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Electronic properties of emergent topological defects in chiral p-wave superconductivity
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Chiral p-wave superconductors in applied magnetic field can exhibit more complex topological defects than
just conventional superconducting vortices, due to the two-component order parameter (OP) and the broken
time-reversal symmetry. We investigate the electronic properties of those exotic states, some of which contain
clusters of one-component vortices in chiral components of the OP and/or exhibit skyrmionic character in the
relative OP space, all obtained as a self-consistent solution of the microscopic Bogoliubov—de Gennes equations.
We reveal the link between the local density of states (LDOS) of the novel topological states and the behavior
of the chiral domain wall between the OP components, enabling direct identification of those states in scanning
tunneling microscopy. For example, a skyrmion always contains a closed chiral domain wall, which is found to
be mapped exactly by zero-bias peaks in LDOS. Moreover, the LDOS exhibits electron-hole asymmetry, which
is different from the LDOS of conventional vortex states with same vorticity. Finally, we present the magnetic
field and temperature dependence of the properties of a skyrmion, indicating that this topological defect can
be surprisingly large in size, and can be pinned by an artificially indented nonsuperconducting closed path in
the sample. These features are expected to facilitate the experimental observation of skyrmionic states, thereby

enabling experimental verification of chirality in emerging superconducting materials.
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I. INTRODUCTION

Topological defects play an important role in condensed
matter physics, especially those which can be described
and classified by homotopy groups of their order-parameter
(OP) space [1,2]. For example, when the OP space is two
dimensional (2D), a vortex appears as a topological defect [see
Fig. 1(a)]. Itis classified by the first homotopy group 71(S') €
Z and labeled by an integer winding number L. The best
known example is the Abrikosov vortex in superconductors
[3]. Its main characteristics are that it has a singular vortex
core and carries magnetic flux quantized in &y = hc/2e. The
Abrikosov vortex matter has been well studied [4—11], in the
context of understanding detrimental effects of magnetic field
on superconductivity, but also to devise various vortex-based
(fluxonic) devices [12-14].

When the OP space is three dimensional, a more complex
topological defect, the 2D skyrmion, may arise [see Fig. 1(b)].
The 2D skyrmions are classified by the second homotopy group
72(S%) € Z and labeled by an integer topological charge Q
[1,2]. Such skyrmions do not exhibit singularity in the OP
field. Skyrmions are frequently observed structures in physics.
For example, the skyrmionic spin textures have been observed
in magnetic systems, showing potential applications in novel
spintronic devices [15]. Also, skyrmions have been discussed
in quantum Hall systems [ 16], Bose-Einstein condensates [17],
superfluids [18], and superconductors [19-23], where they are
formed by spin or pseudospin textures.

Since recently, spin-triplet chiral p-wave superconducting
states attract great interest because of their exotic properties
and the possibility to have topologically protected quantum
states [24]. Such unconventional pairing is realized in the A
phase of superfluid *He and may be attributed also to the
layered ruthenate superconductor Sr,RuQOy4 [25,26]. The OP
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of the p-wave pairing state is necessarily multicomponent due
to the extra orbital and spin degree of freedom. In addition, the
Cooper pair with orbital angular momentum L°® = 1 breaks
the time-reversal symmetry [27,28]. These features result in
rich topological defect states, of different types, with often
nontrivial vorticity.

First, there exist domain walls with spontaneous super-
current separating domains with different degenerate time-
reversal symmetry-broken ground states [29]. Second, half-
quantum vortices arise due to the extra spin freedom in OP and
are predicted to be thermodynamically stable in mesoscopic
samples and have been detected in Sr,RuQ,4 [24,30]. It is also
expected that the half-quantum vortices in two-dimensional
superfluids will host Majorana states at exactly zero energy
as bound states inside the vortex cores [31]. The Majorana
zero mode gives rise to non-Abelian statistics and thus can be
utilized to make topological quantum computation [32].

Third, in p-wave superconductivity, there exist two types
of singly quantized vortices due to the broken time-reversal
symmetry [33]. The Cooper pairs of chiral p-wave pairing have
internal orbital angular momentum, i.e., the paired electrons
are rotating. Then, the vortex can have either the vorticity in
the same direction to the angular momentum of the rotating
Cooper pair (parallel vortex) or in the opposite direction
(antiparallel vortex). These two types of vortices have different
angular momenta, causing different properties in electronic
states [34] leading to different optical absorption [33], vortex
charging effect [35], and surface sensitivity effect [36].

Lastly, the chiral p-wave pairing state allows the existence
of coreless vortices (CLVs) with nonzero vorticity in only
one OP component [37], which are very different from
conventional singular-core vortices. The CLVs result from the
extra orbital and spin degree of freedom in the OP. In the
CLVs, the [ vector, which points in the direction of the orbital
angular momentum of the Cooper pair, changes orientation in a
continuous way, leaving a nearly homogeneous OP amplitude
throughout the whole structure. Such structures were studied
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FIG. 1. Schematic order-parameter (OP) field configurations for (a) a vortex in (b) a skyrmion. The arrows indicate the local OP field. The
color in (b) indicates the z amplitude of the OP field n,. For a two-dimensional OP field space, vortex can be generated on an enclosed loop, as
shown in (a), where field must turn integer number of times L along the loop. L is called the winding number and it is a topological invariant. It
indicates that the wrap of the OP field can not be removed or changed to another vortex configuration with different L by continually deforming
without cutting the loop. For a three-dimensional OP field space, the skyrmionic topological defect can be generated on a closed surface. As
shown in (b), the OP field must wrap integer number of times Q on the surface of the sphere. Q is called the topological charge and it is also a
topological invariant (similar to winding number L) indicating that the skyrmions with different Q can not be transformed into one another by
continually deforming the OP configuration. The skyrmionic topological feature is preserved under mapping from the surface of the sphere to

a plane.

before and they are referred to as Anderson-Toulouse vortices
[38] and Mermin-Ho vortices [39] in liquid 3He-A. The CLV
with doubly quantized flux has been detected in liquid *He
[40]. In chiral p-wave superconductors, this doubly quantized
vortex state is predicted to be energetically favorable when
compared to the state with two singly quantized vortices
[23,41], and should be further stabilized in the presence of
mesoscopic boundaries [42]. The Ginzburg-Landau simula-
tions reported the magnetic field distributions of the CLV states
[23], that are still to be observed experimentally.

Such CLVs are extremely interesting, exhibiting a variety
of different aspects. First, they are analogous to a giant vortex
in s-wave superconductor [6] since they contain multiple
flux quanta, but exhibit a larger size. Then, CLV is similar
to a domain wall separating domains where different OP
components dominate [37]. Recently, such domain wall was
found to bind half-quantum vortices, forming a structure with
multiple flux quanta [23]. Finally, the l-vector texture of a
coreless vortex was characterized as a 2D skyrmion [19].
The similar situation was shown in Refs. [23,43] where a
pseudospin texture n of a two-component OP exhibits 2D
skyrmion texture for the coreless vortex. Although these
previous studies revealed important aspects of the coreless
vortices, there is still a need for a systematic study in
order to enhance understanding on the coreless vortices and
skyrmionic topological defects especially concerning their
bound electronic states.

In this paper, we study the possible topological defect states
in chiral p-wave superconductors, ranging from domain walls,
and vortices, to coreless vortices and skyrmions, by solving
the microscopic Bogoliubov—de Gennes (BdG) equations
self-consistently. The purpose of this paper is to clarify
their topological properties and also to reveal their detailed
electronic properties. The bound electronic states in, e.g.,
vortices are known to be important for many applications
[4,7,44—-47]. For example, they determine the low-temperature

behavior of the specific heat [48]. In this paper, the shown
results on characteristic quasiparticle excitation spectra and
details of the local density of states (LDOS) of each state
(especially the states associated with the skyrmion) enable
their identification in, e.g., scanning tunneling microscopy
(STM). Modern STM operates at spatial resolution up to
0.1 nm, and has successfully detected to date the zero-bias
conductance peak at the vortex core [49], phase transition
between multivortex and giant vortex states [50,51], proximity
effect [52], Josephson vortices [53,54], etc. Hence, our results
will provide valuable info for direct detection of novel
topological states, which can in turn serve as a “smoking gun”
for p-wave superconductivity in the studied system.

The paper is organized as follows. In Sec. IT A, we introduce
our theoretical methodology for chiral p-wave superconduc-
tors. In Sec. II B, we define the skyrmionic topological defects
in the relative OP space in two-component OP systems. In
Sec. III, we summon the results for three distinct states
without a skyrmionic topology. Those are the vortex-free state,
the parallel vortex state, and the antiparallel vortex state. In
Sec. IV, we present results on coreless vortex states. Their
OP structures, supercurrent distribution, energy spectra, and
LDOS are discussed. We show that they are associated with
skyrmionic topological defects in relative OP space. In Sec. V,
we reveal the magnetic field and temperature dependence of
the properties of the skyrmion, followed by the investigation of
an effective skyrmion pinning in Sec. VI. Finally, our findings
are summarized in Sec. VII.

II. THEORETICAL FORMALISM

A. Bogoliubov-de Gennes equations for chiral
p-wave superconductors

We consider chiral p-wave superconductors whose order
parameter (OP) is expressed as

A(rk) = A )Y (k) + A_(1)Y_(k). ey
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Here, the AL (r) are the real spatial (p, & ip,)-wave OP and
Yi(k) = (ky = iky)/kr are the pairing functions in relative
momentum space. We consider a disk geometry with radius
R. The corresponding (py & ipy)-wave BdG equations are
written as [35]

[ H,(r) [(r) Mun(r)} _E, [un(r)]’ @
=IT*(r) —H; () ][ v,(r) U, (1)
where
1 [h e ]2
H(r)=— |-V —--A(r)| —EF 3
2m| i c

is the single-particle Hamiltonian with m being the electron
mass, Er the Fermi energy, and A(r) the vector potential
(we use the gauge V - A = 0). For simplicity, we take the
cylindrical two-dimensional Fermi surface. The term I1(r) is
written as

] 1
M) = —kl—F 3 [Aimi + E(DiAg], @)
+

with Oy = e*%(3, & L8y) in cylindrical coordinates. u,(r)
[v,(r)] are electronlike (holelike) quasiparticle eigenwave
functions with the normalization condition

f |t (0 + |0, () Pdr = 1, )
and E, are the corresponding quasiparticle eigenenergies. The
boundary conditions for the wave functions are u,(r = R) =0
and v,(r = R) = 0. The A_(r) satisfy the self-consistent gap
equations

Ai(r)z—i% Z (v, ()2, (x)

E,<hwp
—u, (N0, (0)] x [1 =2f(Ey)], (6)

where kp = ./2mEr/h* is the Fermi wavelength, g the
coupling constant, and f(E,) = [1 4+ exp(E,/kp )] ! is the
Fermi distribution function. The summations in Eq. (6)
are over all the quasiparticle states with energies in the Debye
window hwp. The supercurrent density is calculated by

i) = ;—ni Z {fnu:m [V - %A(r)}un(r)

+ (l - f;l)vn(r) |:V — %A(l’)} U:(I‘) — H.c. } . (7)

In order to perform the self-consistent simulation, we
include the contribution of the supercurrent to the total
magnetic field. Then, the vector potential A(r) in Egs. (3)
and (7) has two parts, ie., A(r) = Ag(r) + Ai(r), where
Ay(r) = %Horeg corresponds to the applied magnetic field
H = Hjpe, and the A¢(r) is induced by the supercurrent and
obeys the Maxwell equation

®)

However, we find that the Ay(r) is negligible due to the very
thin superconducting sample. As a result, the contribution of
the supercurrent to the total magnetic field can be completely
neglected in this type of simulation.

4
V xV xAi(r) = —j().
c
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In this paper, we only consider vortex and skyrmion
states with cylindrical symmetry. Therefore, the p, *ip,
components of the order parameter are expressed as AL (r) =
A+ (r)e't+? with winding numbers L., respectively. Due to
operators [y in Egs. (2)—(6), Ay have a £1 Cooper-pair
phase winding, respectively, leading to L_ = L, + 2. This
also breaks the time-reversal symmetry, resulting in chiral
states.

In a cylindrical system, the quasiparticle wave functions
u,(r) and v,(r) can be expanded in terms of the following
Bessel set [4]:

(un(r)> _ Z Cnuj(pju(r)eme
V(1) r dnu’j(pj,,,'(l")ei“'e )
where ¢,,; and d,, ; are coefficients, u,u’ € Z are angular

quantum numbers corresponding to the angular momentum,
and

®

ﬁ r
R ey
RJv1(ejy) R
with J,, the uth Bessel function and «;, the jth zero of J,.
Note that ' = u — Ly — 1 because of the phase winding in
Ag,ie., L_ = L + 2. Then, the BdG equations are reduced
to a matrix eigenvalue problem and can be solved separately
in each subspace of fixed p and u'.

After the self-consistent solutions are obtained, we calcu-
late the LDOS as usual:

AG.E) = Y lunPIPSE — Ey) + |0, ()PO(E + E,)].

@jur) = (10)

an

For each quasiparticle state, we can define the spectral
weight Z,,:
Z, = / lun (1) Pl (12)
Z, € [0,1] and it represents the contribution of the electronic
part of the wave function of a Bogoliubov quasiparticle state. A
state with Z,, < 0.5 indicates a holelike state while Z,, > 0.51s
an electronlike state. A Bogoliubov quasiparticle state is well
formed when it couples between half-electron and half-hole,
i.e., for Z, = 0.5.
Next, we remark that the quasiparticle states have the
following time-reversal relation:

{u_En,v_En} = {vzn,u’gn}. (13)

It indicates that a state having energy FE, and angular
momentum (u,u’) carries the same information as a state
having energy — E,, and angular momentum (—u’, — ). This
allows us to reduce half of the computational time by only
considering half of the angular momentum (u,u). Due to
this, it is sufficient to display the quasiparticle excitation
spectrum with both positive and negative energy E, but with
only positive angular momentum p or w'.

We also remark that our chiral p-wave BdG equations are
invariant under the time-reversal operations:

{AL,B} — {AL, — B}, (14)
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where B is the magnetic field. In the bulk the two degen-
erate ground states are the (p, + ip,)- and (p, — ip,)-wave
states. At zero temperature, their OP (A4, A_) = Ay(1,0) and
Ao(0,1), respectively, where Ay € R is the bulk OP at zero
temperature. These two states can be mirrored by Eq. (14). The
situation is the same for vortex states. For example, when one
knows the A, dominant vortex states with winding numbers
(L4+,L_), one can easily obtain the A_ dominant vortex states
with winding numbers (—L_, — L) by using Eq. (14). The
complete study requires to consider both A, dominant and
A_ dominant states for all possible (positive and negative)
winding numbers. However, with the time-reversal operations
of Eq. (14), itis equivalent to consider only half of the possible
winding numbers but for both A dominant and A_ dominant
states.

Next, we define the p,- and p,-wave OP A, and A,. They
often show interesting properties and can provide important
information about the vortex and skyrmion states. The OP
expressed by A, and A, can be written as

A = (Ayky + Ayky)/ kE. (15)
Equation (1) can also be expressed as
A =A{[Ar +A_ky +i[Ay — A_]ky}/ kp. (16)
By comparing Eqgs. (15) and (16), we find

Ay = Ay + A,
Ay =i(Ay —A). a7

B. Skyrmionic character in relative order-parameter space

In a two-component OP system, a 2D skyrmionic texture
is not obvious by looking at the OP configurations. However,
it can be well understood by projecting the system onto a
pseudospin space. In this section, we show that the pseudospin
space is actually a relative OP space where both relative
amplitude and relative phase between the two OP components
play an important role. The relative OP space leads to
skyrmion, which does not occur in a one-component OP
system. As a result, both winding numbers of each OP
component and the topological charge associated with the
skyrmion are necessary to describe the superconducting state.

We start from a complex two-component OP field A(r) =
(A1), A(@)T = (JA|€,]Az|e®2)T where |A;| and 6; are
the amplitude and phase of the A; component, respec-
tively. We decompose the OP as A(r) = |A(r)|x(r) where
|A(r)| = v/|A|?> + |Az|? is the total OP amplitude and
x(@®) = (|x11€'",|x21€'%)T is the normalized complex-valued
spinor satisfying |x;|*> + |x2|> = 1. The x(r) generates a
four-dimensional OP space and it points to the surface of a
solid unit sphere in four-dimensional space S°.

Next, we compare the y (r) with pesudospin n. Following
Ref. [43], the pseudospin n is defined as

ATGA
ATA

where & is the Pauli matrix and n is a three-dimensiopnal (3D)
unit vector |n| = 1, and points to the surface of a solid unit
sphere in three-dimensional space S2.

=xlox, (18)

n= (nxvny»nz) =

PHYSICAL REVIEW B 94, 024520 (2016)

It is worth noting that n is a gauge-invariant field. Let ¥ =
elgx, the n does not change, i.e.,

n=yxox=x'ox. (19)

~

We take 6§ = —6; so that ¥ can be reduced to a three-
dimensional field, i.e.,

X = (Uxil,lx2le®) = (cosa, sina cos ¢, sina sing), (20)

where ¢ =60, —6; is the vrelative phase and o =
tan~' |x2|/|x1| represents the relative amplitude. Note that
0 < o < 7/2 indicates that X is a set of points on a unit
hemisphere. In the last step, we rotate X globally by an angle
—90° about the y axis in order to match the orientation of
pseudospin vector n. Finally, we reach

X = (sina cos ¢, sino sin ¢, cos @). 21)

A straightforward calculation of the pseudospin vector n
results in

n = (sin 2« cos ¢, sin 2w sin ¢, cos 2a), 22)

with 0 < 2o < 7. It is clear that n has the same structure as
X » except for the azimuthal angle @ — 2a, so that n is a set of
points of a whole unit sphere S?. As a result, the pseudospin
vector n represents the relative OP space as well.

Such a three-dimensional real vector field n can exhibit
nontrivial skyrmionic topological defects on an enclosed
surface such as S2, as shown, e.g., in Fig. 1(b). Just like the
winding number (vorticity) for vortex matter, the skyrmion is
described by its topological charge O, which is calculated as

0= fn - (0,n x dyn)dx dy, (23)

and counts the number of times that n wraps the enclosed
surface. Itis classified by the second homotopy group ,(S?) €
Z,where Z is an integer.

It is worth to mention that the two-component OP field
A(r) can be separated into three parts: A the total amplitude,
¢'? the common phase term, and n representing the relative OP
space. The total amplitude A does not contain any topological
structure due to its scalar nature. The common phase term
¢'? has two effects: (1) the global U(1) gauge invariance
for superconductivity; (2) the common phase distributions
and the common winding number L. Actually, the first two
terms represent a one-component OP system. The third part
n arises an effect resulting from the two-component OP. It is
different from the phase soliton where only the relative phase
is taken into account [55,56]. The n induces extra skyrmionic
topological defects, labeled by the topological charge Q.

Finally, one sees that the two-component OP system con-
tains additional topological possibilities next to just vortices,
where winding numbers (L;,L;) of both OP components
and the topological charge Q are all necessary to describe
the superconducting state. Therefore, in this paper, we use
(L1,L,, Q) to label different observed states.

III. STRUCTURE OF VORTEX STATES WITHOUT
SKYRMIONIC TOPOLOGY

In this section, we investigate three prominent vortex
states not exhibiting a skyrmionic topology: vortex-free
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FIG. 2. Vortex-free state (L, ,L_) = (0,2) with A, dominant. (a)
Profile of AL(r) at @ = 0. (b) Azimuthal supercurrent density j(r).
(c) The quasiparticle excitation spectrum FE, as a function of the
positive angular momentum . The negative part of the spectrum
can be obtained by the time-reversal relation of Eq. (13). The color
coding indicates the spectral weight Z,,. (d) The LDOS near surface
as a function of radius r and bias energy E.

state (Ly,L_,Q) = (0,2,0), parallel vortex state (1,3,0),
and antiparallel vortex state (—1,1,0). Since Q = 0 for all
these states, we omit it in this section. The OP structures,
supercurrent density, quasiparticle excitation spectrum E,,, and
LDOS for the considered states will be presented, where some
findings coincide with previous works [29,57]. In our analysis,
we found that the p, and p, OP components A, and A, are
very useful, and will be employed in the analysis of the found
vortex states.

The calculations are performed for the sample of radius
R = 51&), where & = hvp/m Ag is the BCS coherence length
at zero temperature, with vy the Fermi velocity and A the
bulk OP at zero temperature. Er = hwp and hwp/Ay ~ 14,
resulting in kp& =9. We also set the applied magnetic
field to H = 0, so the reported properties are surely not a
consequence of the magnetic field. The considered temperature
is T = 0.17,. The results remain qualitatively the same when
we change the magnetic field H and temperature 7.

We first introduce the vortex-free state (L,L_) = (0,2),
with A as adominant component. The results are summarized
in Fig. 2. The state is analogous to the Meissner state in
s-wave superconductors, therefore, it is the first step for
understanding vortex and skyrmion states. In bulk, the ground
state is (A4, A_) = Ao(1,0). However, the physical properties
significantly change near a surface [29]. As seen from Fig. 2(a),
the |A.| suppresses and |A_| rises at the surface, where an
anticlockwise supercurrent is also induced [see Fig. 2(b)]. The
quasiparticle excitation spectrum shown in Fig. 2(c) reveals
chiral surface states with a linear dispersion around the Fermi
energy [29,57,58]. These are Andreev bound states induced by
the chirality of the superconducting state [59]. The states cross
the Fermi energy but there is no exact zero-energy Majorana
mode [58]. They contribute to the low-bias LDOS distributions
near the surface, as shown in Fig. 2(d). Note that the LDOS
and the supercurrent jy(r) show Friedel-type oscillations with
a wave vector 2k near the surface.

Here, we note that the spontaneous surface supercurrent
is the major characteristic of the superconducting state with
broken time-reversal symmetry. Experiments to date have
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observed the surface bound states [60] but failed to capture
the surface supercurrent [61-63]. One possible explanation
is that the supercurrent depends on exact geometry and band
structure of the sample [64], but that discussion is out of the
scope of this paper.

Next, we present the case of two types of singly quantized
vortex states with A, dominant: the parallel vortex state
(L4+,L-) = (1,3) and the antiparallel vortex state (L ,L_) =
(—1,1), shown in Figs. 3(a) and 3(b), respectively. Here, we
remind the reader that the vortex and the antivortex states
exhibit very different properties due to the broken time-reversal
symmetry [33,35,57].

The left plots in Figs. 3(a) and 3(b) show A_L(r) and the
supercurrent density profile jy(r). Compared to the vortex-free
(L4+,L-)=1(0,2) state shown in Fig. 2, A, (r) exhibits a
singular vortex core in the center of the sample. At the same
time, A_(r) is induced near the vortex core and also exhibits
singularity there, so the cores in A overlap. However, the two
possible singly quantized vortex states have different vortex
core structures. For the parallel vortex (1,3) state, AL (r) show
different asymptotic behavior: A, (r) oc r while A_(r) « 3.
For the antivortex (—1,1) state, both |[AL(r)| o r. In addition,
the states have different supercurrent density distributions. The
parallel vortex (1,3) state has the positive vorticity, leading
to the clockwise jy(r) around the vortex. In contrast, the
antivortex (—1,1) state has the negative vorticity, leading to
the anticlockwise jg(7) around the vortex core.

Previous works concerning vortex states in chiral p-
wave superconductors rarely presented the p, and p, OP
components A, and A,. We actually found that they can be
very useful in the analysis of interesting properties, especially
related to the vorticity of the sample. The central plots
in Fig. 3 show the profiles of A, A,, the relative phase
between them 6, —6,, and the total OP A. We find the
winding numbers L, = L, =1 for the parallel vortex (1,3)
state and L, = L, = —1 for the antivortex (—1,1) state, thus
better describing the vorticity of the sample than the angular
momenta of A.. The vortex cores in A, and A, are at the
sample center and they overlap. Unlike the cylindrical vortex
core structures in A4, the vortex cores are deformed in A,
and A, and exhibit different profiles for the (1,3) and (—1,1)
states. It is interesting that A, can be obtained by rotating A,
with 90° clockwise for the (1,3) state and anticlockwise for
the (—1,1) vortex state. It is also interesting to note that the
relative phase 0, — 0, twirls twice for both cases, exhibiting
a cloverleaf profile. For the (—1,1) vortex state, A, and A,
alternate between being fully in phase and fully out of phase
around the vortex core.

The right-hand side plots in Fig. 3 show the quasiparticle
excitation spectrum E,(i,) and the LDOS. Comparing to the
vortex-free (L ,L_) = (0,2) state, one more branch of bound
states appears within the gap energy A, in the excitation
spectrum. Those are the vortex bound states, localized around
the vortex core [33]. The vortex bound states for the (1,3)
and (—1,1) states are different. For (1,3) vortex states, the
bound states reside in the negative energy range for positive
angular momentum u,. However, for the (—1,1) state they
have positive energy for positive u,, due to opposite vorticity.

It was demonstrated in Refs. [65-67] that there exists a pair
of zero-energy Majorana modes for a single vortex with odd
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FIG. 3. Two types of A -dominant singly quantized vortex states: (L;,L_) = (1,3) and (—1, 1), respectively shown in panels (a) and (b).
Plots on the left show profiles of A(r) and the azimuthal supercurrent density jy(r). Central plots show both amplitude and phase of OP

components A, (r) and A (r), their relative phase cos(6,

— 6,), and the total OP amplitude | A(r)|. Note that the winding numbers of A, and A,

are L, =L, =1forthe (Ly,L_)=(1,3)state and L, = L, = —1 for the (L;,L_) = (—1,1) state. Plots on the right show the quasiparticle
excitation spectrum E, as a function of the angular momentum g (with color coding indicating the spectral weight Z,), and the LDOS around

the vortex core as a function of radial distance r and bias energy E.

vorticity in the chiral p-wave superconductivity. The energy
levels of the vortex bound states appear at integer points
E, ~ nEs, where n is an integer and Ej is the level spacing of
the order of A% /EF [68]. For the state with E,, = 0, the time-
reversal relation of Eq. (13) prescribes the zero-energy state
appearing as a pair, and the quasiparticle wave functions keep
the relation u,(r) = v;(r). Thus, the quasiparticle creation
operator is equivalent to the annihilation of a quasiparticle,
which corresponds to the Majorana fermions [66]. However,
the Majorana zero mode splits when there exists vortex-vortex
interaction or/and vortex-surface interaction [69]. In our case
where R = 51, the energies of the lowest vortex bound state
of both cases are of the order of 1077 A¢. It indicates the
existence of the Majorana zero mode and the vortex-surface
interaction being negligible. With sample radius R decreasing,
the energy of the lowest vortex bound state oscillates and
its envelope increases with exponential law. The vortex
bound states of both cases are the well-formed Bogoliubov
quasiparticle states with Z, = 0.5, which is also supporting
the Majorana zero mode.

The LDOS showing in Fig. 3 reveals the zero-bias peak
at the vortex core, corresponding to the same characteristic
of vortex states with odd winding number in s-wave super-
conductors. It is worth noting that the LDOS is asymmetric
for E <+ —E for the (1,3) state and symmetric for the (—1,1)
state.

IV. STRUCTURE OF SKYRMIONIC
TOPOLOGICAL DEFECTS

Coreless vortices are one of the most striking states
emerging in the chiral p-wave superconductivity. They exhibit
an additional topology which is skyrmionic. The one known
coreless vortex state is the doubly quantized one [34,37],
having the topological charge Q = 2 [41]. In this section, we
investigate the topological structure and the electronic prop-
erties of the doubly quantized coreless vortex state (skyrmion
state) (Ly,L_, Q) = (0,2,2) and the vortex-skyrmion coexist-
ing state (L4,L_,Q) = (1,3,2). We set parameters the same
as in the previous section to facilitate the direct comparison
of the results. Note that we choose the A_-dominant states
for convenience, so that the skyrmion corresponds to positive
vorticity. The A, -dominant counterpart with negative vorticity
can be obtained equivalently by using Eq. (14).

We first present the topological structures of the state
(Ly+,L_,0) =(0,2,2) in Fig. 4. Figure 4(a) shows A(r) and
the supercurrent density profile jy(r). Comparing to the results
for the vortex-free state (L4,L_, Q) = (0,2,0) shown in Fig. 2,
a domain wall appears in AL(r) at r = 12§, separating outer
A_ and inner A regions. In addition, the winding numbers of
Ay are L, =0 and L_ = 2, respectively. There is therefore
a 4m-phase difference between Ay along the domain wall,
which breaks the time-reversal symmetry leading to the chiral
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FIG. 4. Topological structure of the skyrmion state (L.,L_,Q) = (0,2,2). (a) Profiles of A.(r) and the azimuthal supercurrent density
Jo(r). (b) The amplitude and the phase of A, (r) and A, (r), their relative phase cos(f, — 6,), and the total OP amplitude |A(r)|. Note that the
winding numbers of A, and A, are L, = L, = 2. (c) The texture n(r) of the relative OP space, calculated using A, (upper panel), and using
A, and A, (lower panel). The colors show the amplitude of the z component of n(r). Both shown pseudospin textures give topological charge

density Q(r) shown in panel (d) and the topological charge Q = 2.

domain wall. A supercurrent jy(r) is induced around the chiral
domain wall, and changes sign at the domain wall, flowing
clockwise inside the domain wall but anticlockwise outside of
it [42].

The region inside the chiral domain wall is sometimes
thought of as a vortex core. However, this is not correct.
Different from the singular vortex which is a pointlike
topological defect, the coreless vortex is a looplike topological
defect. Figure 4(b) shows the results expressed using A, and
A,. We found that A, and A, components of the OP contain
two vortices each, thus having windingnumbers L, = L, =2,
so this state carries a total of two flux quanta. The vortices
are not at the sample center but on the chiral domain wall and
align orthogonally in A, compared to A . All four vortices are
spatially separated and play the same role in this (0,2,2) state,
as seen from Fig. 4(b). Therefore, they are the one-component
vortices (in A,—A, space) and each of them carries half of
the flux quantum, analogously to the half-quantum vortex [70].
Finally, the chiral domain wall is formed by an enclosed chain
of all one-component vortices and carries two flux quanta.
The total OP is cylindrically symmetric, and it is suppressed
(though not completely) on the chiral domain wall. The relative
phase 6, — 0, alternates between 0 and 7 along the domain
wall, indicating that A, and A, are, respectively, in and out
of phase. Note that the relative phase alternates exactly four
times along the domain wall, where each node corresponds to
the location of one-component vortices on the chiral domain
wall.

Actually, the chiral domain wall in A1 and the enclosed
chain of one-component vortices in A, and A, are two
different but both relevant aspects of a skyrmionic topological
defect in the relative OP space. This can be seen clearly from
Fig. 4(c) where we map both A and A, , decompositions of
the OP onto the pseudospin fields n. As seen from the upper
panel, where the results are obtained by using OP components

Ay, the field n rotates at the domain wall which separates
the central region where n points up and the region outside
of the domain wall where n points down. In addition, the
field n rotates along the domain wall by 47, resulting in the
nontrivial topological charge density on the chiral domain wall
[see Fig. 4(d)]. The net topological charge Q = 2 indicates
that the field n wraps twice on the surface of the sphere [see
Fig. 1(b)]. The lower panel of Fig. 4(c) shows the results
obtained by using OP components A, and A,. The field
n also rotates at the domain wall. In this case, the domain
wall separates the central region where n points in positive y
direction and the outside region where n points in negative
y direction. n also rotates by 4w along the domain wall,
leading to the net topological charge Q = 2. In fact, this
pattern can be reached by rotating the previous »n field by an
angle 90° about the y axis. The topological charge density and
the net topological charge are invariant under this operation.
As a result, one concludes that (0,2,2) state is a skyrmionic
topological defect with Q = 2 in the relative OP space, and
that such topological structures retain the skyrmionic character
under the transformation between (A ,A_) and (A.,A,)
representations.

Next, we present the electronic properties of this skyrmionic
topological defect in the (0,2,2) state in Fig. 5. Previous studies
revealed low-energy excitations at the domain wall [34,37].
However, the complete picture of excitations and LDOS is
still lacking. Here, our self-consistent calculations provide
the more details of the quasiparticle excitation spectra and
LDOS, enabling their identification in, e.g., scanning tunneling
microscopy (STM).

Figure 5(a) shows the quasiparticle excitation spectrum
E,(u,) and the corresponding LDOS(r, E) near the domain
wall. As seen from Fig. 5(a), there are three distinct branches
of bound states. These are the surface bound states (S), the
domain-wall bound states (DW), and the Andreev bound states
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FIG. 5. Electronic structure of the skyrmion state (L,L_,Q) = (0,2,2). (a) The quasiparticle excitation spectrum E, as a function of the
angular momentum g, (color coding indicates the spectral weight Z,). S, DW, and A represent the surface bound state, domain-wall bound
state, and the Andreev bound state associated with the domain wall, respectively. Their spectral weights Z, are shown in panel (b). (c) The
LDOS(r, E) around the skyrmion as a function of radial distance » and bias energy E. (d) The profiles of the LDOS(r) around the domain wall
at bias energies E = 0.3, 0, and —0.3. The chiral domain wall is at g, /&y = 12. (¢) The profiles of the LDOS(E) as a function of bias energies
E at several radial distances. The peaks labeled by triangles (diamonds) are induced by the domain-wall bound states (Andreev bound states).

(A). The surface bound states are the same as those found in
the vortex free states (0,2,0), which were shown in Fig. 2. The
domain-wall bound states and the Andreev bound states are
typical for the skyrmion, i.e., chiral domain wall.

The domain-wall bound states cross zero energy with the
lowest-energy level having a small gap of the order A2/EF
[34,67]. Thus, the zero-energy Majorana states do not appear.
However, the domain-wall bound states cause two effects in
LDOS: a zero-bias peak at the domain wall, and the peak
splitting with increasing or decreasing the bias. One of those
peaks shifts towards the interior of the domain wall, while
the other shifts outward. This feature can be seen clearly in
Fig. 5(d), where we display the profile of the LDOS(r) for bias
energies E/Ag = 0.3, 0, and —0.3.

The Andreev bound states are induced near the gap energies
E =~ |Ag|, leading to peaks in LDOS at the domain wall, as
seen from Fig. 5(c). They are essentially similar to the quantum
rotor state which is induced by multiple Andreev reflections at
the normal/superconducting interface [71]. In that case, due to
the time-reversal symmetry, Andreev bound states appear near
both E = £|Ay|. However, the chiral domain wall breaks the
time-reversal symmetry so that the Andreev bound states near
E = —|Ay| are suppressed.

In addition, we found that the domain-wall bound states
are electron dominant (with spectral weight Z, < 0.5) when
they cross the zero bias, while the Andreev bound states
are hole dominant (with spectral weight Z, > 0.5), as seen
from Fig. 5(a) where the color coding indicates the spectral
weight Z,,. This feature can be seen clearly in Fig. 5(b), where
we displayed the spectral weight Z, for all three types of
bound states. The domain-wall bound states and the Andreev
bound states are different from the surface bound states whose
spectral weight is Z,, = 0.5. These two branches of bound

states are also different from the singly quantized vortex
bound states of (L,,L_,Q)=(1,3,0) and (L,,L_,Q) =
(—1,1,0) shown in Fig. 3, which are fully coupled Bogoliubov
quasiparticles with spectral weight Z,, = 0.5.

Due to the electron-dominant domain-wall bound states and
the hole-dominant Andreev bound states, the LDOS near the
domain wall exhibits asymmetry for bias energy E < —E,
as visible in Fig. 5(c). This feature can be seen clearly in
Fig. 5(e), where we displayed the LDOS(E) as a function of
bias energy at several radial distances r. When we scan the
LDOS far away from the chiral domain wall, e.g., at /&, = 5,
the superconducting coherence peaks are well established at
the gap energy A and there is no LDOS peak when |E| < A,.
Whenr/&y = 11 (near the domain wall at r,, /&0 = 12), there
are four peaks inside the gap energy |E| < Ap. Two of them are
induced by the domain-wall bound states [labeled by solid and
open triangles in Fig. 5(e)]. The other two are induced by the
Andreev bound states [labeled by diamonds in Fig. 5(e)]. Due
to the electron-dominant domain-wall bound states, the peaks
labeled by solid triangle have a higher amplitude than the ones
labeled by the open triangle, which results in the asymmetric
profile in LDOS. At larger r, the two peaks labeled by triangles
move towards each other and merge at the domain wall where
r/&y = 12. Simultaneously, the Andreev peak in negative E
labeled by diamond is significant due to the hole-dominant
Andreev bound states, leading to another asymmetric profile
in the LDOS. When r is further increased, the peaks labeled by
triangles continue shifting and finally merge into the coherence
peaks at gap energy |E| =

Since the skyrmionic topological defect appears in the
relative OP space, whereas the vortex appears in the OP
space, a vortex can be added to the (L4,L_,Q) = (0,2,2)
state leading to the skyrmion-vortex coexisting state
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core as a function of radial distance r and bias energy E.

(L+,L-,0)=(1,3,2). The results for such a topological
“hybrid” are presented in Fig. 6(b). Comparing to the skyrmion
(0,2,2) state, one sees the superposition of a singly quantized
vortex and the chiral domain wall, with the vortex being located
at center of the sample. The supercurrent jy () flows clockwise
around the vortex core, gradually changing to anticlockwise
on the inner side of the domain wall, and flips the direction
again to clockwise outside the domain wall. A, and A, have
winding numbers L, = L, =1+2 =3 in this case, 1 for
the central vortex, and 2 for the one-component vortices on
the domain wall. The chiral domain wall is larger than that
of the skyrmion in the (0,2,2) state because of the repulsion
between the vortex at the center and the one-component
vortices on the domain wall.

The quasiparticle excitation spectrum E,(u,) also shows
the superposition of the vortex bound states and the chiral
domain-wall bound states. Since the domain wall is now larger,
the domain-wall bound states and the Andreev bound states
shift to larger w,. In addition, we find that the domain-wall
bound states become even more electron dominant and the
Andreev ones more hole dominant, resulting in more pro-
nounced electron-hole asymmetry in LDOS around the domain
wall compared to the skyrmion (0,2,2) state. The LDOS of
the coexisting skyrmion-vortex state exhibits distinctly strong
zero-bias peak at the vortex core, and a significantly weaker
one at the domain wall.

Finally, we mention that the skyrmion-antivortex coexisting
state (L,L_,Q) = (—1,1,2) is unstable. Due to the attractive
interaction between the antivortex and the skyrmion, such state
evolves into the parallel vortex state (L,L_, Q) = (1,3,0).

V. MAGNETIC FIELD AND TEMPERATURE
DEPENDENCE OF THE PROPERTIES OF THE SKYRMION

The skyrmion is a chiral domain wall in A1 and an enclosed
chain of one-component vortices in A,,A, representation
of the two-component OP. In either case, the skyrmion is
a looplike structure in OP space and it has very different
properties from the vortex as a pointlike defect. For example,
the size of the vortex depends solely on the superconducting

coherence length £. However, the size of the skyrmion depends
also on the applied magnetic field because the chiral domain
wall is expected to move under the influence of the magnetic
field. We therefore report in this section the magnetic field
and temperature dependence of the size of the skyrmion in the
(Ly,L_,0) = (0,2,2) state, and the consequences of varied
skyrmion size on the energy spectrum.

Figure 7 shows the radius ry of the A_-dominated (0,2,2)
skyrmion, as a function of the magnetic flux ¢ through
the sample, at temperatures 7 = 0,0.3,0.5, and 0.87,. The
¢ = H,S where Hy is the magnetic field strength and § = 7 R?
the area of the sample. We find that the skyrmion expands
with increasing temperature 7', but shrinks with increasing
applied magnetic field. The skyrmion consists of the one-
component vortices, with size related to the coherence length §.
Since £ increases with temperature, so does the vortex-vortex
interaction, and the size of the skyrmion can duly increase.
However, it is crucial here that the skyrmion is a chiral domain
wall, balanced by the clockwise supercurrnt jy in the interior
and the anticlockwise at the exterior of the domain wall. With

rS/EO

4 6 8 10

2 oy
0) 0

FIG. 7. The radius of the skyrmion r, as a function of the applied
magnetic flux ¢ through the sample, at temperatures 7 = 0,0.3,0.5,
and 0.87,. The inset shows that the area of the skyrmion shrinks
linearly with magnetic field, being maximal for negative magnetic
field.
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FIG. 8. Quasiparticle excitation spectrum E, of the skyrmion
studied in Fig. 7, as a function of angular momentum u,, at
zero temperature and for applied magnetic flux through the sample
¢/do = —3,0, and 10.

increasing applied magnetic field, the anticlockwise part of
Jo is enhanced and the clockwise part is weakened, shrinking
the domain wall to smaller equilibrium radius r,. Inversely,
the skyrmion expands with ¢ decreasing. Interestingly, the
skyrmion survives even at negative magnetic field, i.e., for
¢ < 0, likely due to the finite energy needed to break the
domain wall so that vortices can leave the sample. As a
consequence, at negative fields, skyrmion continues to expand
to surprisingly large sizes. The inset in Fig. 7 shows that
actually the square of r(¢) depends linearly on ¢, i.e., o 1/¢?,
so that magnetic flux inside the skyrmion is roughly constant.
This is a very important finding, indicating that existing
skyrmions in a given sample can be made larger, hence easier
to detect in experiment, if the polarity of the applied magnetic
field is reversed. Furthermore, the stability at reversed field
clearly distinguishes skyrmions from vortices since there is
nothing preventing individual vortices from leaving the sample
(apart from the ever-present disorder) if the polarity of the
field is changed. Last but not least, our findings indicate that

PHYSICAL REVIEW B 94, 024520 (2016)

skyrmions are in general an order of magnitude larger than
the conventional vortices.

The electronic structure is of course affected by the
change in the size of the skyrmion. Figure 8 shows the
quasiparticle excitation spectrum E,(u,) of the skyrmion
at zero temperature, for magnetic flux through the sample
¢/do = 10, 0, and —3, for which r;/§y = 8, 11.7, and 17.1,
respectively. The domain-wall bound states move to large
angular momentum p when r; increases, which is expected
since the bound states are confined to the domain wall. In
addition, the cusped energy lines of the Andreev bound states
become more significant around E = |Ap|. The continuous
spectrum above the gap energy |E| > |Ag] tilts as a function
of u, because of the supercurrent induced by the applied
magnetic field favoring one chirality over the other.

VI. PINNING THE SKYRMION

Vortex matter in superconductivity is known to be pinned
where the OP is suppressed, which can have technological
relevance for, e.g., increasing the maximal current a super-
conductor can sustain without the onset of vortex motion and
related onset of resistance and heating. The skyrmion matter is
a chain of enclosed one-component vortices according to the
OP representation using A, and Ay, implying that skyrmions
can be pinned in an analogy to vortices. If so, then the size and
the position of the skyrmion could be controlled artificially,
which may be beneficial for the observation of skyrmions
and for further fluxonic manipulations. In this section, we
therefore consider the possibility to pin the skyrmion by an
embedded normal-metal ring in the superconductor, where the
superconducting coupling constant g is suppressed to zero,
leading to |A| = 0 inside the ring. The median radius of the
ring is labeled r,, and the width of the ring is 0.5&,. Such
narrow rings do not break the phase coherence between the
superconductivity inside and outside of the ring. We investigate
the OP profile, energy spectrum, and LDOS when the skyrmion
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FIG. 9. Skyrmion (L4,L_,Q) = (0,2,2) state trapped by a normal-metal ring. The radius of the pinning rings increases as r,/& =
14.5,22,36.5,44 from left to right panels, respectively. The top row of plots shows the OP profiles. The central row shows the corresponding
quasiparticle excitation spectrum as a function of angular momentum pu,, and the bottom row shows the LDOS as a function of radial

distance r.
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is pinned by such a normal-metal ring. The calculations are
performed self-consistently for 7 = 0.17, and in absence of
the magnetic field since we do not want the competing effects
to shadow the conclusions.

Figure 9 presents the OP profiles (top row), quasiparticle
excitation spectrum (central row), and LDOS (bottom row) for
the radii of the normal-metal ring r,/§y = 14.5,22,36.5,44
(from left to right, respectively). As seen in the OP profiles
in Fig. 9, the chiral domain walls are trapped in the normal-
metal ring in every considered case. With increasing radius
of the ring r,, the skyrmion correspondingly expands. As a
result, the domain-wall bound states shift to larger angular
momentum [, in the energy spectrum, and the zero-bias peak
in LDOS shifts as well. Note that the domain-wall bound states
become increasingly hole dominant with the expansion of the
skyrmion. At the same time, the Andreev bound states around
E = |Ag| become more significant and increasingly electron
dominant.

The surface bound states are not affected by our exercise
until the skyrmion gets close to the sample surface. As seen
from the panels for r, /&, = 44, the OP profiles at the surface
are strongly affected by the domain wall. The supercurrents
induced by the domain wall and those running near the surface
combine, causing interactions between the domain-wall bound
states and the surface bound states. As seen from the energy
spectrum E,(u,), these two branches of bound states avoid
crossing each other. Finally, we note that the quasiparticles
interference above the gap energy |E| > Ay is enhanced with
the r, increasing. The quasiparticles interference effect is
known to result in additional BCS-like energy gaps and more
Bogoliubov quasiparticle states with Z, = 0.5 above the gap
energy Ag [72]. Here, it is induced by the inhomogeneous OP
profile stemming from the normal-metal ring, the skyrmion,
and the surface.

VII. SUMMARY

In summary, we have studied the topological and electronic
properties of characteristic vortical and skyrmionic states
in chiral p-wave superconductors, by solving Bogoliubov—
de Gennes equations self-consistently. We have presented
the distribution of the two-component order parameter, the
supercurrent, quasiparticle excitation spectra, and LDOS for
each of the typical states. We pointed out that the chiral order-
parameter representation using components AL = p, £ ip,is
ideal to study the properties of chiral domain walls in the given
state, while the p, and p, components of the order parameter
conveniently reveal the properties of vortices.

While conventional vortices are rather well understood
in the literature (as pointlike topological defects, with core
in the order parameter, supercurrent flow around it, and
the vortex bound states and LDOS peaks at the core),
the topological defects comprising one-component vortices
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and/or chiral domain walls as well as their interaction with
conventional vortices are an entirely new topic. Moreover,
a chain of one-component vortices (half the vorticity of
a complete vortex, analogous to half-quantum vortices of
spin-triplet superconductors [73]) on a chiral domain wall
can be characterized as a skyrmion, and can be seen in the
total order parameter as looplike topological defect without a
fully developed core. Such defects carry multiple flux quanta,
but are entirely different from “giant” vortices in s-wave
superconductors [6,7,51]. Such skyrmion exhibits a chiral
domain wall in A4, whereas a vortex does not. Unlike vortices,
they are characterized not only by the angular momentum, but
also by the topological charge in the relative order-parameter
space, where both the relative amplitude and relative phase
between the two components of the order parameter play
a role. A skyrmion traps bound states at the chiral domain
wall, leading to zero-bias LDOS peaks at the domain wall. In
addition, the LDOS exhibits electron-hole asymmetry, which
is different from the electron-hole symmetric LDOS of usual
multiquanta vortex states. We also show the possibility to have
a topological defect with a vortex inside a skyrmion, with
superimposed features of both topological constituents.

Our analysis in varied magnetic field and temperature
shows that the size of the skyrmion can be strongly tuned,
being increased by increasing temperature and by decreasing
applied magnetic field. The size of the skyrmion is typically an
order of magnitude larger than a vortex. Furthermore, contrary
to conventional vortices, a skyrmion survives changing the
polarity of the applied magnetic field, due to the finite-energy
cost of breaking the chiral domain wall so that vortices
within the skyrmion can leave the sample. As a consequence,
the skyrmion can significantly increase in size at negative
magnetic field since the decreasing energy of currents flowing
inside the skyrmion compensates the increasing energy of
the longer chiral domain wall. Finally, we have shown that
even in the absence of the magnetic field, the size of the
skyrmion can be manipulated by pinning on a normal-metal
ring of prescribed size. Considering that due to recent ex-
perimental achievements in, e.g., superconductor-ferroelectric
hybrids one can draw practically at will the normal-metal
paths inside the superconductor [74,75], this opens up a
broad playground for novel phenomena in fluxonics. We
expect that our findings related to stability of skyrmionic
topological defects in superconductors, manipulation of their
size, and their distinct signatures in, for example, LDOS, will
enable their experimental identification in scanning tunneling
microscopy and spectroscopy, which can be further used to
prove particular pairing symmetry in the superconductor of
interest.
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