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BCS superconductivity near the band edge: Exact results for one and several bands
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We revisit the problem of a BCS superconductor in the regime where the Fermi energy is smaller than the
Debye energy. This regime is relevant for low-density superconductors such as SrTiO3 that are not in the BEC
limit, as well as in the problem of “shape resonances” associated with the confinement of a three-dimensional
superconductor. While the problem is not new, exact results were lacking in the low-density limit. In two
dimensions, we find that the initial rise of the pairing temperature Tc at low density n is nonanalytic and faster
than any power of n. In three dimensions, we also find that Tc is nonanalytic, but starts with zero slope at weak
coupling and infinite slope at strong coupling. Self-consistent treatment of the chemical potential and energy
dependence of the density of states are crucial ingredients to obtain these results. We also present exact results
for multiband systems and confirm our analytical expressions by numerical simulations.
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I. INTRODUCTION

The Bardeen-Cooper-Schrieffer (BCS) theory [1] remains
the only strong microscopic foundation to support our under-
standing of the fascinating phenomenon of superconductivity.
Among many other insights, the theory provides a simple
expression for the critical temperature Tc, which continues to
inspire the search for materials with improved performances.
In particular, it is expected that superconductivity is favored by
a low dimensionality due to enhanced density of states (DOS)
at the Fermi level [2]. For three-dimensional (3D) materials,
an early proposal to use quantum confinement in a thin
film [3] has received sustained attention until recently [4]. The
confinement-induced two-dimensional (2D) subbands produce
discontinuities in the DOS and abrupt changes of Tc as a
function of film thickness have been routinely predicted.

The purpose of this study is to explore some consequences
of an aspect of the problem, considered by Eagles half a
century ago [2,5], but often overlooked in recent calculations
based on the BCS gap equation. As the Fermi energy crosses
the edge of a band, there is a regime where the dynamical
cutoff of the pairing interaction is controlled by the band edge
(Fig. 1). This regime is realized in low-density electron gases,
when the Fermi energy is smaller than the dynamical range
of the interaction. In doped SrTiO3, for instance, the carrier
concentration is typically 1019cm−3 and the carrier mass is
in the range 2–4 electronic masses [6], corresponding to a
Fermi temperature of 50–100 K, while the Debye temperature
is 513 K [7]. In this situation, the common approximation
of taking a constant DOS over the full dynamical range
fails to give a good estimate for Tc. The near-band edge
regime is also relevant in the quasi-2D problem of shape
resonances, since each resonance is due to the Fermi energy
crossing a subband edge [8–10]. The pairing in that subband,
as well as the intersubband pairing involving that subband, are
dominated by the band edge. A synthesis of these two cases
is realized in the quasi-2D and low-density electron gas at
the LaAlO3/SrTiO3 interface [11–13]. In the present paper we
focus on the band-edge effect on Tc in the bulk, emphasizing
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the generic behaviors in the simple case of an electron gas
with parabolic dispersion and a local attraction. We recover
the expressions of Eagles [2] in the weak-coupling limit. In the
low-density regime, we provide exact relations as a function
of the density, which are valid at arbitrary coupling. We also
give exact numerical results in 2D and 3D, for one-band
and multiband systems. The implications for the problem of
quasi-2D shape resonances and the case of LaAlO3/SrTiO3,
will be reported in separate publications.

Our starting point is the mean-field theory for a momentum-
independent pairing interaction acting in a limited energy
range around the Fermi surface. This theory yields a pairing
temperature which is in general higher than the temperature of
superconducting coherence, especially when the dimensional-
ity and/or the density is low and superconducting fluctuations
become important [14–16]. We ignore these fluctuations and
focus on the mean-field equations, refraining from making
any approximation when solving them for Tc. This approach
is similar to previous mean-field studies of the BCS-BEC
crossover where the renormalized chemical potential is solved
self-consistently together with the Tc equation or the gap
equation at zero temperature [17,18].

An exact solution of the gap equation requires one to
take into account the energy dependence of the DOS, most
importantly the cutoff at the band bottom, and the temperature
dependence of the chemical potential μ, which is crucial
at low-density n. Because n, Tc, and μ all approach zero
simultaneously, it is essential to use the exact relation μ(n,Tc)
in order to capture the correct behavior of Tc for n → 0.
Furthermore, one should not assume weak coupling and/or
assume that Tc is small with respect to the Fermi energy and
the cutoff for pairing. As a matter of fact, analytical results in
this problem are rare. In Ref. [19], rigorous bounds for Tc were
obtained for a general interaction. These results are limited to
weak coupling and to a positive chemical potential. We will see
that the chemical potential at Tc is negative in the low-density
limit in 2D for any coupling and in 3D for couplings larger than
a critical value. Exact results have also been reported for the
zero-temperature gap in 2D [20]. However, since the universal
BCS gap to Tc ratio is not obeyed in the low-density limit,
these results cannot be used to deduce Tc.
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FIG. 1. Schematic representation of (a) the high-density regime
and (b) the low-density regime for superconducting pairing. In the
former, EF � �ωD and the density of states N0(E) can be taken
constant. In the latter, EF � �ωD, the interaction is cut by the band
edge, and the details of N0(E) matter.

This paper is the first in a series and it provides the
mathematical foundations for subsequent studies dedicated
to shape resonances in thin films and to the LaAlO3/SrTiO3

interface. It is organized as follows. In Sec. II we recall the
basic coupled equations giving n and Tc and we write them
in a dimensionless form, for one and several parabolic bands.
In Sec. III we present our analytical and numerical results for
one band in 2D and 3D, and in Sec. IV we briefly discuss
multiband effects.

II. BCS Tc EQUATION FOR MULTIBAND SYSTEMS

A. Dimensionless equations for the pairing temperature

We consider a multiband metal with a local BCS pairing in-
teraction −Vαβ acting between electrons of opposite momenta
and spins in bands α and β [21]. We assume that Cooper pairing
occurs only for two electrons in the same band, leading below
the pairing temperature Tc to an order parameter �α in each
band. This includes the possibility of a “proximity” induced
gap �β in a band that otherwise feels no pairing potential
(Vββ = 0), via the nonzero interband interactions Vαβ . The
mean-field gap equation for �α is

�α =
∑

β

Vαβ�β

∫
�ωD

−�ωD

dξ N0β(μ + ξ )
tanh

(√
ξ 2+�2

β

2kBT

)
2
√

ξ 2 + �2
β

.

(1a)

The pairing interaction acts in a range ±�ωD around the
chemical potential μ. Although the notation �ωD is used here,
we envision the problem in its generality and our results do
not require phonon-mediated pairing, but apply to any local
interaction with a dynamical cutoff. In a lattice version, for
instance, the cutoff could be the bandwidth. N0β (E) is the
DOS per spin and per unit volume for the band β. It is defined
on an absolute energy scale, such that N0β (μ) is the DOS
at the chemical potential μ, which is common to all bands.
The chemical potential must be adjusted to fix the density

according to

n = 2
∫ ∞

−∞
dE f (E) N (E). (1b)

Here, f (E) = [e(E−μ)/kBT + 1]−1 is the Fermi distribution
function and N (E) is the total BCS density of states (per
spin) resulting from the opening of the superconducting gaps
at the chemical potential in each band.

For the calculation of Tc, it is sufficient to consider the
two equations in the limit of vanishing order parameters. For
T = Tc we have

�α =
∑

β

Vαβ�β

∫
�ωD

−�ωD

dE N0β(μ + E)
tanh

(
E

2kBTc

)
2E

, (2a)

n = 2
∫ ∞

−∞
dE f (E)

∑
β

N0β(E). (2b)

We now insert explicit formulas for the energy-dependent
densities of states and the density and we rewrite the equa-
tions (2) in a dimensionless form, which is more convenient
for analytical and numerical treatments. The densities of states
for a parabolic band in dimensions d = 2 and d = 3 are given
by

N0β(E) = (d − 1)π

(
mβ

2π2�2

) d
2

θ (E − E0β)(E − E0β)
d
2 −1,

(3)

where mβ is the band mass, E0β is the energy of the band min-
imum, and θ is the Heaviside function. This definition ensures
that N0β(μ) is the DOS evaluated at the chemical potential μ

common to all bands, consistently with Eq. (1a). The relation
between density, chemical potential, and temperature for a
parabolic band in arbitrary dimension d is

n = −2

(
mkBT

2π�2

) d
2

Li d
2

( − e
μ−E0
kBT

)
, (4)

where Lip(x) is the polylogarithm given by the series expan-
sion Lip(x) = ∑∞

q=1 xq/qp. This function has the sign of its
argument and reduces to a usual logarithm in two dimensions
(p = 1): Li1(x) = − ln(1 − x). We provide a brief derivation
of Eq. (4) in Appendix A for the interested reader.

We measure all energies in units of �ωD, express the density
in units of 2[mωD/(2π�)]d/2 where m is a reference mass, and
we distinguish the dimensionless variables with tildes, e.g.,

T̃c = kBTc

�ωD
, μ̃ = μ

�ωD
, ñ = n

2[mωD/(2π�)]d/2
, etc.

The coupled equations (2) for Tc become

�α =
∑

β

�βλ̄αβ ψd (1 + μ̃ − Ẽ0β,T̃c), (5a)

ñ = −T̃
d
2

c

∑
β

(
mβ

m

) d
2

Li d
2

( − e
μ̃−Ẽ0β

T̃c

)
. (5b)
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We have introduced the dimensionless function,

ψd (a,b) = θ (a)
∫ 1

1−min(a,2)
dx (x + a − 1)

d
2 −1 tanh

(
x
2b

)
2x

,

(6)

as well as the coupling constants,

λ̄αβ = Vαβ(d − 1)π

(
mβ

2π2�2

) d
2

(�ωD)
d
2 −1. (7)

We use a bar to recall that these coupling constants are not
evaluated at the Fermi energy like in the common practice,
but at an energy �ωD above the bottom of each band:
λ̄αβ = VαβN0β (E0β + �ωD). This choice is natural and leads
to the simplest equations. The usual definition λ = V N0(μ)
poses problems when μ lies below the band bottom and more
generally because μ is a function of interaction strength and
temperature.

In an N -band system, the relations (5) provide N + 1
equations for the N + 1 unknowns, which are T̃c, μ̃, and the
N − 1 ratios �β/�1. We can assume that �1 �= 0 without
loss of generality, because there is at least one nonzero gap
parameter at Tc and we are free to number the bands such that
�1 is this one. We now eliminate the N − 1 gap ratios and
reduce the problem to a pair of equations for T̃c and μ̃. With
the new definitions rβ = �β/�1 and

�αβ(μ̃,T̃c) = λ̄αβψd (1 + μ̃ − Ẽ0β,T̃c), (8)

the set of N equations (5a) becomes the eigenvalue problem
�r = r with r = (1,r2, . . . ,rN ). This means that, when
evaluated at a value of T̃c solving Eq. (5a), the matrix � has
at least one unit eigenvalue. In other words, T̃c corresponds to
the largest temperature that satisfies the characteristic equation
det(1 − �) = 0. The two coupled dimensionless equations
giving n and Tc for N bands are therefore

0 = det[1 − �(μ̃,T̃c)], (9a)

ñ = −T̃
d
2

c

N∑
α=1

(
mα

m

) d
2

Li d
2

( − e
μ̃−Ẽ0α

T̃c

)
. (9b)

The existence of a nontrivial solution to Eq. (5a) clearly
implies Eq. (9a). The converse is also true: The vanishing
of the determinant in Eq. (9a) is sufficient to enforce that the
matrix � has one unit eigenvalue, which provides a solution
to Eq. (5a). The equations (9) have the same structure in 2D
and 3D, the quantitative differences stemming mostly from
different functions ψd (a,b). In the next paragraph we discuss
the properties of these functions, which we shall use in the
following sections to derive analytical results.

B. Properties of the functions ψd(a,b)

The functions ψd (a,b) are displayed [22] in Fig. 2. The
strongest structure develops around a = 1, which corresponds
physically to having the chemical potential at the bottom
of one band. We are mostly interested in the behavior for
b � 1, which is explored in the regime kBTc � �ωD and
particularly in the limit b → 0, which is relevant when the
density approaches zero. If a < 1, ψd (a,b) is finite for b = 0.

FIG. 2. Representation of the functions ψd (a,b) defined in Eq. (6)
for dimensions d = 2 (top) and d = 3 (bottom). Physically, the a axis
corresponds to varying μ around the band bottom (a = 1) and the b

axis is proportional to Tc. The blue lines show the behavior for b = 0
and a < 1. The two red lines in each graph show the asymptotic b

dependencies for 1 < a < 2 and a > 2, respectively. The green lines
show cuts at the value ψd (a,b) = 2.5, which correspond to the path
followed in the (a,b) plane by the solution of the BCS equations (9)
for one band and for λ̄ = 0.4.

The limiting value is given by

ψd (0 < a < 1,b → 0)

=
∫ 1

b

1−a
b

dx
(bx + a − 1)

d
2 −1

2x

=
{− ln

√
1 − a (d = 2)√

a − √
1 − a sin−1(

√
a) (d = 3).

(10)

These limiting behaviors are indicated on the graphs as blue
lines. If a > 1, ψd (a,b) diverges logarithmically for b → 0,
but in different ways in the two ranges 1 < a < 2 and a > 2.
The former range corresponds physically to 0 < μ < �ωD,
such that the band edge sets the lower cutoff for the pairing
interaction, while the latter range is the usual regime, where
the Fermi energy is larger than the Debye energy. In two
dimensions, the asymptotic behavior is quite simple: If a > 2,
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we have the well-known result,

ψ2(a > 2,b → 0) =
∫ 1

b

− 1
b

dx
tanh(x/2)

2x
= ln

(
2eγ

πb

)
, (11)

with γ ≈ 0.577 the Euler constant. The function is indepen-
dent of a, because the DOS is constant over the range of
integration when μ > �ωD. If 1 < a < 2, we evaluate the
function by extending the integral to reproduce the case a > 2
and subtracting the difference:

ψ2(1 < a < 2,b → 0) =
∫ 1

b

− 1
b

dx
tanh(x/2)

2x
−

∫ 1−a
b

− 1
b

dx
−1

2x

= ln

(√
a − 1

2eγ

πb

)
. (12)

Equations (11) and (12) are represented in Fig. 2 (top) as red
lines. In order to obtain the exact asymptotic behavior for
b → 0 in three dimensions, we introduce the function t(x)
as a piece-wise linear approximation of tanh(x/2)—namely,
−1 for x < −2, x/2 for |x| < 2, and +1 for x > 2—and we
calculate analytically the integral with tanh(x/2) replaced by
t(x). The difference between the latter approximation and the
exact result is

lim
b→0

∫ 1
b

1−min(a,2)
b

dx
√

bx + a − 1
tanh(x/2) − t(x)

2x

= √
a − 1 ln

(
4eγ−1

π

)
.

Expanding the nonsingular terms to leading order in b, we
finally get in the regime 0 < μ < �ωD:

ψ3(1 < a < 2,b → 0) = √
a + √

a − 1

× ln

(
a − 1√

a + √
a − 1

8eγ−2

πb

)
,

(13)

and in the regime μ > �ωD:

ψ3(a > 2,b → 0)

= √
a + √

a − 2 + √
a − 1

× ln

(
a − 1√

a + √
a − 1

√√
a − 1 − √

a − 2√
a − 1 + √

a − 2

8eγ−2

πb

)
.

(14)

These asymptotic behaviors are indicated in Fig. 2 (bottom)
as red lines. Lastly, in the high-density, high-Tc sector a > 2
and b → ∞, the function reduces simply to ψd (a,b) = (a −
1)d/2−1/(2b).

Figure 2 also shows a particular cut at the value ψd =
2.5. Since the BCS equation (9a) for one band is simply
ψd = 1/λ̄, these cuts show the locus of the solutions (a,b) =
(1 + μ̃,T̃c) for λ̄ = 0.4. Note that the approximations (11)
to (14) shown in red underestimate the function ψd at low
b; using them instead of the exact functions thus leads to
underestimating Tc.

III. ONE PARABOLIC BAND IN 2D AND 3D

A. Analytical results

For a single band, we place the origin of energy at the
bottom of the band and we use the band mass as the reference
mass. The coupled equations (9) for Tc become simply:

1 = λ̄ ψd (1 + μ̃,T̃c), ñ = −T̃
d
2

c Li d
2
(−eμ̃/T̃c ). (15)

In 2D the relation between ñ and μ̃ can be trivially inverted
and the two equations reduce to a single implicit relation for
T̃c as a function of ñ and λ̄:

1 = λ̄ ψ2(1 + T̃c ln(eñ/T̃c − 1),T̃c). (16)

At not too low density, we see from the asymptotic expressions
indicated in Fig. 2 that the pairing temperature crosses over
between two regimes at μ̃ = 1. In 2D we have

T̃c ≈ 2eγ

π
exp

(
− 1

λ̄

)
×

{√
μ̃ μ̃ � 1

1 μ̃ > 1
(d = 2). (17)

T̃c is independent of μ̃ (hence of ñ) for μ̃ > 1, due to
the constant DOS and the conventional BCS expression is
recovered. In 3D we find

T̃c ≈ 8eγ−2

π

√
μ̃ exp

(
− 1

λ̄
√

μ̃

)
e
√

1+1/μ̃

1 + √
1 + 1/μ̃

×
{

1 μ̃ � 1

e
√

1−1/μ̃

√
1−√

1−1/μ̃

1+√
1−1/μ̃

μ̃ > 1
(d = 3). (18)

The product λ̄
√

μ̃ is the coupling evaluated at the chemical
potential, which enters the exponential as expected. Equa-
tions (17) and (18) are identical to Eqs. (2) and (3) of Ref. [2]
if we admit that kBTc = (eγ /π )�, which is true in the regime
of validity of these expressions, but not in the low-density
and/or strong-coupling regimes (see below). We emphasize
that these approximations result from expanding the function
ψd (a,b) in the limit b → 0 for a > 1 and are therefore accurate
only in the limit Tc → 0 at finite positive μ. These equations
are not accurate in the high-density regime where Tc is large.
Our numerical results show that Eqs. (17) and (18) provide a
rather poor approximation as soon as Tc reaches a few tenths
of �ωD.

We now turn to the low-density region. In 2D any cut of
the function ψ2(a,b) at the value 1/λ̄ converges at b = 0 to
a value a < 1, given by the relation − ln

√
1 − a = 1/λ̄ (see

Fig. 2). Hence the chemical potential converges to a finite
negative value μ̃min = −e−2/λ̄ when the density approaches
zero. This is a conjugated effect of the pairing interaction and
the DOS discontinuity: At any finite coupling the momentum
distribution is spread and a negative chemical potential leads
to a finite density even at zero temperature. The chemical
potential at zero density is related to the energy Eb of the two-
particle bound state by μ̃min = Ẽb/(2 + Ẽb). Equation (16)
for T̃c → 0 becomes 1 = −λ̄ ln

√
−T̃c ln(eñ/T̃c − 1), which

can be solved for ñ as a function of T̃c: ñ = T̃c ln{1 +
exp[− exp(−2/λ̄)/T̃c]}. The latter expression shows that ñ is
smaller than T̃c when both approach zero, such that in this
limit we can replace ln(eñ/T̃c − 1) by ln(ñ/T̃c). We thus find
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the solution,

T̃c = ñ exp

[
W

(
e−2/λ̄

ñ

)]
(d = 2, n → 0). (19)

W (x) is the Lambert function (or “product logarithm”),
which gives the principal solution of the equation x = WeW .
Equation (19) is nonanalytic in both λ̄ and ñ. It gives a
Tc starting with an infinite slope at n = 0 and increasing
faster than any power of n (in the sense that the running
exponent given by the logarithmic derivative approaches zero
for n → 0). An approximation of (19) valid to logarithmic
accuracy was given earlier [24].

In 3D the function ψ3(a < 1,0) approaches 1 for a →
1. Therefore we have the same situation as in 2D if
λ̄ > 1. In this case the chemical potential approaches a
finite negative value given by the solution of

√
μ̃min + 1 −√−μ̃min sin−1 (

√
μ̃min + 1) = 1/λ̄ as the density approaches

zero. Since μ̃ is finite and negative in the limit T̃c → 0,
we can use the asymptotic expression −Li3/2(−ex) → ex for
x → −∞ and get the chemical potential μ̃ = T̃c ln(ñ/T̃

3/2
c ).

Equation (15) can then be solved for T̃c in the relevant regime
−μ̃ � 1, by making use of Eq. (10) to leading order in 1 − a.
This yields

T̃c ≈ ñ
2
3 exp

[
W

(
8(1/λ̄ − 1)2

3π2ñ
2
3

)]

(d = 3, λ̄ > 1, n → 0). (20)

Like in 2D, Tc starts with an infinite slope at n = 0 and
increases faster than any power of n if λ̄ > 1. If λ̄ < 1
there is no finite solution a to the equation ψ3(a,0) = 1/λ̄,
meaning that μ = 0 at zero density. As can be seen in
Fig. 2, the curvature along the cut for ψ3 > 1 is such that
μ̃ > T̃c. In the limit T̃c → 0 we can use the large-x expansion
−Li3/2(−ex) → 4/(3

√
π )x3/2 and recover μ̃ = (3

√
πñ/4)2/3,

which is the zero-temperature noninteracting result. Using the
asymptotic form (13) we finally obtain

T̃c = 8eγ−2

π

(
3
√

πñ

4

) 2
3

exp

[
−

(
1

λ̄
− 1

)(
4

3
√

πñ

) 1
3
]
,

(d = 3, λ̄ < 1, n → 0). (21)

This function starts with zero slope at n = 0 and increases
slower than any power of n. It is exactly equivalent to the
result [17] kBTc = (8eγ−2/π )EF exp[π/(2kFas)] if the s-wave
scattering length as is computed with our interaction potential,
namely 4π�

2as/m = V/(λ̄ − 1). This potential has no bound
state for two particles if λ̄ < 1, which explains why μ = 0 at
zero density in this case. The change of behavior at λ̄ = 1 is
discontinuous according to Eqs. (20) and (21), both functions
giving T̃c ∝ ñ2/3 with different pre-factors.

The analytical expressions (17)–(21) are compared below
with the numerical results. Note that if the reference mass is
not the band mass mα , one must replace ñ by ñ(m/mα)d/2 in
these equations.

As the BCS mean-field theory is not believed to be
a useful model in 1D, we have not discussed this case.
For completeness, and because it has been argued that the
singularity of the 1D DOS could induce large enhancements
of Tc in striped quasi-1D superconductors [8], we show in

Appendix B that the pairing temperature is also continuous
and nonanalytic at the bottom of a 1D band.

Before closing this section, we point out that the solution
of the gap equation at T = 0 does not generally allow one to
deduce Tc. Although the focus of the present paper is on Tc,
we give in Appendix C exact results for the zero-temperature
gap in 2D at low density, for the purpose of showing that the
usual BCS gap to Tc ratio is not obeyed in this limit.

B. Numerical results

The numerical solution of Eq. (16) is shown in Fig. 3.
T̃c reaches a plateau at high density due to the constant
DOS of the band. For λ̄ of order one, the value Tc,∞
on the plateau departs significantly from the approximate
solution (17), which becomes worse with increasing λ̄, while
the simple large-Tc result T̃c,∞ = λ̄/2 becomes increasingly
reliable [inset of Fig. 3(b)]. The density ñ∞ at which the
plateau is reached corresponds to μ − �ωD coinciding with

λ̄ = 1

λ̄ = 0.75

λ̄ = 0.5

λ̄ = 0.3

ñ∞ T̃c,∞

0 0.5 1 1.5 2
ñ

0
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0.2

0.3

0.4

0.5

T̃c

(a)

λ̄ = 1

λ̄ = 0.3

10−8 10−6 10−4 10−2 100

ñ/ ñ∞
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10−2

10−1
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T̃ c
/T̃

c,
∞

(b)

0 1 2λ̄
0

1
T̃c,∞

FIG. 3. (a) Pairing temperature as a function of electron density
for one parabolic band in two dimensions. Tc is expressed in units
of �ωD/kB and n in units of mωD/(π�). The thin horizontal lines
show the approximate solution (17) for each λ̄. The vertical bars
indicate ñ∞ [Eq. (22)]. The dashed lines show the approximate
scaling T̃c = T̃c,∞(ñ/ñ∞)1/2. (b) Same data normalized. The white
dashed lines are the prediction of Eq. (19) and the black dashed
line indicates the square-root behavior for ñ � ñ∞. (Inset) Maximum
pairing temperature as a function of λ̄ (solid line), compared with
Eq. (17) (dotted) and λ̄/2 (dashed).
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the bottom of the band, which means

ñ∞ = T̃c,∞ ln(e1/T̃c,∞ + 1). (22)

For ñ � ñ∞, Eq. (17) gives T̃c/T̃c,∞ ≈ μ̃1/2. Since μ̃ is very
close to a linear function of ñ at intermediate and high densities
(see below), we expect to have the universal scaling T̃c/T̃c,∞ ≈
(ñ/ñ∞)1/2. This is well obeyed by the data.

Close to ñ = 0 the behavior is nonuniversal, in the sense
that the curves do not collapse if ñ and T̃c are rescaled by
ñ∞ and T̃c,∞ [Fig. 3(b)]. The numerical data are in perfect
agreement with the limiting behavior (19) at all couplings.
The flattening of the curves in the log-log plot shows that
the running exponent η(n) in Tc ∝ nη(n) approaches zero for
n → 0. This is suggestive of a discontinuity in Tc(n) at n = 0,
reminiscent of the DOS discontinuity. However, since Eq. (19)
vanishes continuously for ñ → 0, the correct picture is that of
a Tc tending asymptotically to a discontinuity of size zero with
decreasing n.

The numerical results for the 3D case are displayed in Fig. 4.
Also shown is the high-density approximation (18), evaluated
with μ̃ replaced by its zero-temperature noninteracting value
μ̃0. The approximation falls on top of the numerical data for

FIG. 4. (a) Pairing temperature as a function of electron density
for one parabolic band in three dimensions. Tc is expressed in units
of �ωD/kB and n in units of 2[mωD/(2π�)]3/2. The thin and dashed
lines show Eq. (18), evaluated using μ̃0 = (3

√
πñ/4)2/3 for μ̃. The

vertical bars indicate μ̃0 = 1. (b) Same data on a log-log scale. The
dashed lines show Eqs. (20) and (21). Equation (21) was used for
λ̄ = 1. The short-dashed white line for λ̄ = 1.5 is obtained without
expanding Eq. (10) around a = 1 (see text).

small λ̄, but deviates significantly for larger coupling. The
good agreement at weak coupling is due to a cancellation
of errors: the agreement worsens if μ̃ rather than μ̃0 is used
in Eq. (18). The reason is that μ(Tc) < μ0 and the use of μ0

always leads to overestimating Tc. This happens to compensate
the underestimation of Tc due to the use of Eqs. (13) and (14).

At low density, the change of behavior from a convex
increase for λ̄ < 1 to a concave increase for λ̄ > 1 is visible
on the log-log plot in Fig. 4(b)—where a convex function
has a slope larger than unity. The low-density, low-coupling
limit (21) describes the numerical data perfectly. The low-
density, high-coupling expression (20) deviates slightly due
to the use of Eq. (10) at lowest order in 1 − a. This small
discrepancy disappears if μ̃ is evaluated without expanding
Eq. (10). The value λ̄ = 1 is somewhat peculiar: The numerics
shows the expected ñ2/3 scaling, but the pre-factor is neither
unity as implied by Eq. (20), nor 0.742 as given by Eq. (21),
but ∼0.6.

Figure 5 shows the chemical potential calculated numer-
ically at Tc. In 2D μ converges to a negative value for any
coupling, as discussed above. In 3D μ tends to zero at n = 0 if
λ̄ � 1. If λ̄ > 1 it converges to a negative value. The density at
which μ = 0 is given for λ̄ � 1 by ñ ≈ 0.62(1 − 1/λ̄)3. This
coincides with the condition 1/(kFas) ≈ 0.68. The effect of
increasing the pairing interaction is mainly to shift the μ(n)
curve downwards. At n = 0 this shift is entirely due to the

FIG. 5. (Top row) Chemical potential at Tc in the low-density
limit. The dots show the solution of ψd (1 + μ̃,0) = 1/λ̄, with ψd (a,0)
given by Eq. (10). The insets show that μ(n = 0) < 0 in 2D for all
λ̄, while μ(n = 0) = 0 in 3D for λ̄ � 1. (Bottom row) Difference
between the chemical potential at Tc and the zero-temperature
noninteracting value μ̃0. The vertical bars indicate μ̃ = 1.
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interaction-induced spreading of the momentum distribution.
At finite n part of the shift is due to the thermal smearing.

As the density increases, the behavior is qualitatively
different in 2D and 3D: while μ̃ approaches μ̃0 = ñ in 2D,
this does not happen in 3D. In 2D the chemical potential
is μ̃ = T̃c ln(eñ/T̃c − 1). Since T̃c saturates for ñ > ñ∞, we
have ñ > T̃c at large ñ and μ̃ approaches exponentially the
value ñ. This is peculiar to the 2D constant DOS, since
both interaction and temperature redistribute states in equal
amounts below and above μ0. In 3D the square-root DOS
implies that there are more states added in the tail of the mo-
mentum distribution above μ0, than there are states removed
below μ0. The equilibrium chemical potential must therefore
remain below the zero-temperature noninteracting value, by
an amount which increases with increasing λ̄ and also with
increasing n.

IV. MULTIBAND EFFECTS

The interest raised by multiband superconductors, in
particular MgB2 and the iron-based family, has triggered many
studies over the years [25]. Here we discuss multiband effects
that occur near a band edge and are associated with the low
density in one of the bands.

It is clear from the previous section that a knowledge of the
self-consistent chemical potential is required to understand the
behavior of Tc close to a band minimum. This raises the ques-
tion of the role played by perturbations that affect the chemical
potential, such as the presence of a nonsuperconducting band
(NB) beneath the superconducting band (SB). In the absence of
interband coupling, the NB can only alter the superconducting
properties of the SB by changing the chemical potential. In 2D
and in 3D for λ̄ > 1, the key observation was that μ is finite and
negative at the band bottom, such that the nonanalytic behavior
of Tc is not controlled by μ. An NB is therefore not expected
in general to change this nonanalytic behavior qualitatively.
An exception—confirming the rule—occurs when the bottom
of the NB coincides precisely with the energy at which the SB
begins to be populated. For this peculiar arrangement, the NB
controls the relation between μ and n in the limit Tc → 0 and
Tc displays a simple analytic dependence on n, which is linear
in 2D and ∝n2/3 in 3D. This is illustrated in Fig. 6(a) for the
2D case. Solving the coupled equations (9) for two bands in
the appropriate regime, we get a relation between ñ and T̃c

which is accurate near the band minimum:

ñ = T̃c

[
m1

m
ln

(
1 + e

− exp(−2/λ̄11)
T̃c

) + m2

m
ln

(
1+ e

− exp(−2/λ̄11)−Ẽ02
T̃c

)]
.

(23)

This reproduces the near-band edge behavior as shown in
Fig. 6(a) and in particular gives the linear dependence
ñ = T̃c(m2/m) ln(2) at the transition point where Ẽ02 =
− exp(−2/λ̄11).

If Ẽ02 < − exp(−2/λ̄11), the SB is not populated at low
density and superconductivity appears at some finite density.
In all cases, the Tc(n) curve is “stretched” to higher densities
with respect to the one-band result due to the carriers “lost” in
the NB. For instance, if the band minima are degenerate, we see
from Eq. (9) that the one-band Tc(n) curve is simply modified

FIG. 6. Pairing temperature for two bands in two dimensions,
with couplings λ̄11 = 1, λ̄22 = 0, and (a) λ̄12 = 0, (b) λ̄12 = 0.2.
E02 is the energy minimum of the second band, measured from the
energy minimum of the first. The masses are m1 = m2 = m. The
dashed line in (a) is the one-band result, shifted horizontally for
easier comparison. (Inset) Blowup of the transition region. Curves
are shown for Ẽ02 = − exp(−2/λ̄11) + δẼ, with δẼ ranging from
−0.04 (blue, right) to +0.04 (red, left). Note the linear behavior for
δẼ = 0. The white dashed lines show Eq. (23). In (b), the dotted lines
are the result for λ̄12 = 0 and the dashed white lines show Eq. (24).

by a rescaling of the density n → n/[1 + (m1/m2)d/2]. This
implies that the pairing temperature is necessarily reduced
by a nonsuperconducting band, in the absence of interband
coupling.

Both attractive and repulsive interband interactions increase
Tc for two bands [26,27], as illustrated by the fact that
Eq. (9) involve only λ̄2

12: interband interactions do not induce
interband pairing in the present model, but reinforce the
intraband pairing by second-order processes involving the
other band. If Tc starts at finite density, the interband coupling
leads to a tail in the Tc(n) curve. In the regime where the
chemical potential is below the SB but well into the NB, we
find, for instance, in 2D:

T̃c = 2eγ

π

√
ñ

m

m2
exp

{
1

λ̄2
12

[
λ̄11 + 2

ln
(
−Ẽ02−ñ m

m2

)]}
. (24)

This is compared with the numerical result in Fig. 6(b).

024511-7



D. VALENTINIS, D. VAN DER MAREL, AND C. BERTHOD PHYSICAL REVIEW B 94, 024511 (2016)

We move on to the case of two superconducting bands
and begin with general trends. The observation that Tc is
an increasing function of density [28] remains true in the
near-band edge regime. It is possible to show that the property
dTc/dn � 0 is guaranteed by Eq. (9) for an arbitrary number of
bands and any values of the coupling constants. Reference [6]
reports a nonmonotonic dependence of the pairing temperature
on carrier concentration in doped SrTiO3: this cannot be
interpreted on the basis of Eq. (9) without invoking density-
dependent interactions.

A second band can nevertheless lead to a decrease of Tc

at fixed density. Specifically, consider a one-band system at
some density with coupling λ̄11 and pairing temperature T 0

c ;
add a second band at higher energy with coupling λ̄22 � λ̄11

and no interband coupling; then the two-band system with the
same density has Tc � T 0

c . This can be rigorously proven by
manipulating Eq. (9).

If the second band has a coupling λ̄22 > λ̄11, Tc exceeds T 0
c

at high enough density and follows the dependence that would
correspond to a nonsuperconducting first band. These various
trends are illustrated in Fig. 7 (top panels). Figure 7 (bottom

FIG. 7. (Top panels) Change of Tc induced by a second super-
conducting band in 2D and 3D, without interband coupling. (Dashed
black lines) Pairing temperature for a single band with coupling
λ̄11 = 1 and mass m1/m = 1. (Solid lines) Pairing temperature for
the two-band system with Ẽ02 − Ẽ01 = 0.75, m2 = m1, and coupling
λ̄22 = 0.5 (red) and λ̄22 = 2 (blue). (Dash-dotted) Case of the second
band alone. (Dotted) Case of the two-band system with λ̄11 = 0.
(Bottom panels) Increase of Tc by interband coupling. (Solid lines)
No interband coupling, same data and coloring as in the top panels.
Dotted and dashed lines correspond to interband coupling λ̄12 = 0.2
and 0.5, respectively.

panels) shows the effect of interband interaction, which is
generically an increase of Tc.

V. CONCLUSION

In summary, in the low-density regime where the dynamical
range of the pairing interaction is set by the band edge, the
pairing temperature Tc depends on the electron density n in
a nonanalytic way. For parabolic bands, we provided exact
asymptotic formulas describing this dependency, taking into
account the energy variation of the electronic DOS, as well as
the variation of the chemical potential with interaction strength
and temperature. In one and two dimensions and in three
dimensions at strong enough coupling—in other words, when
there is a bound solution to the two-particle problem—the
chemical potential (at Tc) becomes negative at low density: As
a result the Tc(n) curve starts with infinite slope and increases
faster than any power of n. Otherwise, i.e., in three dimensions
at weak coupling, the chemical potential approaches zero at
low density, the Tc(n) curve starts with zero slope, and it
increases slower than any power of n.

Our results may be relevant for low-density superconduc-
tors. In SrTiO3, oxygen reduction and niobium doping allows
one to tune the carrier density [6] in a range such that the
dimensionless density ñ varies typically between 10−2 and
10. In the LaAlO3/SrTiO3 interface, the field-effect induced
sheet carrier density can also be tuned [29] such that ñ varies
typically from 10−1 to 1. In the low-density range of these
domains, our exact formulas differ from the usual formulas
valid at higher densities. In the numerical illustrations of the
present paper we have used coupling constants λ̄ of order one,
which may appear very large in comparison to the typical
values of the order 0.1 reported for SrTiO3. We emphasize
that our definition of the coupling constants differs from the
usual definition, such that in three dimensions ours are bigger
that the usual ones by a factor (μ/�ωD)1/2, which is typically
three in SrTiO3.

The observation that Tc is a nonanalytic function of n near a
band bottom calls for a reconsideration of the problem of shape
resonances. These refer to oscillations of Tc in a quasi-two-
dimensional superconductor confined in a slab, as a function
of the slab thickness. The oscillations arise when the chemical
potential crosses the bottom of one of the confinement-induced
subbands and were presented in the literature on the subject as
discontinuities [4]. Our results show that such discontinuities
are artifacts, because Tc vanishes continuously at a band edge
in any dimension. The actual dependence of Tc on the slab
thickness is therefore a continuous function, which remains
to be investigated. A particularly interesting system in this
respect is the LaAlO3/SrTiO3 interface, which cumulates the
characteristics of being a low-density superconducting system,
confined in a quasi-two-dimensional geometry, and also a
multiband system.
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APPENDIX A: SIMPLE PROOF OF EQ. (4)

The density of a free-electron gas in dimension d is
proportional to the volume of the d-dimensional Fermi sphere,
smeared by the Fermi function:

n = 2
∫

ddk

(2π )d
1

exp
(

�2k2/2m−μ

kBT

) + 1

= 2
∫

ddk

(2π )d
x

x − exp
(

�2k2

2mkBT

) ,

with x = − exp (μ/kBT ). In order to evaluate the integral,
we use the expansion x/(x − a) = −∑∞

q=1 xq/aq and we

write k2 = ∑d
i=1 k2

i . This leads to a product of Gaussian

integrals:

n = −2
∞∑

q=1

xq

d∏
i=1

∫ ∞

−∞

dki

2π
exp

(
− q

�
2k2

i

2mkBT

)

= −2
∞∑

q=1

xq

d∏
i=1

√
mkBT

2π�2q
= −2

(
mkBT

2π�2

) d
2

∞∑
q=1

xq

qd/2
.

Considering the Taylor expansion of the polylogarithm, we see
that the q sum in the last expression is Lid/2(x), which proves
Eq. (4).

APPENDIX B: RESULTS FOR ONE PARABOLIC
BAND IN 1D

With the proviso that the factor (d − 1)π in Eqs. (3)
and (7) be replaced by 1, Eqs. (2)–(9) are valid for d = 1.
The asymptotic properties of the function ψ1(a,b) are

ψ1(0 < a < 1,b → 0) = sin−1(
√

a)√
1 − a

≈ π/2√
1 − a

− 1,

ψ1(1 < a < 2,b → 0) = 1√
a − 1

ln

(
a − 1√

a + √
a − 1

8eγ

πb

)
,

ψ1(a > 2,b → 0) = 1√
a − 1

ln

(
a − 1

(
√

a + √
a − 1)(

√
a − 1 + √

a − 2)

8eγ

πb

)
.

The corresponding weak-coupling approximations in the regime ñ � 1 are

T̃c ≈ 8eγ

π
exp

(
− 1

λ̄/
√

μ̃

)
1

1 + √
1 + 1/μ̃

{√
μ̃ μ̃ � 1

1
1+√

1−1/μ̃
μ̃ > 1 (d = 1), (B1)

in agreement with the result of Ref. [2], where λ̄/
√

μ̃ is
the coupling constant evaluated at the chemical potential.
In the low-density limit the chemical potential approaches
a finite negative value given by the solution of 1/λ̄ =
sin−1 (

√
1 + μ̃min)/

√−μ̃min ≈ (π/2)/
√−μ̃min − 1. We can

use the expansion −Li1/2(−ex) → ex for large negative x and
deduce the relation μ̃ = T̃c ln(ñ/T̃

1/2
c ). We find for T̃c,

T̃c ≈ ñ2 exp

[
W

(
1

2

(
πλ̄

1 + λ̄

)2 1

ñ2

)]
(d = 1, n → 0). (B2)

The numerical results are shown in Fig. 8 and compared with
the analytical formulas (B1) and (B2). Equation (B1) works
well at high density, but severely breaks down at low density,
even at weak coupling. The cancellation of errors observed
in the 3D case also occurs here to some extent, but the main
issue is that Eq. (B1) fails to describe the regime where μ̃ < 0
at low density, while in 3D this regime is absent for λ̄ < 1.
Equation (B2) is accurate at weak coupling where −μ̃ � 1 and
has the small inaccuracy associated with the approximation
made in solving for μ̃ at larger coupling.

APPENDIX C: GAP TO Tc RATIO IN THE LOW-DENSITY
LIMIT

We give here the zero-temperature gap explicitly for one
band in 2D, as a function of density and coupling. This can
be combined with the result (19) in order to obtain the exact
gap to Tc ratio in the low-density limit. The expression of the
density at T = 0 is

n =
∫ ∞

−∞
dξ N0(μ + ξ )

(
1 − ξ√

ξ 2 + �2
ξ

)
, (C1)

where N0(E) is the normal-state DOS given by Eq. (3) and
�ξ = θ (�ωD − |ξ |)� with � the zero-temperature gap. We set
E0α = 0 and m = mα as in Sec. III and move to dimensionless
variables. In 2D we have at T = 0,

ñ =

⎧⎪⎨
⎪⎩

0 μ̃ < −1
1
2 (μ̃ + 1 +

√
μ̃2 + �̃2 −

√
1 + �̃2) −1 < μ̃ < 1

μ̃ μ̃ > 1.

(C2)
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FIG. 8. (a) Pairing temperature as a function of electron density
for one parabolic band in one dimension. Tc is expressed in units
of �ωD/kB and n in units of 2[mωD/(2π�)]1/2. The thin and dashed
lines show Eq. (B1), evaluated using μ̃0 = (π/4)ñ2 for μ̃. (b) Same
data on a log-log scale. The dashed lines show Eq. (B2).

The gap equation is obtained by replacing tanh(· · · ) by unity
in Eq. (1a). For one band in 2D we find

1/λ̄ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 μ̃ < −1

1
2 ln

( 1+
√

1+�̃2√
μ̃2+�̃2−μ̃

) −1 < μ̃ < 1

ln
( 1+

√
1+�̃2

�̃

)
μ̃ > 1.

(C3)

FIG. 9. Zero-temperature gap � to Tc ratio calculated numeri-
cally for one parabolic band in two dimensions. Curves are drawn
as a function of density n expressed in units of mωD/(π�) for
λ̄ = 0.3, 0.5, 0.75, and 1. The dashed lines show the ratio of Eqs. (C4)
and (19). The horizontal line indicates the BCS weak-coupling ratio
π/eγ ≈ 1.76.

For μ̃ > 1, the gap is independent of density and given by �̃ =
1/ sinh(1/λ̄); combined with the weak-coupling result (17),
this yields the usual weak-coupling BCS ratio �/(kBTc) =
π/eγ . In the low-density regime μ̃ < 1, we eliminate �̃ among
Eqs. (C2) and (C3) to find μ̃ = ñ + (ñ − 1)e−2/λ̄. Solving for
the gap, we then arrive at

�̃ =
√

ñ + ñ(ñ − 1)e−2/λ̄

sinh(1/λ̄)
(ñ < 1). (C4)

Comparing Eqs. (C4) and (19) we see that Tc increases
faster than � with increasing density. As a result the gap
to Tc ratio vanishes for n → 0, as we show in Fig. 9. This
result may look surprising in view of the fact that known
two-dimensional superconductors tend to have a gap to Tc

ratio larger than the BCS value. The suppression shown
in Fig. 9 concerns a regime of density which none of
these known superconductors has reached until now, to our
knowledge.
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