excitations required to calculate
the second-order cumulant (36). It is also emphasized that
the use of higher-order forms of the GW approximation
is not justified for the second- and higher-order cumulants.
Thus, it is recommended that cumulant expansion be used
in combination with the G0W0 approximation. Using silicon
as a test case, we have illustrated the modifications of
the quasiparticle spectral function which one obtains when
moving from the standard G0W0 approximation to the more
sophisticated cumulant expansion. We point out that the
calculations are in good agreement with recent photoemission
experiments [42].

The approach developed in the present work is rigorous
in the limit of a quasiparticle propagating far above or below
the Fermi level. However, the point at which it breaks down
is system specific and could be estimated only by carrying
out the standard Feynman-Dyson expansion of the same
Green’s function which enables the treatment of quasiparti-
cle propagation in the vicinity of the Fermi level in both time

directions (cf. discussion in Sec. III of Ref. [21] and in the
last paragraph of Sec. IV D above). In this context, it appears
that the formulation of Ref. [38] would interpolate smoothly
between the G0W0 limits of our expressions for single electron
and hole propagators (see also Sec. B of the Supplemental
Material [68]); therefore, the present formulation and that of
Ref. [38] should provide equivalent descriptions for quasi-
particles far from the chemical potential. The equivalence of
the two approaches close to the chemical potential is a more
complex question because, as pointed out in Sec. IV D, in
this case the second-order cumulant expansion breaks down,
and the standard Feynman-Dyson perturbation expansion of
the self-energy becomes more accurate [21]. We hope that
this paper will stimulate further work on cumulant expansion
and its applications to the studies of dynamical properties
of quasiparticles in real materials and to the calculations of
photoemission spectra.
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[34] P. Lazić, V. M. Silkin, E. V. Chulkov, P. M. Echenique, and
B. Gumhalter, Phys. Rev. B 76, 045420 (2007).

[35] M. Guzzo, G. Lani, F. Sottile, P. Romaniello, M. Gatti, J. J. Kas,
J. J. Rehr, M. G. Silly, F. Sirotti, and L. Reining, Phys. Rev. Lett.
107, 166401 (2011).

[36] B. Gumhalter, Prog. Surf. Sci. 87, 163 (2012).
[37] J. Lischner, D. Vigil-Fowler, and S. G. Louie, Phys. Rev. Lett.

110, 146801 (2013).
[38] J. J. Kas, J. J. Rehr, and L. Reining, Phys. Rev. B 90, 085112

(2014).
[39] J. Lischner, D. Vigil-Fowler, and S. G. Louie, Phys. Rev. B 89,

125430 (2014).
[40] Y. Pavlyukh, A. Rubio, and J. Berakdar, Phys. Rev. B 87, 205124

(2013).
[41] F. Caruso, H. Lambert, and F. Giustino, Phys. Rev. Lett. 114,

146404 (2015).
[42] J. Lischner, G. K. Pálsson, D. Vigil-Fowler, S. Nemsak, J. Avila,

M. C. Asensio, C. S. Fadley, and S. G. Louie, Phys. Rev. B 91,
205113 (2015).

[43] F. Caruso and F. Giustino, Phys. Rev. B 92, 045123
(2015).

[44] V. M. Silkin, P. Lazić, N. Došlić, H. Petek, and B. Gumhalter,
Phys. Rev. B 92, 155405 (2015).

[45] M. Guzzo, J. J. Kas, F. Sottile, M. G. Silly, F. Sirotti, J. J. Rehr,
and L. Reining, Eur. Phys. J. B 85, 324 (2012).

[46] M. Guzzo, J. J. Kas, L. Sponza, C. Giorgetti, F. Sottile, D.
Pierucci, M. G. Silly, F. Sirotti, J. J. Rehr, and L. Reining, Phys.
Rev. B 89, 085425 (2014).

[47] J. S. Zhou, J. J. Kas, L. Sponza, I. Reshetnyak, M. Guzzo, C.
Giorgetti, M. Gatti, F. Sottile, J. J. Rehr, and L. Reining, J. Chem.
Phys. 143, 184109 (2015).

[48] S. Engelsberg and J. R. Schrieffer, Phys. Rev. 131, 993
(1963).

[49] A. A. Abrikosov, L. P. Gor’kov, and I. Ye. Dzyaloshinski,
Quantum Field Theoretical Methods in Statistical Physics
(Pergamon, Oxford, U.K., 1965), Chap. II.

[50] A. M. Zagoskin, Quantum Theory of Many-Body Systems
(Springer-Verlag, New York, 1998).

[51] E. N. Economou, Green’s Functions in Quantum Physics
(Springer-Verlag, Berlin, Heidelberg, 2006).

[52] B. Gumhalter, Prog. Surf. Sci. 15, 1 (1984).
[53] N. W. Ashcroft and W. L. Schaich, NBS Spec. Publ. (U. S.) 323,

129 (1970); W. L. Schaich and N. W. Ashcroft, Phys. Rev. B 3,
2452 (1971).

[54] C. Caroli D. Lederer-Rozenblatt, B. Roulet, and D. Saint-James,
Phys. Rev. B 8, 4552 (1973).

[55] Y. Takada and H. Yasuhara, Phys. Rev. Lett. 89, 216402
(2002).

[56] J. J. Quinn and R. A. Ferrell, Phys. Rev. 112, 812 (1958).
[57] B. Holm and U. von Barth, Phys. Rev. B 57, 2108

(1998).
[58] A. Stan, N. E. Dahlen, and R. Van Leeuwen, Europhys. Lett. 76,

298 (2006).
[59] C. Rostgaard, K. W. Jacobsen, and K. S. Thygesen, Phys. Rev.

B 81, 085103 (2010).

[60] F. Caruso, P. Rinke, X. Ren, M. Scheffler, and A. Rubio, Phys.
Rev. B 86, 081102 (2012).

[61] F. Caruso, P. Rinke, X. Ren, A. Rubio, and M. Scheffler, Phys.
Rev. B 88, 075105 (2013).

[62] E. P. Gross, in Mathematical Methods in Solid State and
Superfluid Theory, edited by R. C. Clark and G. H. Derrick
(Oliver and Boyd, Edinburgh, 1969), Chap. 2.3.

[63] S. Doniach and E. H. Sondheimer, Green’s Functions for Solid
State Physicists (W.A. Benjamin, New York, 1974).

[64] That such additional small expansion parameter may exist in the
polaron problem was anticipated in Ref. [65].

[65] W. van Haeringen, Phys. Rev. 137, A1902 (1965).
[66] X. Cui, C. Wang, A. Argondizzo, S. Garrett-Roe, B. Gumhalter,

and H. Petek, Nat. Phys. 10, 505 (2014).
[67] G. Giuliani and G. Vignale, Quantum Theory of the Electron

Liquid (Cambridge University Press, Cambridge, U.K., 2005),
p. 139.

[68] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.94.035103 for a proof of the bijective
integral representation and the ensuing drag-boson formulation
of the cumulant series generated by the present particle-boson
interaction..

[69] W. Brenig and B. Gumhalter, J. Phys. Chem. B 108, 14549
(2004).

[70] D. K. Sunko and B. Gumhalter, Am. J. Phys. 72, 231 (2004).
[71] L. A. Khalfin, Zh. Eksp. Teor. Fiz. 33, 1371 (1958) [Sov. Phys.

JETP 6, 1053 (1958)].
[72] E. R. Fiori and H. M. Pastawski, Chem. Phys. Lett. 420, 35

(2006).
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[77] B. Gumhalter, A. Šiber, and J. P. Toennies, Phys. Rev. Lett. 83,

1375 (1999).
[78] G. De Filippis, V. Cataudella, A. S. Mishchenko, C. A. Perroni,

and J. T. Devreese, Phys. Rev. Lett. 96, 136405 (2006).
[79] B. Gumhalter and D. M. Newns, Surf. Sci. 50, 465 (1975).
[80] A. Marini and R. Del Sole, Phys. Rev. Lett. 91, 176402 (2003).
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