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Transmission of terahertz waves through layered superconductors
controlled by a dc magnetic field
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The transmission of THz electromagnetic waves via a slab of layered superconductor in the presence of
dc magnetic field H0 is theoretically studied. We demonstrate that the external dc field turns the layered
superconductor into nonuniform medium with spatially and frequency-dependent dielectric permittivity. Even
a relatively weak dc magnetic field, when the superconductor is in the Meissner state, significantly affects
the transmittance of the layered superconductor. Moreover, the proper choice of H0 can provide the perfect
transparency of the slab. In addition, the dc magnetic field changes the dependence of the transmittance on the
slab thickness, the frequency, and the incident angle of the wave. Thus, it can serve as an effective tool to control
the transmissivity of layered superconductors.
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I. INTRODUCTION

Layered superconductors are either natural high-Tc super-
conductors, such as Bi2Sr2CaCu2O8+δ , or artificially grown
stacks of Josephson junctions, e.g., Nb/Al-AlOx /Nb. These
materials consist of thin superconducting layers separated by
thicker dielectric layers. The experimental studies for the
c-axis conductivity (see, e.g., Refs. [1,2]) proved that the
superconducting layers are electrodynamically coupled due to
the intrinsic Josephson effect. Owing to the layered structure,
these materials are strongly anisotropic media. Indeed, the
strong electric currents flowing along the layers are of the
same nature as in bulk superconductors, while the weak
current across the layers emerges due to the Josephson effect.
This anisotropy gives rise to the existence of the specific
electromagnetic excitations in layered superconductors, the
Josephson plasma waves (JPWs) (see, e.g., Refs. [3,4] and
references therein). The frequencies of JPWs belong to the
terahertz (THz) range that makes layered superconductors to
be promising materials for different applications (see, e.g.,
Ref. [5]).

Being of the similar origin as common plasma waves, the
bulk JPWs can propagate in layered superconductors with
frequencies above some threshold value ωJ . In addition, as
was theoretically demonstrated in Refs. [6,7], the surface
Josephson plasma waves (SJPWs) can propagate along inter-
faces between layered superconductors and vacuum, similarly
to the surface plasmon polaritons in usual plasmas. The
excitation of SJPWs leads to various resonant phenomena
[7–9] similar to the Wood anomalies well known in optics (see,
e.g., Refs. [10–12]). However, in contrast to usual plasmas,
SJPWs can propagate with frequencies not only below the
Josephson plasma frequency ωJ but also above it [7]. The
strongly anisotropic plasma in layered superconductors can
also exhibit properties inherent to the left-handed media: a
negative refractive index for THz waves can be observed at
the boundaries of layered superconductors [7,13]. As was
shown in Ref. [14], the phenomena similar to the Anderson
localization and the formation of a transparency window

for THz waves can be observed in layered superconductors
with randomly fluctuating value of the maximum Josephson
current.

The electrodynamic equations for the layered supercon-
ductors are nonlinear. The nonlinearity originates from the
nonlinear relation J ∝ sin ϕ between the Josephson interlayer
current J and the gauge-invariant interlayer phase difference ϕ

of the order parameter. This can result in a number of nontrivial
nonlinear effects accompanying the propagation of JPWs,
e.g., slowing down of light [15], self-focusing of terahertz
pulses [15,16], excitation of nonlinear waveguide modes [17],
as well as self-induced transparency of the slabs of layered
superconductors and hysteretic jumps in the dependence of the
slab transmissivity on the wave amplitude [18]. The noticeable
change in the transmissivity of the cuprate superconductors
while increasing the wave amplitude was recently observed in
Ref. [19], where the excitation of Josephson plasma solitons
led to effective decrease of the Josephson resonance frequency.

It is important to underline the principal difference between
the behavior of the usual plasmas and plasma in layered
superconductors subjected to the external dc magnetic field.
The dc magnetic field penetrates uniformly into nonmagnetic
normal metals whereas, in layered superconductors, the
excited Meissner currents result in appreciably nonuniform
dc field distribution. Therefore, the external dc magnetic field
creates a nonuniform background for the JPWs propagation,
inherent to the plasma in layered superconductors. Thus, the
dc magnetic field can be used to control the properties of
the electromagnetic waves in layered superconductors. For
example, a strong effect of the dc magnetic field on the
dispersion characteristics of the surface Josephson plasma
waves was studied in Refs. [20,21].

In the present paper, we focus our attention on the
transmission of the transverse magnetic (TM) JPWs through
a slab of layered superconductor in the presence of the
external dc magnetic field. We show that the dc magnetic
field can be used as a novel tool to control the transmission
of the THz waves through the layered superconductors. We
consider the case of sufficiently weak magnetic fields when
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the Josephson vortices do not penetrate into the supercon-
ductor. We obtain the explicit analytical expression for the
transmission coefficient and study its dependence on the
magnitude of the dc field and other problem parameters, such
as the sample thickness, the angle of the wave incidence,
and the wave frequency. We show that the slab can become
completely transparent for definite magnitudes of the dc field.
The dependence of the transmittance on the incident angle can
be increasing or decreasing for different magnitudes of the dc
field.

The paper is organized as follows. In Sec. II, we describe
the geometry of the problem, discussing the theoretical model
applied for the description of the dc and ac fields distribution
in the layered superconductor. Section III contains the analytic
expression for the transmission coefficient and its analysis as
a function of the slab thickness, the incident angle, frequency,
and the magnitude of the dc magnetic field. The last section
summarizes the obtained results.

II. STATEMENT OF THE PROBLEM:
ELECTROMAGNETIC FIELDS

In this section we describe the geometry of the problem,
present basic equations, and calculate analytically the distri-
bution of electromagnetic fields in the vacuum regions and in
the slab of layered superconductor.

A. Geometry of the problem

We study the transmission of the electromagnetic wave
through a slab of layered superconductor with thickness
D. The coordinate system is chosen in such a way that
the crystallographic ab plane of the layered superconductor
coincides with the xy plane, and the c axis is directed along
the z axis. The slab occupies the spatial region 0 < x < D (see
Fig. 1). We assume the sample to be infinite along the y and z

axes in order to neglect the corresponding boundary effects.
The TM-polarized wave of the unit amplitude, THz fre-

quency ω, and wave-vector components kx = k cos θ , kz =
k sin θ (k = ω/c) irradiates surface x = 0 of the superconduc-
tor with the incident angle θ . Such a geometry allows us to

FIG. 1. Schematic geometry for the reflection and transmission
of waves through a slab of layered superconductor. Here Hi , Hr , and
Ht are the amplitudes of incident, reflected, and transmitted waves,
respectively, θ is the incident angle, �H0 is the external dc magnetic
field, indices S and I stand for superconducting and insulator layers,
respectively, D is the thickness of the slab. The slab is infinite along
the y and z directions.

present the electromagnetic field as

�E(x,z,t) = {Ex(x),0,Ez(x)} exp(ikzz − iωt),
(1)�H (x,z,t) = {0,Hy(x),0} exp(ikzz − iωt).

The incident wave partly reflects from the layered supercon-
ductor and partly transmits through it, as shown in Fig. 1. The
external dc magnetic field �H0 is applied along the y axis. We
study the case of relatively weak dc magnetic fields when the
Josephson vortices do not penetrate into the slab.

B. Electromagnetic field in the vacuum regions

The electromagnetic field in the vacuum regions to the right
and to the left from the sample (see Fig. 1) is a superposition
of the dc magnetic field and the fields of the incident, reflected,
and transmitted waves. Using the Maxwell equations, one can
readily derive the following expressions for the tangential
components of the electric and magnetic fields in the left
vacuum region:

H left
y (x) = exp(ikxx) + Hr exp(−ikxx),

(2)

Eleft
z (x) = −kx

k
[exp(ikxx) − Hr exp(−ikxx)],

where Hr is the amplitude of the reflected wave.
The tangential components of the magnetic and electric

fields of transmitted wave in the right vacuum region are

H right
y (x) = Ht exp[ikx(x − D)],

(3)

Eright
z (x) = −kx

k
Ht exp[ikx(x − D)],

where Ht is the amplitude of transmitted wave.

C. Electromagnetic field in the slab of layered superconductor

The electromagnetic field in the layered superconductor is
defined by the distribution ϕ(�r,t) of interlayer gauge-invariant
phase difference of the order parameter. This phase difference
is governed by a set of coupled sine-Gordon equations
[3,22–28]. This set describes properly the propagation of the
electromagnetic waves in layered superconductors and allows
important predictions. For instance, a way to produce the
coherent terahertz radiation was proposed in Ref. [29] on the
basis of the coupled sine-Gordon equations and then realized
in the experiment [5].

Here we study the electromagnetic field in the continual
limit where the spatial period d of the layered structure is
much smaller than the wavelength k−1

z in the z direction,

kzd � 1. (4)

In this case, the layered superconductor can be considered
as uniform, however strongly anisotropic, medium. In the
continual limit, the coupled sine-Gordon equations reduce to
the following form:(

1 − λ2
ab

∂2

∂z2

)(
sin ϕ + 1

ω2
J

∂2ϕ

∂t2

)
− λ2

c

∂2ϕ

∂x2
= 0. (5)

Here λab and λc = c/ωJ ε1/2 � λab are the London pen-
etration depths across and along the layers, respectively,
ωJ = (8πeJcd/�ε)1/2 is the Josephson plasma frequency,
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Jc is the maximal Josephson current density, ε is the dielectric
constant of insulator layers, and e is the elementary charge.
Equation (5) does not take into account the relaxation terms.
This assumption is correct for the case when the slab thickness
D is much smaller than the decay length ldec of JPWs.
The condition D � ldec is difficult for realization in high-
Tc superconductors. Indeed, because of the d-wave pairing,
the decay length ldec in such materials is comparable with
20λc and can reduce the transparency of the slab even at
low temperatures. Therefore, in this paper, we calculate the
transmission coefficient with account for dissipation and show
that it does not impact on our main result. Namely, we
demonstrate that the small dc magnetic field can substantially
affect the transmissivity of the superconducting slabs even in
the case of account for dissipation.

The gauge-invariant phase difference ϕ(�r,t) of the order
parameter defines components Es

z and Hs
y of the electric

and magnetic fields in the layered superconductor (see, e.g.,
Ref. [3] and references therein),

Es
z = H0

2ωJ

√
ε

∂ϕ

∂t
,

∂H s
y

∂x
= H0

2λc

[
sin ϕ + 1

ω2
J

∂2ϕ

∂t2

]
, (6)

where H0 is the characteristic magnetic field within the
Josephson vortices, which turns out to be associated with the
flux quantum 
0,

H0 = 
0

πdλc

, 
0 = π�c

e
. (7)

Note that the component Es
z of the electric field causes

the breakdown of electroneutrality of the superconducting
layers and results in an additional, so-called capacitive,
interlayer coupling. This coupling can play an important role
in the properties of the longitudinal JPWs with wave vectors
oriented across the layers. The dispersion equation for linear
plane JPWs with account of the capacitive coupling was
obtained in Ref. [30]. According to this dispersion equation,
the capacitive coupling is important if the wave vector is
oriented mainly along the z axis (across the superconducting
layers). In our case, when the incident angle is not close
to π/2, i.e., kz ∼ kx ∼ k, capacitive coupling can be safely
neglected because of the smallness of the parameter α =
R2

Dε/sd, where RD is the Debye length for a charge in a
superconductor.

1. Distribution of the dc magnetic field in the slab
of layered superconductor

At first, we describe how the dc magnetic field penetrates
into the slab of layered superconductor. Here we assume that
the slab is sufficiently thick,

D � λc � λab. (8)

In this case, we can neglect the interaction between two
magnetic fluxes penetrated into the slab from its opposite sides
x = 0 and x = D, since the dc field decays exponentially
inside the slab over the distance of about λc from the slab
boundaries. Using Eq. (5), we obtain the expressions for the
static phase difference ϕ0 in the vicinity of the boundaries

x = 0 and x = D,

ϕleft
0 (ξ ) = −4 arctan[exp(−ξ − ξ0)],

(9)
ϕ

right
0 (ξ ) = 4 arctan{exp[ξ − (δ − ξ0)]}.

Here we introduced the dimensionless coordinate ξ and the
normalized thickness δ of the slab,

ξ = x

λc

, δ = D

λc

� 1. (10)

The constant ξ0 is defined by the magnitude H0 of the external
dc magnetic field,

ξ0 = arccosh
1

h0
, h0 = H0

H0
. (11)

The value h0 represents the external dc magnetic field nor-
malized to the critical field H0 = 
0/πdλc. The typical value
of H0 for Bi2Sr2CaCu2O8+δ is about 100 Oe. If H0 > H0,
the Meissner state becomes unstable. Here we consider an
opposite case when the dc magnetic field is weak,

h0 � 1. (12)

Under this condition, the magnetic flux inside the layered su-
perconductor exists only in the form of the tails of two fictitious
Josephson vortices whose centers are situated outside the slab
at the points ξ = −ξ0 and ξ = δ + ξ0. Equation (9) represents
the well-known solutions to the sine-Gordon equation for the
phase ϕ0 of these fictitious vortices. As we show below, even
the weak dc magnetic field has an essential effect upon the
high-frequency properties of the layered superconductors and,
in particular, upon the transmissivity of the superconducting
slab.

2. Electromagnetic field of the JPW in the slab
of layered superconductor

Here we discuss the ac fields associated with the Josephson
plasma wave propagating inside the layered superconductor
in the presence of the nonuniformly distributed dc magnetic
field. This nonuniform dc field is defined by the static phase
difference (9). We consider the case when the amplitude of the
incident wave is much smaller than the magnitude of the dc
magnetic field, and the gauge-invariant phase difference can
be presented as a sum of three terms,

ϕ(ξ,z,t) = ϕleft
0 (ξ ) + ϕ

right
0 (ξ ) + ϕw(ξ,z,t), (13)

where first two terms given by Eqs. (9) describe the static part
of ϕ. The last term is the small ac addition emerging due to
JPW.

We linearize Eq. (5) in the small ac phase difference ϕw

and, in accordance with Eq. (1), seek ϕw in the form

ϕw(ξ,z,t) = a(ξ ) exp[i(kzz − ωt)]. (14)

Then, within the linear approximation, the equation for the
factor a(ξ ) reads

d2a(ξ )

dξ 2
+ (

1 + k2
zλ

2
ab

)[ 2

cosh2(ξ + ξ0)

+ 2

cosh2(δ + ξ0 − ξ )
+ 
2 − 1

]
a(ξ ) = 0, (15)
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where 
 is the normalized frequency,


 = ω

ωJ

. (16)

It is remarkable that, due to relation (6), Eq. (15) gives rise
to the well-known equation for the z component of the electric
field in the wave with TM polarization (1),

d2Ez

dx2
+

(
k2εzz − k2

z

εzz

εxx

)
Ez = 0, (17)

however, with the certain components of permittivity tensor.
With account for dissipation terms, these components can be
written as,

εxx(
) = εyy(
) = ε

[
1 + iνab



− λ2

c

λ2
ab

1


2

]
,

εzz(ξ,
) = ε

{
1 + iνc



− 1


2

[
1 − 2

cosh2(ξ + ξ0)

− 2

cosh2(δ + ξ0 − ξ )

]}
. (18)

Here the dimensionless relaxation frequencies νab =
4πσab/εωJ and νc = 4πσc/εωJ are related to the averaged
quasiparticle conductivities along the layers, σab, and across
the layers, σc. In the following calculations we assume νab �
(λc/λab)2 and νc � 1.

Thus, one can conclude that the plasma in layered su-
perconductors in the external dc magnetic field represents
frequency dispersive nonuniform medium specified by the
uniaxial diagonal permittivity tensor (18). It is noteworthy
that the nonuniformity arising in εzz, is originated from and
controlled by the external magnetic field. With no dc magnetic
field, the dielectric functions (18) are reduced to those written
down in, e.g., Ref. [13].

Note that due to the strong anisotropy, λab � λc, the
parameter kzλab is always negligibly small,

kzλab = λab

λc


√
ε

cos θ � 1. (19)

Therefore, in Eq. (15), the parentheses (1 + k2
zλ

2
ab) can

be undoubtedly omitted. Then, within the accuracy in the
exponentially small parameter exp(−δ) = exp(−D/λc) � 1,
the asymptotically exact general solution to Eq. (15) turns out
to be found analytically,

a(ξ ) = C1ei
̃ξ [pa0(ξ ) + p−1a0(δ − ξ ) +
√


̃2 + 1]

+ C2e−i
̃ξ [p−1a0(ξ ) + pa0(δ − ξ ) +
√


̃2 + 1],
(20)

with C1, C2 being integration constants, and

a0(ξ ) = tanh(ξ0 + ξ ) − 1, p = 1 + i
̃√

̃2 + 1

. (21)

Here 
̃ =
√


2 + iνc
 − 1.
Now, using Eqs. (6), (13), (14), and (20), we can find the

electromagnetic field in the slab of layered superconductor.
The tangential components of the electric and magnetic

fields are:

Es
z (x) = − i
√

ε

H0

2
a(x/λc),

(22)

Hs
y (x) = H0

2
a′(x/λc).

Here the prime stands for the first derivative of a function with
respect to its argument.

Matching tangential components of the electric and
magnetic fields (2), (3) in the vacuum regions with the
fields (20), (22) inside the slab, we find out the unknown
constants Hr , Ht , C1, and C2. As a result, one can obtain the
following relation for the transmitted amplitude:

Ht = 4

̃(
̃2 + 1)2√ε cos θ

e−iδ
̃(i − 
̃)2M2+ − eiδ
̃(i + 
̃)2M2−
, (23)

where

M± = √
ε cos θ

(
h2

0 ± ih̃0
̃ + 
̃2
) + 
(ih̃0 ± 
̃). (24)

III. TRANSMISSION COEFFICIENT

Now we are in a position to obtain the analytical expression
for the transmittance T = |Ht |2. At first, in Sec. III A, we
analyze the transmission coefficient as a function of the slab
thickness, the incident angle, frequency, and the magnitude
of the dc magnetic field disregarding the relaxation terms and
then, in Sec. III B, discuss the role of the dissipation.

A. Transmission coefficient in the absence of dissipation

At νc = νab = 0, Eq. (23) gives the following expression
for the transmission coefficient T = |Ht |2:

T = 1

1 + sin2(
̃δ − φ)
{[

1
4�

+ ( h4
0h̃

2
0


4
̃2 + 1
)
�

]2 − 1
} ,

(25)

where

h̃0 =
√

1 − h2
0, � = 

̃

√
ε

2
(
h̃2

0 + 
̃2
) cos θ,

φ = π

2
− arctan

(
1 − 
̃2

2
̃
+ 
4h̃0

2 
̃ h2
0

P

)
, (26)

P =
[


2ε cos2 θ


2 + (
h̃2

0 − 
2
)
ε cos2 θ

− h̃0 + 
̃2

h̃0 + 1

]−1

.

In the absence of dc magnetic field (h0 = 0), the general
expression (25) for the transmittance gets a simple form,

T (h0 = 0) =
[

1 +
(

1

4�0
− �0

)2

sin2(
̃δ)

]−1

,

(27)

�0 = 
̃




√
ε

2
cos θ.

One can see that the slab of layered superconductor becomes
completely transparent (T = 1) for definite incident angle,
when the equality cos θ = 
/
̃

√
ε holds true, regardless of

the slab thickness D. This case can be realized at high enough
frequencies meeting the condition 
 > (1 − ε−1)−1/2.
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At the critical value of the dc magnetic field, h0 = 1, the
transmittance reads

T (h0 = 1) =
[

1 +
(

1

4�1
− �1

)2

sin2(
̃δ − φ1)

]−1

,

(28)

φ1 = 2 arctan 
̃, �1 = 



̃

√
ε

2
cos θ.

In this case, the total transparency can also be observed,
however for the other incident angle when cos θ = 
̃/


√
ε.

This condition can be satisfied for any frequency 
 > 1.
Now we proceed to the general case of the nonzero

dc magnetic field. We will discuss the dependence of the
transmittance on the slab thickness δ = D/λc, incident angle
θ , and frequency 
 = ω/ωJ , and study the effect of the dc
magnetic field h0 = H0/H0 on this dependence.

1. Dependence T (δ)

The general expression (25) for the transmittance depends
on the slab thickness D = λcδ via the argument of the sine
only. If sin(
̃δ − φ) = 0, the slab is completely transparent.
In the absence of external dc magnetic field, the phase φ = 0.
In this case, T = 1 when the slab thickness equals an integer
multiple of the half wavelengths,

D = πnc√
ε

1√
ω2 − ω2

J

, n = 1,2,3, . . . . (29)

As a result, the dependence T (D) contains oscillations of the
Fabry-Perot type, modified by the hyperbolic dispersion law
for the JPWs in the layered superconductor.

If the dc magnetic field H0 is turned on, the H0-dependent
phase shift φ appears in the argument of the sine in Eq. (25).
Thus, the dc magnetic field moves the T (D) curve to the

FIG. 2. Transmittance T vs normalized slab thickness δ = D/λc

in the absence of dc magnetic field (thick red curve, h0 = 0) and for
the critical field h0 = 1 (thin blue curve). The arrow shows shift of
the minimum position when applying the dc magnetic field. Other
parameters are: 
 = 1.2, θ = π/4, λc = 4 × 10−3 cm, λab = 2 ×
10−5 cm, ωJ /2π = 0.3 THz, and ε = 16.

left, while the periodicity of the function T (D) remains the
same. In addition, the amplitude of the Fabry-Perot resonance
increases at H0 = H0 in comparison with the case H0 = 0.
However, more detailed study reveals that the H0 dependence
of the amplitude of the Fabry-Perot resonance turns out to be
nonmonotonic if the incident angles θ satisfy the inequalities


√
ε(
2 + 1)

< cos θ <

√

ε(
2 − 1)
, 1. (30)

Figure 2 demonstrates the dependence of the transmittance
T on the dimensionless slab thickness δ for H0 = 0 and H0 =
H0. The corresponding phase shift is shown by the arrow.

2. Dependence T (θ )

The dependence of the transmittance T on the incident
angle θ is more complicated. Fig. 3 shows the value of T by
the color grade as a function of the incident angle and external
dc magnetic field at frequencies 
 = 1.1, 1.15, 1.2, 1.28.
Although this dependence changes quantitatively with increase
of 
, one can notice a qualitative repetition of its behavior.
Indeed, when 
̃ changes by π/δ, the argument of sine
in Eq. (25) changes approximately by π (see, e.g., panels

FIG. 3. The dependence of transmittance T (shown by the color
grade) on the incident angle θ and external dc magnetic field h0

for different frequencies: 
 = 1.1 (main panel) and 
 = 1.15, 
 =
1.2, 
 = 1.28 (top panels). The dashed black lines correspond to
sin(
̃δ − φ) = 0, and the dashed gray lines show the points where
factor in the curly brackets in Eq. (25) reaches the minimum as a
function of θ . The parameters are: δ = 11, λc = 4 × 10−3 cm, λab =
2 × 10−5 cm, ωJ /2π = 0.3 THz, and ε = 16.
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with 
 = 1.28 and 
 = 1.1 in Fig. 3). The transmission
coefficient T is equal to 1 when sin(
̃δ − φ) = 0. This
condition corresponds to the dashed black lines in Fig. 3.
Additionally, we show the points where the factor in the circle
brackets in Eq. (25) reaches the minimum as a function of θ

by the dashed gray line.
As is seen in the main panel in Fig. 3, the dc field

can drastically change the behavior of the function T (θ ).
Specifically, for 0 � h0 � 0.2 this function is nonmonotonic.
As the incident angle θ increases, the transmittance initially
increases and then decreases down to zero. Within the interval
0.2 � h0 � 0.5, function T (θ ) monotonically decreases from
T (θ = 0) = 1 to T (θ = π/2) = 0. For 0.5 � h0 � 0.8, the
variation of θ does not result in a noticeable change of the
transmittance T (θ ). Finally, when the dimensionless dc field
is higher than ≈0.8, the dependence T (θ ) becomes again
nonmonotonic.

It should be noted that, with a proper choice of the incident
angle θ , one can attain almost perfect transmission of the
superconducting slab for almost any values of the external
dc field H0 and frequency ω. To recognize this fact, we found
from Eq. (25) the maximal values Tmax of the function T (θ ) for
different dc magnetic fields and frequencies. These maximal
values are depicted on the phase plane (h0,
) in Fig. 4. One can
see that the perfect transmission, Tmax = 1, can be observed
in a wide area of this plane (light gray regions bordered by
the dashed lines). The values of θ in this regions are chosen
to nullify the sine in Eq. (25). The perfect transmission cannot
be attained, Tmax < 1, for h0 and 
 in the bluer regions.

FIG. 4. The maximum Tmax of the function T (θ ) (shown by the
color grade) vs normalized frequency 
 and dimensionless external
dc magnetic field h0. The dashed lines separate regions where the
perfect transmission can be observed (regions with Tmax = 1, light
gray color) from the regions with Tmax < 1 (darker bluish color).
The parameters are: δ = 11, λc = 4 × 10−3 cm, λab = 2 × 10−5 cm,
ωJ /2π = 0.3 THz, and ε = 16.

FIG. 5. The dependence of transmittance T (shown by the color
grade) on normalized frequency 
 and external dc magnetic field
h0. The dashed horizontal lines a and b correspond to the dashed
vertical lines a and b in Fig. 7. These lines show that, for given
frequency, the change of dc field can affect the transmittance either
significantly (a) or weakly (b). The parameters are: θ = π/4, δ = 11,
λc = 4 × 10−3 cm, λab = 2 × 10−5 cm, ωJ /2π = 0.3 THz, ε = 16.

3. Dependence T (�)

The transmittance T of the layered superconductor versus
the frequency ω and dc field H0 is shown by the color grade
in Fig. 5. The regions of perfect transmission are marked in
red color. While increasing the frequency ω at any fixed H0,
the transmittance oscillates and takes on the value one at the
frequencies of the Fabry-Perot resonances [when the sine in

FIG. 6. Transmittance T vs normalized frequency 
 for h0 = 1.
Other parameters are: θ = π/4, δ = 11, λc = 4 × 10−3 cm, λab =
2 × 10−5 cm, ωJ /2π = 0.3 THz, ε = 16.
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FIG. 7. Variation range (gray area) of function T (h0) vs normal-
ized frequency 
. The upper red and bottom blue curves show the
maximum and minimum values of the transmittance. The dashed
vertical straight lines, a and b, correspond to dashed horizontal
lines, a and b, in Fig. 5. The parameters are: θ = π/4, δ = 11, λc =
4 × 10−3 cm, λab = 2 × 10−5 cm, ωJ /2π = 0.3 THz, and ε = 16.

Eq. (25) vanishes], see Fig. 6. According to Fig. 5, the dc
field shifts the maximums of the transmittance and makes the
resonances sharper.

Remarkably, the Fabry-Perot resonances can be realized by
changing the dc magnetic field H0, however, only for special
fixed intervals of the frequency ω. To recognize the range of
transmittance variation as the dc magnetic field is changed,
we plotted two boundary curves in Fig. 7. Specifically, the
upper red and lower blue curves represent, respectively, the
transmittance maximized and minimized over the dc field,
as a functions of the dimensionless frequency 
. The gray
intermediate region between the curves shows the range of
transmittance variation. One can see from Fig. 7 that this
range depends significantly on the choice of the frequency.
For example, we can compare the ranges marked by dashed
lines a and b in Figs. 5 and 7. For the frequency corresponding
to line a, one can vary the transmittance from nearly zero to
one, whereas the range of the transmittance variation is much
smaller along line b. Evidently, the perfect transparency cannot
be observed in the last case.

B. Transmission coefficient with account for dissipation

All results obtained in Sec. III A are valid for the case
of the negligible dissipation. However, even in the case of
not very small dissipation, the small dc magnetic field can
substantially affect the transmissivity of the superconducting
slabs. To demonstrate this we, using Eq. (23), have plotted the
transmittance T vs normalized slab thickness δ = D/λc for
the case of zero dissipation, νab = νc = 0, and for νab = νc =
0.03 
 (see Fig. 8). The dashed curves obtained for νab =
νc = 0 coincide with the curves in Fig. 2. They show the
Fabry-Perot oscillations in the absence of dc magnetic filed
(thick red dashed curve) and for h0 = 1 (thin blue dashed

FIG. 8. Transmittance T vs normalized slab thickness δ = D/λc

for νab = νc = 0.03 
 (solid curves) and νab = νc = 0 (dashed
curves). Thick red curves correspond to the case of absence of dc
magnetic filed, h0 = 0, whereas thin blue curves are obtained for
h0 = 1. Other parameters are: 
 = 1.2, θ = π/4, λc = 4 × 10−3 cm,
λab = 2 × 10−5 cm, ωJ /2π = 0.3 THz, and ε = 16.

curve). The solid curves in Fig. 8 are plotted for the same
conditions as dashed lines but for νab = νc = 0.03 
. One can
see that the Fabry-Perot oscillations persist even in the case
of small (but realistic) dissipation. Moreover, Fig. 2 shows
that the dc magnetic field changes the transmissivity in a wide
range even in the case of nonzero dissipation.

IV. CONCLUSIONS

In this paper, we have studied theoretically the transmission
of THz electromagnetic waves through a slab of layered
superconductor in the presence of external dc magnetic
field. We have shown that the dc field changes significantly
conditions for the propagation of the Josephson plasma waves.
Specifically, the dc field turns a layered superconductor into
spatially and frequency dispersive medium with dielectric
permittivity ε(x,ω) described by Eq. (18). With tuning the dc
magnetic field, one can easily control the spatial distribution
of ε(x,ω) and, thus, the electrodynamic properties of the
plasma in layered superconductors. As a result, we have
an effective tool to manipulate the transmissivity of layered
superconductors. We have demonstrated that applying even
relatively weak dc magnetic field one can significantly change
the transmittance of the layered superconductor. Moreover, the
proper choice of the dc field magnitude can provide the perfect
transparency of the slab.
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