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History-dependent dissipative vortex dynamics in superconducting arrays
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We perform current (I )-voltage (V ) measurements on low resistance superconductor-normal-superconductor
arrays in finite magnetic fields, focusing on the dilute vortex population regime. We observe significant deviations
from predicted behavior, notably the absence of a differential resistance peak near the vortex depinning current,
and a broad linear I -V region with an extrapolated I intercept equal to the depinning current. Comparing these
results to an overdamped molecular vortex model, we find that this behavior can be explained by the presence of
a history-dependent dissipative force. This approach has not been considered previously, to our knowledge, yet
it is crucial for obtaining a correct description of the vortex dynamics in superconducting arrays.
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I. INTRODUCTION

Vortex motion dominates the electrical transport properties
of two-dimensional (2D) superconductors [1,2]. The type of
vortex motion, and thus the dissipative transport response,
depends largely on the characteristics of the initial equilibrium
vortex phase. In finite magnetic fields, 2D superconductors
can exhibit many possible vortex phases, for example, crystals
due to vortex-vortex interactions or an underlying periodic
potential. For weak disorder, such crystalline phases devolve
into glass phases and can also melt into liquids [3,4]. When an
external force is applied, depinning and bulk vortex motion
occur, creating nonequilibrium behavior such as elastic or
plastic vortex flow. There has been continuing interest in
the nature of such vortex depinning, which can depend in
complex ways on edge or bulk phases [5] and can demonstrate
unique phase transitions, e.g., between Mott insulator and
metallic states [6,7]. Superconductor-normal-superconductor
(SNS) arrays provide highly tunable platforms for studying
such vortex behavior and can be used to access a wide variety
of phases. Previously, the dynamic behavior of these arrays has
been studied using molecular vortex [8,9] and resistively and
capacitively shunted junction (RCSJ) [10] models. While some
predictions of these models, such as constant resistance flux-
flow, have been experimentally observed, some crucial aspects
of transport—such as the predicted differential resistance
peaks—are often absent for reasons that have not been well
understood [11,12].

To study the dynamic behavior of vortices, we measure
transport across SNS arrays in finite magnetic fields, focusing
on the dilute vortex population regime where vortex-vortex in-
teractions are negligible. Here, overdamped molecular vortex
[8,9] and RCSJ array [10] models predict I -V relationships
similar to the single vortex or junction case, with vortices
behaving as damped massless particles in a washboard
potential defined by the array geometry. We apply a bias
current to supply a driving force, which overcomes the barrier
supplied by the washboard potential at a depinning current Id.
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Above Id, the overdamped tilted washboard models predict
V ∝

√
I 2 − I 2

d behavior in the low temperature limit [13].
Important features of these models include a differential resis-
tance peak near Id and convergence to a linear flux-flow regime
that has an I intercept of I = 0 at higher currents. Contrary to
these predictions, we observe no differential resistance peak
near Id and our linear I -V region has a nonzero extrapolated
I intercept on the order of Id. This observed behavior leads
us to consider a phenomenological description of the system
based on time-delayed dissipative forces. This approach has
not been introduced before, to our knowledge, yet it is crucial
for obtaining a correct description of vortex dynamics, even
when interactions are negligible. The absence of this predicted
peak is not unique to our arrays [11,12]; and thus, the modified
dissipation terms discussed in this paper should enhance the
understanding of a wide range of vortex systems.

II. EXPERIMENTAL MEASUREMENTS

Our devices consist of triangular arrays of mesoscopic
Nb islands on top of 10 nm thick Au films patterned for
four-point measurements, as shown in Fig. 1(a). The Nb
island height is 125 nm, while the edge-to-edge island spacing
varies between 390 and 540 nm depending on the sample;
additional fabrication details have been reported previously
[14]. From the normal state resistivity of the Au films, we
extract a mean free path of � � 13 nm, an estimated diffusion
constant of D ≈ 95 cm2 s−1, and a temperature-dependent
coherence length ξN(T ) ≈ 270 nm/

√
T , where T is in units

of Kelvin [15]. All Nb islands are 260 nm in diameter,
which is approximately 10 times the dirty-limit coherence
length ξ 0

Nb. Upon cooling, these arrays exhibit a two-step
transition to the superconducting state, as can be seen in the
typical resistance R versus temperature T curve of Fig. 1.
The higher-temperature drop represents the temperature at
which the individual Nb islands become superconducting. The
lower-temperature drop, which we term Tc, is the transition of
the entire array to a superconducting state. Previous work [15]
has shown that the zero-field transition can be associated with
a Berezinski-Kosterlitz-Thouless transition, i.e., is driven by
the binding of thermally induced vortex-antivortex pairs in a
2D superconductor [3,16,17].
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FIG. 1. Transport measurements on an array of Nb islands on a 10 nm thick Au layer. The island spacing is d = 540 nm, and island
height = 125 nm. (a) Resistance R (normalized to values at 10 K) versus temperature T , showing a two-step transition to superconductivity at
zero-field. Inset is an atomic force microscopy device image, with scale bar of 500 nm. (b) Magnetoresistance R versus frustration f at different
temperatures (specified in the legend). Dips are present at certain rational values of frustration. The gray vertical lines specify frustrations
at which field-induced vortices are strongly commensurate (solid lines) and weakly commensurate (dashed lines) with the Nb island lattice.
(c) As the current increases, vortices are initially pinned in region I, exhibit measurable vortex creep in region II, and freely flow at a terminal
velocity in region III. Above a critical junction current Ic, the array transitions into Ohmic behavior in regions IV and V.

As shown in Fig. 1(b), we observe large, periodic mag-
netoresistance oscillations, which provide strong evidence for
vortex-dominated transport in the arrays. In arrays of regularly
spaced superconducting islands, the vortex population is
determined by the applied magnetic field. The number of
vortices per unit cell of the array is given by the frustration
parameter f = �/�0, where � is the flux through a unit cell
and �0 is the quantum of flux. The island array forms a periodic
potential for vortices, with a barrier between islands that must
be overcome for vortices to move. Increasing the magnetic field
leads to increased interactions between vortices that effectively
reduce the force needed to overcome the barriers between the
islands, thus increasing the magnetoresistance [18]. However,
at special fillings determined by array geometry, the vortex
lattice is commensurate with the island array, resulting in
a strongly pinned vortex lattice that can be observed as
a dip in the magnetoresistance [19]. The largest dips in
resistance occur at f = 0, 1/4, 1/2, 3/4. Lesser dips are
also evident at weakly commensurate frustrations f = 1/8,
1/6, 1/3, 3/8, 2/5, 5/8, and 2/3. The depths of the dips
are consistent with the theoretical prediction for the ground-

state energies at different values of frustration for triangular
arrays [20].

We perform dc current-voltage, or I -V , measurements to
study the dynamic vortex behavior in the arrays, primarily
focusing on the dilute vortex population regime below f =
1/10. The applied current provides a Lorentz force, and the
resultant vortex motion produces a voltage. Figure 2(a) shows
I -V curves, and Fig. 2(b) shows dV/dI curves as a function
of magnetic field for an array of islands spaced 390 nm edge
to edge, where the current I is less than the junction critical
current Ic, and T = 17 mK. The temperature is much lower
than the array transition temperature of 410 mK, and we do not
observe significant temperature dependence of Id or Ic in the
dilute population regime below 150 mK (see Appendix A); this
suggests that measurements are occurring in a low temperature
regime not dominated by thermally activated vortices. For low
magnetic fields and currents, the vortices are pinned, and the
system has zero resistance; this is shown schematically in
region I of Fig. 1(c). As the current is increased, a transition to a
finite resistance state occurs when the Lorentz force overcomes
vortex pinning [region II of Fig. 1(c)]. This transition, which
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FIG. 2. Current-induced vortex depinning for 390 nm spaced islands at T = 17 mK. (a) I -V measurements performed using a swept dc
current bias for I < Ic in different magnetic fields. Adjacent numbers indicate the frustration associated with each curve; f = 1 corresponds
to magnetic field B = 115 gauss. (b) Differential resistance, dV/dI , extracted from I -V measurements in (a). (c) The flux-flow resistance Rff

versus f extracted from I -V curves. Rff is normalized to the normal state resistance Rn. (d) Measured I -V at f = 0.03 (black) compared with
the prediction of the overdamped vortex model (dashed blue). A linear fit is performed on the superconducting and flux-flow regions of the
measured curve (red dotted lines). These intersect at a nonzero I intercept.

occurs at Id, is a measure of the barriers to vortex motion and
can be used to characterize the vortex pinning regime.

At higher currents, vortices move with a terminal velocity
in the flux-flow regime [region III of Fig. 1(c)]. This flux-flow
regime is manifested by a linear I -V relation and a differential
resistance that approaches a fixed value at higher current; this
behavior can be seen experimentally in Figs. 2(a) and 2(b),
respectively. The flux-flow differential resistance, Rff , is well
described by the Bardeen-Stephens model [1], which predicts
Rff ∼ 2f Rn for normal state resistivity Rn. Figure 2(b) shows
very flat dV/dI at Rff in the low filling regime, indicating that
the vortices have reached a terminal velocity over a wide range
of currents; Fig. 2(c) shows that Rff is linearly proportional to
f , as expected.

Contrary to theoretical predictions, we do not observe a
differential resistance peak near Id, nor any inflection points
in the I -V measurements on the approach to flux flow. These
are essential features of previous models of the transition from
pinned behavior. These features appeared because, in order
for the array to transition smoothly from depinning to flux
flow—i.e., from where V ∼ 0 and I is between 0 and Id, to
flux flow with V ∝ I and an I intercept of 0—there had to be

an inflection point beyond which d2V/dI 2 < 0. The need for
a differential resistance peak can be seen in the predicted I -V
for an overdamped array shown in Fig. 2(d). The simulated
curve initially demonstrates V = 0 pinned behavior at low
currents, but then rapidly increases in V at Id as it transitions
to V ∝ I , necessitating a maximum slope near Id.

The absence of this peak in the differential resistance has
been previously observed and discussed as a consequence
of broadening due to finite temperature [12] and the effect
of superposing dc and ac driving currents [21], but these
explanations are not convincing for our system. The finite
temperature explanation in Rzchowski et al. [12] runs contrary
to the analytical expression presented in the same paper which
predicts that the peak should only be broadened by finite
temperature and should not disappear. As shown in Fig. 3(a),
our simulations (discussed in Sec. III) show that the peak
persists even in the presence of significant thermal fluctuations
near I = 0 (evident as finite resistance flux creep), which
indicate a much higher temperature than our experiments.
Furthermore, the lack of temperature dependence of Id below
150 mK (see Appendix A) conflicts with the thermal broad-
ening explanation, where order of magnitude temperature
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FIG. 3. Simulated vortex dynamics: (a) the temperature dependence of an overdamped noninteracting vortex system with instantaneous
dissipation [Eq. (B1)]. The arrow denotes the direction of increase of the temperature, which is given in terms of normalized temperature
T̃ = kBT/Vp. The peak survives even when the temperature is large enough to cause considerable thermal creep near I = 0, which we do
not observe in our experimental measurements. (b) Simulated I -V behavior showing the effects of the mass term and the timescale of the
dissipative force τβ in a purely periodic potential. Three curves show the predictions for the low mass limit with three different dissipative force
time scales. τβ = 0 τa is indistinguishable from the instantaneous dissipative force time constant case, but much longer time scales result in a
linear region with an I intercept near Id. (c) Simulated voltage versus current and (d) differential resistance versus current for a generalized
Langevin equation with time-dependent dissipation where τβ ∼ 14 τa.

changes should measurably affect transport. The ac driving
current argument does not apply to our dc measurements. The
role of vortex interactions in the suppression of the differential
resistance peak has been proposed [22], but our peak is absent
even in the dilute regime; in addition, large-scale numerical
calculations of interacting vortices [8] found a peak in the
differential resistance regardless of interaction strength.

Our data supports another explanation. As shown in
Fig. 2(d), the measured linear flux-flow region has a nonzero
intercept in I and is offset from the simulated curve. Since
the intercept occurs near Id, the measured I -V curves can
smoothly approach flux flow without an inflection point. The
lack of an inflection point can generally be attributed to addi-
tional dissipation in the system, suggesting that modifications
to the dissipation term are necessary to properly model the
system.

III. SIMULATIONS

We investigate the dynamics of our system using a phe-
nomenological model built around the Langevin equation,
where N vortices are treated as classical objects that propagate
under externally applied forces [8,9]. The classical treatment
is valid due to the low resistance of the system, which
is overdamped and has suppressed quantum tunneling of

vortices. We are also interested in the low vortex-density limit
and can expect the vortex motion to occur roughly in a straight
line. The dynamics of this system can thus be described using
the one-dimensional Langevin equation [23]

mẍi(t) = −∂V [xi(t)]

∂xi

−
∫ t

0
χ (t − τ ) ẋi(τ )dτ + εi(t)

+
N∑

j=1

U

[
xi(t) − xj (t)

Lint

]
. (1)

In this expression, m controls the inertia of the vortices,
xi(t) is the position of the ith vortex at time t , V (x) is
the effective potential felt by each vortex, χ (t) encodes the
dissipative interactions between the vortex and the local
environment, εi is a stochastic force simulating thermal
fluctuations, and U is a function that models vortex-vortex
interactions. The measured voltage in this system arises mainly
from the motion of vortices that travel from one edge of the
array to the other and is thus proportional to the average
velocity v = 1

N

∑N
i ẋi(t) of the N vortices.

The effective potential V (x) is approximated by

V (x) = Vp cos

(
2π

x

a

)
+ Vedge(x) − Jϕ0x. (2)
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This potential models three properties of the system: a
periodic potential of lattice constant a equal to the distance
between islands; an energy potential barrier created at the
edge of the system due to Meissner currents; and a linear
potential that produces a Lorentz force due to the applied
current density J = i/a. In this expression for V (x), Vp is a
parameter representing the strength of the periodic potential,
and the explicit form of edge potential Vedge(x) is given in
Appendix B. As a vortex moves through the periodic potential,
it slows when crossing potential peaks, lowering the average
velocity and measured voltage. The mass term m suppresses
these ẋ(t) oscillations. Increasing mass favors a sharp transi-
tion from pinned to V ∝ I behavior as well as hysteresis.
Since we do not observe a sharp transition or hysteresis, m can
be assumed to be negligible and is set to zero. This overdamped
treatment is consistent with the low resistance of our system.

The dissipation function is commonly written as χ (t) =
η1δ(t), which assumes that energy loss occurs due to instan-
taneous interactions with the environment. This term leads
to V ∝ I at high currents, where vortex velocity is given
by v = Jϕ0/η1. In the low mass and low temperature limit,
the current-voltage relationship takes the form V ∝

√
I 2 − I 2

d
(massless particles are greatly slowed when crossing the peaks
of the periodic potential when I ∼ Id) and there is a differential
resistance peak at I = Id. The temperature dependence of
V can be solved analytically [12] or simulated by adding
a stochastic force, with the results shown in Fig. 3(a). This
model converges to V ∝ I at large currents, regardless of
temperature; this can be contrasted to the experimental data,
which shows a nonzero I intercept.

A more general description of dissipation is necessary
to explain the flux-flow behavior of our experiment. Our
model differs from previous treatments in its more general
description of dissipation, allowing the inclusion of history-
dependent dissipative forces in the function χ (t). An example
of a history-dependent force is one having a response to a
motion event that drops off exponentially with time after that
event. Adding this to the dissipative force function leads to
χ (t) = η1δ(t) + η2τ

−1
β e−t/τβ , where η1,2 are free parameters

and τβ is the timescale of the dissipative force. The effects of a
history-dependent dissipative force on an overdamped particle
are shown in Fig. 3(b), where η2 = 10η1 and τβ is given in

terms of τa = a2(η2 +η1)
2πVp

, which corresponds to the time taken
by the large mass particle modeled in Fig. 3(b) to move across
one period of the potential at a current infinitesimally greater
than Id. A τβ much shorter than the time taken to cross one
period of the potential yields the same behavior as the purely
instantaneous dissipative response, but longer τβ enhances ẋ(t)
oscillations, leading to very different I -V behavior. When τβ is
much longer than the period crossing time, the dynamic region
is highly linear with an I intercept of Id, similar behavior to
what we observe in our experiment.

The current-voltage relationship is not strongly dependent
on the form of the history-dependent component of χ (t). Here,
χ (t) = η1δ(t) + η2t

−1
c θ (tc − t) achieves similar behavior in

the large tc limit and is less computationally intensive than
the exponential expression. The parameters η2 = 0.4η1 and
tc ∼ 14 τa can be used to place the system in the long timescale
dissipative force regime, removing the differential resistance

peak. Changes in Id associated with low field Meissner currents
and higher field vortex-vortex interactions are achieved by
adding an edge barrier and a stochastic force as discussed in
Appendix B. Excellent qualitative agreement between theory
and experiment can be observed in simulated I -V [Fig. 3(c)]
and differential resistance [Fig. 3(d)] plots. This suggests
that history-dependent dissipation could have a significant
contribution to vortex dynamics in overdamped SNS arrays.
While this mechanism has previously been considered to study
a continuum theory of the plastic flow of vortices [22], the
connection to the absence of a peak in the differential resistance
was not discussed.

Although the microscopic sources of energy loss are not
completely understood [1], one can roughly think of energy
dissipation as due to quasiparticles interacting with normal
electrons inside vortex cores; the quasiparticles may get
excited from impurities in the superfluid, or could leak out of
the vortex cores when a current is applied [24]. Memory effects
in our system could arise because of a delayed timescale for
the healing of the superfluid density along the path traversed
by the vortices as they move through the system. The trail left
behind by the vortices would then contribute to the dissipation
measured in the experiment.

IV. SUMMARY

In conclusion, we study vortex motion in SNS arrays,
focusing on the dilute vortex filling regime. We find that
our observed current-voltage relationships are poorly fit by
existing models of vortex motion. Instead, our results are
consistent with the presence of a history-dependent dissipative
force in a system of overdamped particles in periodic array.
This provides an explanation for deviations from predicted
behavior commonly observed in SNS arrays.
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APPENDIX A: TEMPERATURE DEPENDENCE
OF I-V MEASUREMENTS

The temperature dependence of 390 nm edge-to-edge
spaced arrays is discussed here in greater detail. Here, I -V
measurements were performed at fixed temperature intervals
at low frustrations. As shown in Fig. 4(a), we observe the
suppression of Id and Ic with increasing temperatures, but
the Id and Ic curves flatten at fixed values below 150 and
200 mK, respectively. A device with 440 nm edge-to-edge
spaced islands, situated on the same chip and measured during
the same run as the 390 nm device, shows strong temperature
dependence at lower temperatures than the 390 nm array.
This suggests that the weak temperature dependence of the
390 nm sample below 150 mK is not due to heating or electron
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FIG. 4. (a) Id and Ic temperature dependence for 390 nm spaced islands at low field values as well as Ic temperature dependence for
440 nm islands at f = 0.018. (b) I -V measurements performed in 390 nm edge-to-edge spaced arrays at f = 0.007 at various temperatures.

temperature issues in our measurement apparatus, but that the
array is in a regime not dominated by thermal activation.

The temperature dependence of 390 nm islands at f =
0.007, shown in Fig. 4(b), is qualitatively consistent with
the delayed dissipative force model presented in this paper,
with increasing temperatures providing a stochastic force that
effectively weakens vortex pinning and yielding parallel I -V
curves in the flux-flow regime. It is inconsistent with finite
temperature RCSJ model predictions that the I -V curves
should converge at the Id [25].

APPENDIX B: VORTEX DYNAMICS AT LOW
FRUSTRATIONS

In this section, we provide some details of the numerical
simulations. For completeness, we recall that the vortex
dynamics are described by the generalized Langevin equations
of motion given in Eq. (1). In the main text, we have already
described the main approximations that are implemented in
the numerical simulation. In what follows, we will clarify
additional technical details.

1. Effective vortex potential

We approximate the effective potential V (x) by

V (x) = −Jϕ0x + Vedge(x) + Vp cos

(
2π

x

a

)
,

where

Vedge(x) = −
[

ie(f ) �

1 + (
x
�

)2 + ie(f ) �

1 + (
x−L

�

)2

]
.

The parameter � is the length scale over which the edge
potential varies, and ie(f ) encodes the depth of the edge
potential which we will approximate to decrease linearly with
frustration ie(f ) = (1 − f/fc)θ (fc − f )i0. The step function
is introduced to describe the fact that, at a characteristic
frustration, vortices that are formed in the bulk will dominate
the voltage that is detected, which represents the end of region
A and the beginning of region B in Fig 5(a).

2. Dissipative dynamics

As we explained in the main text, the function χ (t) encodes
the degree to which the dissipation of the vortices is correlated
in time. This correlation usually arises because, generically,
it takes some time for the bath to react to the presence of the
moving vortices. To simplify the calculation, we divided this
response function into two pieces

χ (t) = χ1(t) + χ2(t).

The first contribution corresponds to the environment
responding instantaneously to the vortices, which can be
modeled as

χ1(t) = η1δ(t).

If this were the only contribution to the dissipation, there
would be only history-independent dissipation. In this case,
the solution to the Langevin equation has been computed
analytically [12], and takes the form

Ṽ (Ĩ ,T̃ ) = T̃ [1 − e−π(I/T̃ )]∫ 2π

0 e−u(I/T̃ )I0
(

2
T̃

sin u
2

)
du

, (B1)

where I0(x) is the modified Bessel function of zero order, and
the variables T̃ = ( kBT

Vp
), Ṽ = ( L/a

4rnId
)V , and Ĩ = (Id)−1I are

the normalized temperature, voltage, and current, respectively.
Here, L is the linear size of the Josephson array. Upon taking
a first derivative with respect to the normalized current, one
obtains the differential resistance curves shown in Fig. 3(a)
for a set of temperatures. It can be seen that a peak in the
differential resistance persists even when the temperature is
increased. As is discussed in the main text, this runs contrary
to the experimental measurements, thus justifying the use of a
more general form of dissipation.

The second contribution to the response function χ2(t)
encodes the lag in the reaction of the environment to the
interaction with the moving vortices, which we approximate
by a flat function that correlates times on the scale tc

χ2(t) = η2t
−1
c θ (tc − t).
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FIG. 5. (a) A schematic showing the potentials used in Figs. 3(c) and 3(d). Region A is heavily influenced by an edge barrier that drops off
rapidly with magnetic field. In region B, the edge barrier is negligible, and vortices are pinned to the periodic potential from the island lattice,
shown in the right inset. Region C simulates vortex-vortex interactions by increasing the stochastic force. (b) Simulated differential resistance
as a function of applied current and the parameter η2t

−1
c . The remaining parameters are fixed to the same values used for this paper. It can be

seen how the history-dependent dissipation suppresses the peak in the differential resistance.

In order to be consistent, we need to satisfy the fluctuation-
dissipation relation

〈ε̃(t1)ε̃(t2)〉 = Fχ (t1 − t2)

= F
[
η1δ(t1 − t2) + η2t

−1
c θ (tc − |t1 − t2|)

]
,

where F parameterizes the strength of the stochastic forces
acting on the vortices. We need to obtain a distribution ε̃(t)
such that this correlation function is satisfied. First, we note
that, in the numerical simulation, we need to discretize the
time domain in Ns steps of size δt . Because of this, we can
approximate the response function as

χ (t1 − t2) ≈ χn1,n2 = η1

δt
δn1,n2 + η2

tc

�tc/δt	∑
m=1

δ|n1− n2|,m,

where tj = nj δt . We can thus obtain the required stochastic
force ε̃(t) by performing the so-called Cholesky decomposi-
tion of the square matrix χn1, n2 = KT K . The stochastic force
then takes the form ε̃ = Kξ , where ξ is a list of Ns random
variables satisfying the correlation matrix 〈ξn1ξn2〉 = δn1,n2 .

For small matrices, it can be checked analytically that, to
lowest order in η2

η1

δt
tc

, the expression for the correlated random
force is given by

[ε̃]n ≈
√

Fη1

δt

[
ξn + η2

η1

δt

tc

�tc/δt	∑
m=1

ξn+m

]
.

In this expression, the correlations of the random numbers
are encoded in the second term in brackets. One can see that this
contribution is suppressed by the fact that it is proportional to
the sum of uncorrelated random numbers that have zero mean.
Hence, we can approximate [ε̃]n ≈

√
Fη1

δt
ξn.

For larger matrices, one can also confirm numerically that
most realizations of the random variables abide closely by this
approximate expression. Thus, we conjecture that this form
of the random variable [ε̃]n is a good approximation of the
correlation matrix. In view of the fact that the contribution
from correlations is clearly suppressed in the expression for

[ε̃]n, we have approximated the [ε̃]n to be uncorrelated in the
numerical simulations.

3. Explicit equation of motion and parameters used

In what follows, we will use the following units:
a = 1 (length), Id = 2πVp

ϕ0a
= 1 (barrier), η1 = 1 (dissipation

strength), and t0 = η1a

ϕ0Id
= 1 (time). Implementing these

approximations and rearranging terms, we obtain the final
expression

ẋi(t) = J − sin[2πxi(t)]

+ ie(f )

⎛
⎝ 2 xi (t)

�{
1 + [

xi (t)
�

]2}2 +
2 [xi (t)−L]

�{
1 + [

xi (t)−L

�

]2}2

⎞
⎠

− η2
[xi(t) − xi(t − tc)]

tc
+ ε̃i(t).

We numerically propagated in time this simplified equation
for N = 500 realizations of the stochastic force ε̃i(t). More
specifically, we computed the average time tave it took the
vortices to traverse the system from one edge to the other, from
which the average velocity is vave = L/tave. As we mentioned
in the main text, the average of the resulting velocities of
the vortices provides a measure of the voltage measured in the
experiment V = f vave = f L/tave, where we multiplied by the
frustration in order to take into account the number of vortices
actually in the system. For the calculations presented in the
main text, we used the parameters L = 60 a, tc = 20 t0, � =
10 a, i0 = 30 Ib, η2 = 0.4 η1, and F = 0.05. The frustration
spans the three regions of Fig. 5(a). To better illustrate the effect
of history-dependent dissipation, in Fig. 5(b), we show how
the peak gets suppressed as the parameter η2t

−1
c is increased.

We caution that there could be other values of the parameters
that lead to similar results and, in particular, exhibit the same
suppression of the peak in the differential conductance.
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