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Influence of the Dzyaloshinskii-Moriya interaction on the FMR spectrum of magnonic
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We study the effect of surface-induced Dzyaloshinskii-Moriya interaction (DMI) on the ferromagnetic
resonance (FMR) spectrum of thickness-modulated one-dimensional magnonic crystals and isolated stripes.
The DMI is found to substantially increases the intensity of absorption peaks and shifts the frequencies of the
laterally quantized modes. The role of the DMI is determined by analyzing the amplitude and phase distributions
of dynamic magnetic excitations calculated with frequency- and time-domain calculation methods. We propose
experimentally realizable magnonic crystals and confined structures with multiple FMR absorption peaks. The
frequency or magnetic field separation between FMR lines is exploited to propose a method for estimation of the
DMI strength.
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I. INTRODUCTION

Ultrathin structures with broken symmetry, such as mul-
tilayers Pt/Co/Ir or Pt/Co/Ta, are intensively studied because
of the Dzyaloshinskii-Moriya interaction (DMI) induced at
the interfaces with the ferromagnetic metal [1,2]. Surface-
induced DMI leads to interesting phenomena, which include
the occurrence of spiral magnetic states, skyrmion lattices,
or isolated skyrmions. The latter are the subject of extensive
studies towards racetrack memory applications [3]. However,
skyrmion configurations only occur with the DMI above a
certain threshold level and are observed under low magnetic
fields and at low temperatures. Thus, much effort is put in the
material engineering to increase the DMI strength and extend
an area in the phase diagram in which nontrivial magnetic
states can exist. One of the challenges in this area of research
is to determine experimental values of the DMI, since the
measurement of this interaction strength requires the use of
a complex Brillouin light scattering (BLS) technique [4–6],
time-resolved scanning Kerr microscopy [7], or electrically
excited and detected spin wave (SW) transmission [8].

In the magnetically saturated state the DMI has a strong
influence on the propagation of the SWs. It has been shown
that the DMI results in an asymmetric dispersion relation,
f (−k1) �= f (k1), and nonreciprocal SW propagation [9–11].
However, it has been demonstrated that the DMI has no
influence on the ferromagnetic resonance (FMR) spectrum in
a uniform ferromagnetic film [11]. Magnonic crystals (MCs)
with DMI have been studied in terms of the SW propagation
properties [12], but the influence of the DMI on the FMR
spectrum has not been reported to date. In this paper we
focus on the effect of the DMI on the FMR spectrum of
the one-dimensional (1D) MCs and magnetic stripes. We
perform numerical calculations to demonstrate that the DMI
increases the number and intensity of the absorption peaks
in both types of structures: MCs and isolated stripes. In
both structures the DMI is found to split the peaks in the
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FMR spectrum. On the basis of these findings we propose
an experimental method for estimating the DMI strength.
Taking into account the simplicity of the method, the broad
accessibility of the experimental setup (cavity FMR or vector-
network analyzer FMR) we expect that the method can be
used in studies of DMI materials in various emerging fields
of physics, including magnonics, spintronics, and also most
recent spin-orbitronics. Moreover, the predicted increase in
the FMR intensities of the high-frequency SWs might be of
crucial importance for magnonic metamaterials with negative
refractive index [13,14].

The paper is organized as follows. In Sec. II we present
the model used in the calculations. In Sec. III we study the
dispersion relation in an MC with DMI, and demonstrate
the effect of the DMI on SW modes with zero wavevector.
The FMR spectra of MCs with DMI are presented in Sec. IV.
In Sec. V we study the FMR spectrum and SW excitations
in isolated stripes. Conclusions are presented in the closing
Sec. VI.

II. MODEL

We use the frequency-domain finite-element method (FD-
FEM) and finite-difference time-domain (FDTD) micromag-
netic simulations to determine the influence of the DMI on the
FMR spectrum of the studied structures.

The bias magnetic field H0 is assumed to be strong enough
to saturate the sample along the y axis. In FDFEM, in the
linear approximation, the magnetization vector, M, can be
represented as a sum of the static component, (0,MS,0),
parallel to the y axis (MS is the saturation magnetization),
and the dynamic components lying in the (x,z) plane, m =
(mx,0,mz). In the FDFEM model Maxwell’s equations are
considered in the magnetostatic approximation:

∇ × h(r) = σe(r), (1)

∇ × e(r) = −iμ0ω[h(r) + m(r)], (2)

∇ · B = 0, (3)

where μ0 is the permeability of vacuum, r is the position
vector, σ is the conductivity of the ferromagnetic film, and
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ω is the angular frequency of magnetization oscillations; e is
the electric field, h is the dynamic magnetic field, and B is
the magnetic induction. In the considered geometry only the
y component of the electric field is related to the dynamic
magnetic field, e = (0,ey,0) [15].

Maxwell’s equations are complemented with the damping-
free Landau-Lifshitz equation of motion in a ferromagnetic
film:

dM(r,t)
dt

= −γμ0M(r,t) × Heff(r,t), (4)

where γ is the gyromagnetic ratio and Heff denotes the effective
magnetic field:

Heff(r,t) = H0ŷ + 1

MS
∇ ·

(
2Aex

μ0MS

)
∇M(r,t)

+ 2D

μ0M
2
S

(
ŷ × ∂M(r,t)

∂x

)
+ h(r,t), (5)

where Aex is the exchange constant and D a parameter
describing the strength of the DMI. In this model the DMI
is considered in the form of an effective field [10].

The solutions are assumed to have the form of a monochro-
matic Bloch wave:

m(r,t) = m′(r) exp(iωt) exp(ikxx), (6)

h(r,t) = h′(r) exp(iωt) exp(ikxx), (7)

e(r,t) = e′(r) exp(iωt) exp(ikxx), (8)

where kx is a Bloch wavevector, t is time, and the prime
functions on the right side of the equations are periodic
functions with a period equal to the lattice constant of the MC.
Further, we define a unit cell with periodic boundary conditions
on the external boundaries orthogonal to the x̂ and Dirichlet
boundary conditions on the external boundaries orthogonal to
the ŷ, where all the functions are set to zero at distance of
1×10−5 m from the ferromagnetic sample.

The above-described model is implemented in COMSOL

MULTIPHYSICS [16]. Nevertheless also an open source alterna-
tive can be used to solve this model [17]. In FDFEM we have
used the triangular discretization with maximum element size
0.4 nm inside the magnetic material and 40 nm outside. The
element growth rate was chosen to be 1.1, to ensure sufficiently
small elements near the magnetic material.

The assumption concerning the magnetic ground state is
only valid in a certain range of magnetic field and DMI
strength parameter. A DMI threshold Dth is set at the level
where the ground state of the structure will cease to be a
single-domain collinear alignment. According to Ref. [10] Dth

can be estimated by the equation

Dth =
√

μ0MSAex

[
H0 + MS

2
+

√
H0(H0 + MS)

]
. (9)

This gives an approximate threshold value of 4.6 mJ/m2 for
μ0H0 = 0.1 T and 3.5 mJ/m2 for μ0H0 = 0 T.

The FDTD simulations are performed using MUMAX3 [18],
with implemented surface-induced DMI and no assumptions
concerning the magnetization alignment. Nevertheless, in the

FIG. 1. (a) One-dimensional magnonic crystal consisting of a
Co film with a periodically modulated thickness. (b) Array of
noninteracting Co stripes.

selected DMI parameter strength between D = 0 and 2 mJ/m2

the saturated state is preserved. The discretization cell used
in FDTD was 2.5 nm ×1 nm ×1 nm for the MCs and
1 nm ×1 nm ×1 nm for the stripe.

Throughout the paper we use the same material parameters:
saturation magnetization MS = 0.956×106 A/m, exchange
constant Aex = 2.1×10−11 J/m, DMI strength parameter
D = 0–2 mJ/m2, and out-of-plane magnetic anisotropy Ku =
0−0.17×106 J/m3. This set of parameters is comparable to
those measured in the Pt/Co/Ir structure [19]. The assumed
value of the damping parameter taken into account in FDTD
is α = 0.01, is characteristic of an ultrathin Co film where
FMR measurements were performed using a coplanar waveg-
uide [20,21].

III. SW DISPERSION AND PROFILE CHARACTERISTICS
IN MCs WITH DMI

Figure 1(a) presents the investigated MC, consisting of an
ultrathin Co layer with a periodically modulated thickness. The
alternating regions of thickness d1 = 1 nm and d2 = 0.5 nm
have an equal width of 50 nm, and the periodicity of the MC
is a = 100 nm. Ku is set to 0 in the investigation of SWs in
MCs below.

FIG. 2. Dispersion relation of an MC consisting of a Co film with
modulated thickness; MS = 0.956×106 A/m, Aex = 2.1×10−11 J/m,
μ0H0 = 100 mT. The black and white color map represents the
results of FDTD simulations for D = 1 mJ/m2. Plotted on top are
FDFEM calculation results for D = 0 mJ/m2 (blue dashed line) and
D = 1 mJ/m2 (green solid line).
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Figure 2 presents the dispersion relations in the MC with a
periodically modulated thickness with and without the DMI:
for D = 0 mJ/m2 (blue dashed line, FDFEM results) and D =
1 mJ/m2 (green continuous line FDFEM and black-and-white
color map, FDTD results). The results of the frequency-domain
calculations and micromagnetic simulations are in good
agreement. The FDFEM results are plotted only within the
first Brillouin zone (BZ), but the solutions repeat periodically
with a period equal to the reciprocal lattice vector G = 2π

a
≈

0.63×108 m−1, in accord with the Bloch theorem Eq. (8).
In the MC without DMI the dispersion is reciprocal;

the periodicity of the structure results in the occurrence of
magnonic band gaps at the wavevectors fulfilling the Bragg
condition [22], i.e., for kx = nπ/a, where n is an integer. In this
study we focus only on modes with wave vectors kx = 2nπ/a,
which can be observed in FMR measurements [14,23], their
wavelength being an integer multiple of the lattice constant.
Since the Bragg condition is always fulfilled for and the

band gaps always open at kx = nπ/a, in the MC without
DMI the modes have a zero group velocity, Vgr = 0, and are
standing waves [23], as indicated by the profile of the absolute
value of the amplitude of the x component of the dynamic
magnetization for kx = 2π/a, shown in Fig. 3(a) (blue dashed
line). Nodes are found at the interfaces between MC segments
with thickness d1 and d2. Figure 3(b) shows the phase profile
of the x component of the dynamic magnetization. The phase
is constant within each segment, but differs by π between
adjacent segments, which means antiphase oscillations. Since
the asymmetry between segments in the amplitude distri-
bution is slight, this mode can be excited, though with a
low intensity, by a uniform external microwave magnetic
field.

A different picture is obtained in the structure with the
DMI. In a homogeneous ferromagnetic film the DMI results
in a nonreciprocal dispersion relation, since it introduces a
term proportional to kx [4,10,24]:

f = 1

2π

√(
γμ0H0 + ωexk2

x

)(
γμ0H0 + ωexk2

x + ωM

) + ω2
M

4
(1 − e−2|kx |d ) + γDkx

πMS

, (10)

where ωM = γμ0MS , ωex = 2Aex
μ0MS

, and d is the film thickness.
Consequently, also in an MC with the DMI the dispersion re-
lation is nonreciprocal (Fig. 2, green solid line). The exchange
Bragg condition is fulfilled for wave vectors that are not integer
multiples of π/a [25,26], and the band gaps are shifted away
from the boundary and center of the BZ [12,26,27].

The dispersion in the MC with the DMI indicates that
modes with wave vectors kx = 2nπ/a are not standing waves
with Vgr = 0, but propagating waves with a nonzero group
velocity, Vgr �= 0. This results in their significantly modified
profile. Figure 3(a) shows the amplitude profiles of the mode

FIG. 3. (a) Amplitude and (b) phase profiles of SW modes:
kx = 2π/a for D = 0 mJ/m2 (blue dashed line, mode ii in Fig. 4),
kx = −2π/a for D = 1 mJ/m2 (green continuous line, mode i in
Fig. 4), and kx = 2π/a for D = 1 mJ/m2 (green dotted line, mode
iii in Fig. 4).

in the second band with kx = −2π/a (green solid line) and
with kx = 2π/a (green dotted line) for D = 1 mJ/m2. The
main difference with respect to the profile observed in the
MC without DMI is the lack of nodes. Presented in Fig. 3(b)
the phase profiles of these SWs (green solid and dotted lines,
respectively) show a continuous change of the phase along the
x direction (by 2π along a unit cell). Since an FMR absorption
peak is proportional to P ∝ | ∫ Abs(m)e−iArg(m)dr|2 [28],
modes with modified phase and amplitude in an MC with
a nonreciprocal dispersion are expected to be observed with a
relatively high intensity in an FMR experiment.

IV. FMR SPECTRA OF MCs

In order to show the qualitative influence of the nonre-
ciprocal dispersion and the consequent modification of the
SW profiles on the FMR spectrum, we have performed time-
domain micromagnetic simulations with uniform microwave
magnetic field excitation. By comparing the Fourier transform
of the x component of the magnetization with the x component
of the microwave exciting magnetic field we have obtained
the frequency dependence of the imaginary part of the
susceptibility tensor, χ ′′

xx(f ) [29].
Plotted in Fig. 4, the χ ′′

xx(f ) dependencies obtained for D =
0 mJ/m2 (blue dashed line) and D = 1 mJ/m2 (green solid
line) represent the FMR spectra of the MC with and without
the DMI, respectively. The DMI is found to have a significant
impact on the high-frequency part of the FMR spectrum. The
frequency of the fundamental excitation remains unchanged,
though. The peaks and modes presented in Fig. 3 are labeled
i, ii, and iii in Fig. 4. Due to the symmetry of the modes
in the structure with D = 0 only one mode around 18 GHz
is observed in the corresponding spectrum (see the Fig. 4,
blue dashed vertical lines), whereas the asymmetry of the SW
profiles in the structure, with nonreciprocal dispersion leads to

024434-3



M. MRUCZKIEWICZ AND M. KRAWCZYK PHYSICAL REVIEW B 94, 024434 (2016)

FIG. 4. FMR frequency spectrum of the studied MC (Co film with
modulated thickness); μ0H0 = 100 mT. Results of FDTD simulations
for D = 0 mJ/m2 (blue dashed line) and D = 1 mJ/m2 (green solid
line). The vertical lines indicate the eigenmode resonance position
calculated with FDFEM. Due to the symmetry of the modes in the
structure with D = 0 only one mode around 18 GHz is observed in
FDTD simulations.

the FMR excitation of every mode with k = 2nπ/a (in each
of the bands shown in Fig. 2).

The positions of the peaks and their separation in the FMR
spectrum of an MC with nonreciprocity can be estimated using
the analytical formula for the dispersion relation in a uniform
film with a periodic perturbation small enough to be assumed
not to affect the frequency of the resonant modes (when band
gaps open far from the BZ center). Since the asymmetry of the
dispersion relation is only due to the DMI term in Eq. (10),
the separation between the peaks originating in modes with
k = ±2π/a is

	f ≈ 4γD

aMS
. (11)

Thus, the peak separation is proportional to D and inversely
proportional to MS and a, a property advantageous for exper-
imental determination of the value of D. For the value used in
this study, D = 1 mJ/m2, the calculated separation is 8.2 GHz.
This can be compared with the numerical result, 6.9 GHz. The
difference is due to too strong perturbation in the considered
MC, the thickness of which changes between 1 and 0.5 nm.

In order to estimate the peak separation when the frequency
is fixed and H0 is varied, which is a common practice in FMR
measurements, we derive the following formula for 	H0:

μ0	H0 = 2

γMS

⎡⎣√(
f MSπ − 2Dγπ

a

)2

+ e
−4dπ

a

(
MSωM

4

)2

−
√(

f MSπ + 2Dγπ

a

)2

+ e
−4dπ

a

(
MSωM

4

)2
⎤⎦.

(12)

This complicated relation involves also the thickness d.
However, if d/a � 1, the d dependence can be omitted:

μ0	H0 ≈ 2

γMS

⎡⎣√(
f MSπ − 2Dγπ

a

)2

+
(

MSωM

4

)2

−
√(

f MSπ + 2Dγπ

a

)2

+
(

MSωM

4

)2
⎤⎦. (13)

For the assumed parameter value D = 1 mJ/m2 and the
frequency set to 16 GHz, the value of μ0	H0 is around
175 mT. This field separation should be compared with the
peak broadening due to damping. The width (full width at half
maximum, FWHM) of a resonant peak is proportional to the
Gilbert damping parameter and the frequency [21]:

μ0	HFWHM = 4παf

γ
. (14)

For the values used here μ0	HFWHM in a Co ultrathin film
is around 10 mT, much smaller than the peak separation
resulting from the DMI. This means that by measuring the
peak separation in the FMR spectrum versus either frequency
or field in MCs we can easily estimate the DMI strength from
Eq. (11) or (13), respectively.

However, it is worthy of notice that in the case of MCs
with a very small perturbation the detection of peaks might
require high-precision and low-noise FMR measurements. On
the other hand, a large perturbation in an MC will further
increase the peaks in the FMR spectrum.

V. FMR SPECTRA OF ISOLATED STRIPES

In this section we study the influence of the DMI on
the FMR spectrum in an isolated stripe or an array of
noninteracting stripes, i.e, stripes separated by a distance
w2 > w1 [see Fig. 1(b)]. Figure 5 presents the FMR spectra
obtained in FDTD simulations of a 1 nm thick and 100 nm
wide isolated stripe. The calculated frequencies in FDFEM
method are plotted as vertical lines in Fig. 5. As for weak DMI
the agreement between FDFEM and FDTD is satisfactory, a
frequency shift is observed when DMI is strong (≈2 mJ/m2).
It might be due to the assumptions used in the FDFEM method
(linearization and collinear alignment of the magnetization).
Also, MUMAX3 has implemented nontrivial DMI boundary
conditions [30], whereas in the FDFEM calculations the
electromagnetic boundary conditions are fulfilled [23]. A
pinning of the magnetization at boundaries can appear in
FDFEM solutions due to the dipolar pinning [31]. The
influence of these boundary conditions is weak on the static
configuration. However, the DMI boundary conditions could
influence on the dynamical magnetization components (thus
also resonance frequencies) when DMI is high (≈2 mJ/m2).
As shown in Ref. [30], the bending of the magnetization is
present in tangentially magnetized stripes. Thus, in our case
the influence of the DMI boundary conditions is expected on
the dynamical out-of-plane component, mz.

The confinement of the system results in the occurrence of
standing modes, which can be excited with a uniform external
microwave magnetic field. As in the case of MCs (discussed
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FIG. 5. FMR frequency spectrum of a 1 nm thick and 100 nm
wide isolated Co stripe: FDTD results for D = 0 mJ/m2 (blue dashed
line), D = 1 mJ/m2 (green solid line), and D = 2 mJ/m2 (red dotted
line), with a 0.01 T external magnetic field and Ku = 0. The vertical
lines indicate the solutions of of the FDFEM method.

in Sec. IV), the DMI is found to influence the FMR spectrum
and increase the intensity of high-frequency excitations. The
intensity increase is due to a significant modification of the
mode profiles by the DMI, which changes the symmetries
of the amplitude and phase distributions of the standing
SWs. In the stripe without DMI the first standing SW mode
above the fundamental excitation (Fig. 6, blue dashed line)
has an amplitude distribution antisymmetric along the x axis
(magnetization oscillates in antiphase in the two halves of the
stripe); as a result, the microwave field is not absorbed in FMR
measurements. In the stripe with the DMI the phase of the
amplitude of the second resonance mode (13.2 GHz) (Fig. 6,
green continuous line) changes continuously from −π/2 to

FIG. 6. (a) Amplitude and (b) phase profiles of SWs in a 100
nm wide stripe: second mode (m = 2, blue dashed line) with D =
0 mJ/m2, first (fundamental) mode (m = 1, green dotted line) with
D = 1 mJ/m2, and second mode (m = 2, green continuous line) with
D = 1 mJ/m2.

FIG. 7. FMR frequency spectra of the isolated 1 nm thick and
100 nm wide Co stripe with different magnetic anisotropy. The results
of the FDTD are shown for D = 1 mJ/m2, Ku = 0 MJ/m3 (green
continuous line), D = 1 mJ/m2, Ku = 0.17 MJ/m3 (green dashed
line), and D = 2 mJ/m2, Ku = 0.17 MJ/m3 (red dotted line).

π/2 along the x direction. Thus, the amplitude of this mode
does not have a node, which results in a relatively high intensity
of the corresponding peak in the FMR spectrum.

Interestingly, the DMI affects also the frequency and
intensity of the fundamental excitation (mode 1 at 10.6 GHz)
with a quasi-uniform amplitude (see Fig. 6). The frequency
shift is due to a nonuniform amplitude distribution along
the stripe width, resulting in an effective wave number
along this direction and, consequently, a sensible influence
of the DMI in accordance with Eq. (10). The change in the
intensity is expected due to a slight phase shift between the
oscillations of the magnetization and those of the excitation
field [Fig. 6(b), green dotted line]. The change of the intensity
is not visible in Fig. 5 because of the normalization to peak
maximum, individual for each spectrum. Since the intensity
of higher-frequency resonance modes is proportional to the
DMI strength, two peaks of similar intensity are observed in
the structure with a strong DMI (see Fig. 5, red dotted line,
corresponding to D = 2 mJ/m2).

Since the considered materials with DMI might also
have a strong perpendicular uniaxial magnetic anisotropy, we
have also studied its influence on the FMR spectrum with
the FDTD method. Presented in Fig. 7 the results of our
calculations performed with Ku = 0.17 MJ/m3 and two values
of the DMI parameter, D = 1 mJ/m2 (green dashed line) and
D = 2 mJ/m2 (red dotted line) can be directly compared
with the FMR spectrum obtained for Ku = 0 MJ/m3 and
D = 1 mJ/m2 (green solid line, this is the same line as in
Fig. 5). In the case of nonzero Ku the intensities of the
two low-frequency modes are preserved and equally shifted
towards lower energies. The intensities of the higher-frequency
modes show different behavior. For instance, the intensity of
the third mode increases, while the intensity of the fourth mode
decreases with increasing Ku. However, the frequencies of all
modes are reduced with increasing anisotropy.

Further calculations have been performed to determine the
position of the peaks as a function of the stripe width and the
magnetic field magnitude in the broad range of parameters
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FIG. 8. FMR in a 1 nm thick isolated Co stripe: (a) frequency
vs magnetic field dependence at fixed width, w = 100 nm; (b) stripe
width vs magnetic field dependence at a fixed frequency, f = 16 GHz,
for D = 0 mJ/m2 (blue dashed line), D = 1 mJ/m2 (green continuous
line), and D = 2 mJ/m2 (red dotted line); Ku = 0 in both plots. The
horizontal black dashed lines indicate the frequency of stripe width
corresponding to the FMR spectrum presented in Fig. 9.

for the selected values of D. The frequency-domain method
was used here, due to its higher efficiency in calculations.
Overestimated frequencies obtained from FDFEM for high
values of the DMI do not influence qualitatively the obtained
dependencies and conclusions. The dependencies f (H0) ob-
tained for the four lowest-frequency modes are plotted in
Fig. 8(a). The presented frequency vs magnetic field depen-
dence indicates that a frequency of ca. 16 GHz is sufficient to
obtain at least three resonant peaks in a 100 nm wide stripe and
D = 1 mJ/m2. With increasing D this threshold frequency for
estimation of DMI strength even decreases. Since the threshold
of the DMI strength, defined by Eq. (9), is above the considered
range of D values, all magnetic fields in the considered range
will saturate the sample, and an optimum stripe width can be
chosen based on the separation of the peaks.

Figure 8(b) presents the stripe width vs magnetic field
dependence. It shows that if a stripe’s width is of the order
of hundreds of nanometers, the resolution can be sufficient
to differentiate the resonance peaks (since μ0	HFWHM ≈
10 mT according to the Eq. (14)) and estimate D. The
separation between peaks increases with decreasing stripe
width; however, the number of observed modes will decrease,
though for 100 < w < 150 nm only three resonance lines will
be present in FMR spectra. The figure shows also that the
influence of D on the resonance field of the fundamental
mode depends on the width of the stripe. The sensitivity to
D is slight in narrow stripes (see the lines around 200 mT
for a 50 nm stripe) and increases with the stripe width. This
dependence can be related to the magnetization pinning in
homogeneous stripes. The pinning, which can result from
the dipolar interaction [31], increases with the stripe width.
The pinning at the edges of the stripe increases the effective
wave number of the SW, as a result of which the influence of the
DMI on the mode frequency is increased as well. Figure 8(a)
shows the SW frequency versus the external magnetic field for
a fixed stripe width of 100 nm.

To validate the FDFEM results shown in Fig. 8 and
numerically demonstrate the possibility of using magnetic field
dependent FMR spectra for DMI estimation with the use of
Eq. (13), we perform additional FDTD simulations. For the
chosen frequency and the strip width, 16 GHz and 100 nm,

FIG. 9. FMR external magnetic field spectrum of a 1 nm thick
and 100 nm wide isolated Co stripe for D = 0 mJ/m2 (blue dashed
line), D = 1 mJ/m2 (green solid line), and D = 2 mJ/m2 (red dotted
line) at 16 GHz with Ku = 0 obtained from FDTD simulations. The
positions of the FMR lines obtained with FDFEM are marked with
vertical lines.

respectively [parameters related to the horizontal black dashed
lines in Figs. 8(a) and 8(b)] and three values of D, we plot
numerical FMR external magnetic field spectrum in Fig. 9.
As expected, we found that with increasing D the resonance
fields shift to higher fields and the excitations at low fields
increase their FMR intensity. Figure 9 shows also that based
on the FDFEM results presented in Fig. 8 we are able to define a
structure where FMR resonant peaks of quantized modes could
be intensive and differentiable in the external field spectrum.

VI. SUMMARY

The extended frequency-domain calculation model used in
the paper shows a good agreement with micromagnetic sim-
ulations. It provides an efficient tool for fast characterization
of magnonic structures with complex geometries, DMI, and
finite conductivities.

Using the frequency-domain method and micromagnetic
simulations we have demonstrated a large impact of the DMI
on the FMR spectrum and the profiles of quantized SW modes
in 1D MCs and isolated stripes. In MCs the influence of
the DMI on the FMR spectrum is due to the periodicity
of the structure and the folding back of the magnonic bands
to the first BZ. In stripes the impact of the DMI is related to
the quantization of SWs due to confinement along the stripe
width. We point out that the pinning of the magnetization at the
stripe edges may have an important influence on the sensitivity
of the fundamental mode to the DMI strength.

The findings presented in this paper provide the basis to
propose an easy method for the determination of the DMI
strength in ultrathin ferromagnetic films. This method uses
the dependence of the frequency separation between the
neighboring resonance peaks on the DMI strength. Moreover,
we have derived an analytical approximate formula for the
peak separation in the FMR field and frequency spectrum
of small-perturbation MCs. It can be used for estimating the
DMI strength and designing MCs with optimal band structure
required for some applications.
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The obtained results can also be of use for developing
electromagnetic metamaterials proposed in Refs. [13,14],
based on the interaction of the external microwave magnetic
field with quantized SW modes. Providing another way of
manipulating the FMR spectrum, especially increasing the
intensity of the high frequency absorption peaks, the DMI
can help to design materials with a negative refractive index
in a broad and relatively high frequency range. The presented
increase of coupling of quantized SWs with uniform external
microwave magnetic field due to presence of the DMI can lead
to the search for an analogous effect in other structures that
support nonreciprocal propagation [12,26,27,32–34].
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