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Magnetic orders characterized by multiple ordering vectors harbor noncollinear and noncoplanar spin textures
and can be a source of unusual electronic properties through the spin Berry phase mechanism. We theoretically
show that such multiple-Q states are stabilized in itinerant magnets in the form of superpositions of collinear
up-up-down-down (UUDD) spin states, which accompany the density waves of vector and scalar chirality. The
result is drawn by examining the ground state of the Kondo lattice model with classical localized moments,
especially when the Fermi surface is tuned to be partially nested by the symmetry-related commensurate vectors.
We unveil the instability toward a double-Q UUDD state with vector chirality density waves on the square lattice
and a triple-Q UUDD state with scalar chirality density waves on the triangular lattice, using the perturbative
theory and variational calculations. The former double-Q state is also confirmed by large-scale Langevin dynamics
simulations. We also show that, for a sufficiently large exchange coupling, the chirality density waves can induce
rich nontrivial topology of electronic structures, such as the massless Dirac semimetal, Chern insulator with
quantized topological Hall response, and peculiar edge states which depend on the phase of chirality density
waves at the edges.
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I. INTRODUCTION

Noncollinear and noncoplanar magnetic orderings have
attracted much interest in condensed matter physics, as
they often lead to intriguing phenomena and topologically
nontrivial electronic states. These orders can simultaneously
activate secondary order parameters, in addition to the primary
magnetic ordering. For instance, a noncollinear magnetic order
carries the vector chirality, which is defined by a vector product
of spins 〈Si × Sj 〉, while a noncoplanar magnetic order the
scalar chirality, which is represented by a triple scalar product
〈Si · (Sj × Sk)〉. Such chirality degrees of freedom generate
an emergent electromagnetic field for electrons through the
spin Berry phase mechanism, and hence, have a huge potential
to induce and control novel electronic states and transport
phenomena, such as the anomalous (topological) Hall effect
[1–3], orbital and spin current [4–6], and magnetoelectric
effect [5]. Exploring such unusual states with chirality degrees
of freedom is expected to bring a major advance in the
field of magnetism and stimulate further possibilities for
“chiraltronics.”

Among them, several noncoplanar magnetic orders have
been examined by focusing on the emergence of the anomalous
Hall effect. Skyrmion crystals are one of the most prominent
examples, where the relativistic spin-orbit coupling plays an
important role [7–10]. Other examples have been extensively
discussed for 3d- and 4f -electron compounds, on the basis
of the Kondo-type spin-charge coupling on several lattice
structures: triangular [11–16], honeycomb [16,17], kagome
[3,18,19], square [20,21], cubic [22], face-centered-cubic [23],
and pyrochlore lattices [24]. In particular, the noncoplanar
magnetic orders with ferroic ordering of the scalar chirality
have attracted much interest, as the spatially uniform scalar
chirality generates a coherent spin Berry phase for itinerant
electrons and may lead to a quantized anomalous Hall effect
[3,11,12,23]. On the other hand, the magnetic states with stripy

patterns of the scalar chirality have recently been proposed
[25,26]. In these states, the value of the scalar chirality is
modulated in real space, and even canceled out in the whole
system (the net chirality is zero). Thus, these states are regarded
as antiferroic-type scalar chirality orderings. Given the variety,
it is a natural question what is essential for noncollinear and
noncoplanar orderings with the chirality degrees of freedom
and what determines the spatial pattern of chirality density
waves (ChDW). It will also be interesting to ask how the
different ChDW affect the electronic properties, in both bulk
and nanoscale structures, such as topological nature of the band
structure, edge states, domain walls, and local electric/spin
currents.

In this paper, we present a systematic theoretical study of
vector and scalar ChDW in itinerant electron systems. The
key ingredient in our study is an up-up-down-down (UUDD)
collinear magnetic order [see Fig. 1(b)]. We demonstrate that
a variety of ChDW can be constructed by superpositions
of such UUDD orders, which we call multiple-Q UUDD
states. We examine the instability toward such multiple-Q
UUDD states in a minimal model for itinerant magnets, the
two-dimensional Kondo lattice model with classical localized
moments in the absence of the relativistic spin-orbit coupling,
using an analytical perturbative expansion with respect to
the exchange coupling between itinerant electron spins and
localized moments. We find that, at particular fillings where
the different portions of the Fermi surface are connected
by commensurate vectors, the system is unstable toward
the multiple-Q UUDD states. The higher-order contributions
beyond the second-order Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [27] play a key role in this instability,
which indicates that the origin of these states is quite different
from the noncollinear and noncoplanar states stabilized by the
spin-orbit coupling. While similar mechanisms were discussed
for other noncoplanar states [25,26,28,29], our construction
has the advantage of extending the variety of ChDW patterns to
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FIG. 1. Schematic pictures of (a) helical and (b) UUDD magnetic
structures in the one-dimensional representation, (c) collinear single-
Q (1Q) UUDD, (d) 1Q UUDD with different ordering vectors from
(c) (see the text in detail), (e) coplanar double-Q (2Q) UUDD
consisting of a superposition of (c), (f) 2Q UUDD consisting of
a superposition of (d) on the square lattice, and (g) noncoplanar
triple-Q (3Q) UUDD magnetic structures on the triangular lattice.
The arrows denote the directions of localized moments. The inset of
(g) shows the directions of magnetic moments in the 3Q UUDD
state; each spin points along the local [111] directions in the
cubic representation. In all cases, a global spin rotation does not
alter the consequences. (h) The square lattice with diagonal bonds,
which is topologically equivalent to the triangular lattice in (g).
In (e) and (f) [(g) and (h)], the red and blue plaquettes show the
positive and negative vector (scalar) chirality defined in Eq. (12)
[Eq. (13)].

superstructures beyond one-dimensional stripy ones. We apply
the perturbative arguments to a double-Q UUDD state on the
square lattice and a triple-Q UUDD state on the triangular
lattice. We also carefully confirm the stability of the multiple-
Q states by variational calculations. The double-Q UUDD
state is further confirmed by large-scale Langevin dynamics
simulations enabled by the kernel polynomial method (KPM-
LD) [30]. We also find that the ChDW may bring about
a topologically nontrivial nature in the itinerant electrons,

reflecting oscillations of chirality in real space. We show that
the system becomes a Dirac semimetal and magnetic Chern
insulator depending on the chirality superstructures under the
assumption that the multiple-Q UUDD states remain stable for
a large exchange coupling. We also reveal that peculiar edge
states appear in these topological states, in different forms
depending on where the ChDW are terminated at the edges.

The rest of the paper is organized as follows. In Sec. II,
after introducing the Kondo lattice model, we briefly discuss
how the RKKY interaction fails to determine the ground state
of the Kondo lattice model in some particular situations. As
the candidate for the ground state, we propose multiple-Q
modulations of specific UUDD spin states, which result
in ChDW. In Sec. III, we examine the instability toward
the multiple-Q UUDD states by combining the perturbative
expansion with respect to the exchange coupling between
itinerant and localized spins, variational calculations by using
the direct diagonalization of the full Hamiltonian, and the
KPM-LD simulations for large-size clusters. In Sec. IV, we
discuss the electronic structure of the multiple-Q UUDD
states, with emphasis on the topological properties of bulk
band structure and the edge states induced by ChDW. We
summarize our results in Sec. V, with making some remarks
on the comparison between our multiple-Q UUDD states and
other ChDW states.

II. MULTIPLE- Q UUDD STATE

In this section, we present the fundamental concept of
the multiple-Q UUDD states with ChDW, whose stability
is examined in the later sections. First, we introduce the
Kondo lattice model consisting of classical localized spins and
itinerant electrons in Sec. II A. Then, in Sec. II B, we briefly
review the RKKY interaction, which is an effective magnetic
interaction appearing in the second-order perturbation with
respect to the exchange coupling in the Kondo lattice model.
After presenting the magnetic structure for the single-Q (1Q)
UUDD state in Sec. II C, we describe how to construct the
multiple-Q UUDD states on the square and triangular lattices
in Sec. II D. We show that the multiple-Q UUDD states are
energetically degenerate with the 1Q one at the level of the
RKKY interaction. In Sec. II E, we show the multiple-Q
UUDD states possess the real-space superstructures of vector
and scalar chirality, i.e., ChDW.

A. Kondo lattice model

We consider a model consisting of noninteracting electrons
coupled with localized spins, called the Kondo lattice model,
on the square and triangular lattices. We omit the relativistic
spin-orbit coupling and focus on the exchange coupling
between the localized moments and itinerant electrons. The
Hamiltonian is given by

H = −t1
∑
〈i,j〉σ

(c†iσ cjσ + H.c.) − t2
∑

〈〈i,j〉〉σ
(c†iσ cjσ + H.c.)

+ J
∑
iσσ ′

c
†
iσ σ σσ ′ciσ ′ · Si − μ

∑
iσ

c
†
iσ ciσ , (1)
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where c
†
iσ (ciσ ) is a creation (annihilation) operator of an

itinerant electron at site i and spin σ, σ = (σx,σ y,σ z) is
the vector of Pauli matrices, Si is a classical localized spin
at site i whose amplitude is normalized as |Si | = 1, J is
the exchange coupling constant (the sign is irrelevant for
classical localized spins), and μ is the chemical potential. The
sums of 〈i,j 〉 and 〈〈i,j 〉〉 are taken over the nearest-neighbor
and second-neighbor sites, respectively, on the square and
triangular lattices. Hereafter, we take t1 = 1 as an energy unit.

In the wave-number representation, the Hamiltonian in
Eq. (1) is transformed into

H =
∑
kσ

(εk − μ)c†kσ ckσ + J
∑

kqσσ ′
c
†
kσσ σσ ′ck+qσ ′ · Sq, (2)

where c
†
kσ and ckσ are the Fourier transform of c

†
iσ and ciσ ,

respectively. Sq is the Fourier transform of Si . In Eq. (2), εk is
the free-electron dispersion, which is given by

εk = −2
∑
l=1,2

(t1 cos k · el + t2 cos k · e′
l) (3)

for the square lattice [e1 = x̂ = (1,0), e2 = ŷ = (0,1), e′
1 =

x̂ + ŷ, and e′
2 = x̂ − ŷ] and

εk = −2
∑

l=1,2,3

(t1 cos k · el + t2 cos k · e′
l) (4)

for the triangular lattice (e1 = x̂, e2 = −x̂/2 + √
3ŷ/2, e3 =

−x̂/2 − √
3ŷ/2, e′

1 = e2 + 2e3, e′
2 = e3 + 2e1, and e′

3 = e1 +
2e2). We set the lattice constant a = 1 as the length unit.

B. RKKY interaction

In general, the Kondo lattice model in Eq. (2) exhibits
magnetic ordering in the ground state. The stable spin pattern
depends on the electron filling n = (1/N )

∑
iσ 〈c†iσ ciσ 〉 as well

as the exchange coupling constant J (N is the number of
lattice sites). When J is much larger than t1 and t2, the system
shows a ferromagnetic order for general electron filling, by the
double-exchange ferromagnetic interaction between localized
spins induced by the kinetic motion of itinerant electrons
[31]. On the other hand, when J � t1 and t2, the magnetic
ordering in the ground state is predominantly determined by
the RKKY interaction, which is also a kinetically induced
effective magnetic interaction [27]. The expression of the
RKKY interaction is obtained by the second-order perturbative
expansion with respect to J as

H(2) = −J 2
∑

q

χ0
q |Sq|2, (5)

where χ0
q is the bare susceptibility of itinerant electrons

χ0
q = 1

N

∑
k

f (εk) − f (εk+q)

εk+q − εk
. (6)

Here, f (εk) is the Fermi distribution function. As the bare
susceptibility depends on the transfer integrals (noninteracting
band structure) and chemical potential (electron filling) in the
absence of the spin-orbit coupling, these two factors play a
decisive role in determining the magnetic state in the Kondo
lattice model for J � t1,t2.

In general, the RKKY interaction in Eq. (5) favors a
coplanar helical magnetic order, whose spin pattern is given
by

Si = (cos Q1 · ri ,0, sin Q1 · ri). (7)

Note that the helical plane, which is taken as the xz plane, is
arbitrary in the model with isotropic exchange interactions.
The ordering vector Q1 is determined by the maximum
of χ0

q , and therefore, depends on the band structure and
electron filling. The preference of the helical spin state is
understood from the constraint |Si | = 1 and the sum rule∑

q |Sq|2 = N . Other complicated magnetic structures, such
as the superpositions of the helical spin patterns, need higher
harmonics in order to satisfy the constraint of |Si | = 1, which
leads to an energy cost under the sum rule

∑
q |Sq|2 = N .

C. UUDD magnetic structure

For particular ordering vectors, however, magnetic patterns,
which are more complicated than the helical one, are allowed
without introducing higher harmonics. An example is the
multiple-Q state which is composed of a superposition of
different 1Q states. For instance, the double-Q (2Q) state
with Q1 = (π,0) and Q2 = (0,π ) on the square lattice, whose
spin structure is given by [20,29]

Si = x̂ cos Q1 · ri + ŷ cos Q2 · ri , (8)

satisfies the constraint |Si | = 1. The important point is that
the modulation with the second component Q2 is introduced
in the perpendicular direction to that of Q1; this guarantees
no additional energy cost at the RKKY level in Eq. (5).
Thus, the 1Q helical state in Eq. (7) and the 2Q state in
Eq. (8) are energetically degenerate within the RKKY level.
This indicates that the RKKY interaction is not sufficient to
determine the ground state, when Q1 = (π,0) and Q2 = (0,π )
maximize the bare susceptibility. Note that Q1 and Q2 are
related with each other by the fourfold rotational symmetry,
which is compatible with the square lattice. The stability of
this type of multiple-Q states was discussed in Refs. [29,32].

A similar but different situation can occur for Q1 =
(π/2,0). Interestingly, for this particular wave number, there
are energetically degenerate states even within the 1Q states:
The helical order in Eq. (7) with Q1 = (π/2,0) [Fig. 1(a)]
has the same energy as a collinear UUDD order, whose spin
texture is represented by

Si = [cos Q1 · ri + cos(Q1 · ri − π/2)]x̂. (9)

One can easily find that Eq. (9) satisfies |Si | = 1 as the helical
spin structure does. The one- and two-dimensional examples
are shown in Figs. 1(b) and 1(c), respectively. In the two-
dimensional case, we can also find another UUDD state with
Q1 = (π/2,π ), as shown in Fig. 1(d). These UUDD states can
be regarded as the superpositions of the helical states, i.e., the
spin structures in the UUDD states are decomposed into a pair
of exp(iQ1 · r) and exp(−iQ1 · r). In the following, we will
discuss the stability and nature of 1Q UUDD and multiple-Q
UUDD states, which are introduced in the next section, in
comparison with the helical state.
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D. Multiple- Q UUDD States

We can extend the UUDD states by considering the
multiple-Q superpositions. In a similar way to Eq. (8), we
can define the 2Q UUDD state as

Si = 1√
2

⎛
⎝cos Q1 · ri + cos(Q1 · ri − π/2)

cos Q2 · ri + cos(Q2 · ri − π/2)
0

⎞
⎠. (10)

In the case of the square lattice, there are two combinations
of ordering vectors, which are allowed for the 2Q UUDD
state while keeping |Si | = 1: one is Q1 = (π/2,0) and Q2 =
(0,π/2), and the other is Q1 = (π/2,π ) and Q2 = (π,−π/2).
Note that, in each combination, Q1 and Q2 are connected by
the fourfold rotational operation compatible with the square
lattice. When we choose Q1 = (π/2,0) and Q2 = (0,π/2),
the real-space spin configuration is schematically shown in
Fig. 1(e), while that for Q1 = (π/2,π ) and Q2 = (π,−π/2) is
shown in Fig. 1(f). Their spin configurations are noncollinear
but coplanar.

Meanwhile, we can also consider the triple-Q (3Q) UUDD
state on the triangular lattice, whose spin configuration is given
by

Si = 1√
3

⎛
⎝cos Q1 · ri + cos(Q1 · ri − π/2)

cos Q2 · ri + cos(Q2 · ri − π/2)
cos Q3 · ri + cos(Q3 · ri − π/2)

⎞
⎠, (11)

where Q1 = (π/2,0), Q2 = (0,−π/2), and Q3 =
(−π/2,π/2). Note that Q1, Q2, and Q3 are connected
by the sixfold rotational operation compatible with the
triangular lattice. Here and hereafter, we regard the triangular
lattice as a topologically equivalent square lattice with
diagonal bonds, as shown in Fig. 1(h). The spin configuration
given by Eq. (11) is noncoplanar, whose original geometry is
shown in Fig. 1(g).

As exemplified in Sec. II C for the case of Q1 = (π,0) and
Q2 = (0,π ), the RKKY energy for a multiple-Q state remains
the same as that in the 1Q state when there are no higher
harmonics in the spin configurations. Hence, the multiple-Q
UUDD states introduced in this section have the same RKKY
energy as those for the 1Q helical and UUDD states. The
degeneracy is lifted by higher-order contributions beyond the
RKKY interaction, as discussed in Sec. III.

E. Chirality density waves

The multiple-Q UUDD states exhibit nonzero chirality. We
define the vector and scalar chirality as

χp
v = 1

4 (Si × Sj + Sj × Sk + Sk × Sl + Sl × Si), (12)

χp
s = Sm · (Sn × So), (13)

respectively, where i, j, k, and l (m, n, and o) are sites on each
square (triangle) plaquette p in a counterclockwise direction.
In the multiple-Q UUDD states, the value of chirality depends
on the spatial position of the plaquette, which we call ChDW.

Indeed, in the 2Q UUDD on the square lattice [Eq. (10)],
the z component of the vector chirality χ

p
v oscillates from

a positive to negative value on each plaquette, as shown in
Figs. 1(e) and 1(f); see also in Figs. 5(a) and 7(a) for the

chirality distribution in a larger scale. Thus, this state is
an antiferroic-type vector ChDW with vanishing net vector
chirality. Note that the scalar chirality is zero everywhere
because of the coplanar spin configurations. Meanwhile, in
the 3Q-UUDD state, the scalar chirality takes a positive value
or zero in a periodic way, as shown in Figs. 1(g) and 1(h).
This is a partially ferroic-type scalar ChDW with a nonzero
net scalar chirality. (In this noncoplanar 3Q case, we do not
discuss the vector chirality.)

Thus, these ChDW states are distinct from the ferroic
chirality orders in the previous studies, where every plaquette
possesses the same value of vector or scalar chirality, as
mentioned in the Introduction [11,23]. Furthermore, they have
richer superstructures in the chirality than the one-dimensional
stripy ones in the previous studies [25,26]. Reflecting the
distinct aspect, intriguing edge-dependent electronic structures
are obtained as discussed in Sec. IV.

III. INSTABILITY TOWARD MULTIPLE- Q UUDD STATES

In this section, we examine the instability toward the
multiple-Q UUDD states from the energetic point of view. In
Sec. III A, we show the results from higher-order perturbative
expansion with respect to J beyond the second-order RKKY
contribution. In Sec. III B, we evaluate the energy differences
between the multiple-Q UUDD, 1Q UUDD, and helical
states by variational calculations. Finally, we examine the
ground state in an unbiased way by performing the KPM-LD
simulation in Sec. III C. The results provide complementary
evidences that the system has the instability toward the
multiple-Q UUDD states at particular electron fillings.

A. Perturbative analysis

As described in the previous section, when particular
symmetry-related wave numbers maximize the bare suscep-
tibility, the RKKY interaction is not sufficient to determine
the ground state since it gives the same energy for helical, 1Q

UUDD, and multiple-Q UUDD orders. This occurs when the
ordering vectors satisfy |Qξ | = π, π/2, or 0 [Q = (Qx,Qy) �=
0 or (π,π )], and they are related with each other by the
rotational operation proper to the lattice structure.

An example is found for the square lattice model at t2 = 0
and the chemical potential μ = −√

2. The Fermi surface
is drawn in Fig. 2(a). As shown in the figure, the Fermi
surface is connected by two wave numbers Q1 = (π/2,π ) and
Q2 = (π,−π/2), which satisfy the above condition. Note that
the connections are not only within the same Brillouin zone,
but also between different Brillouin zones. These connections
maximize the bare susceptibility at Q1 and Q2, and the
symmetry-related wave numbers −Q1 and −Q2, as shown
in Fig. 2(b). This indicates that the magnetically ordered states
with these ordering vectors are the candidates for the ground
state. Specifically, the plausible ground states are the 1Q

helical state with Q1, the 1Q UUDD with Q1, and the 2Q

UUDD with Q1 and Q2; these three states are energetically
degenerate for the RKKY Hamiltonian in Eq. (5). Note that
we do not need to consider the 3Q UUDD state in this square
lattice case because its RKKY energy is higher than that for
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FIG. 2. The Fermi surface for (a) the square lattice model at
t2 = 0 and μ = −√

2 and (c) triangular lattice model at t2 = 0.5 and
μ = 2. The triangular lattice is regarded as a topologically equivalent
square lattice with diagonal bonds, as shown in Fig. 1(h). Qν (ν = 1,
2, and 3) are the vectors connecting the Fermi surfaces. (b), (d) The
contour plots of the bare susceptibility corresponding to (a) and (c),
respectively. The bare susceptibility exhibits maxima at Qν and the
symmetry-related wave numbers.

the 1Q UUDD state; the 3Q state becomes relevant in the
triangular-lattice system with sixfold rotational symmetry.

In fact, another example including the possibility of 3Q

UUDD ordering is found for the triangular lattice model at
t2 = 0.5 and μ = 2. Figure 2(c) shows the Fermi surface. In
this case, there are three vectors connecting the Fermi sur-
face, Q1 = (π/2,0), Q2 = (0,−π/2), and Q3 = (−π/2,π/2),
which lead to the six maxima in the bare susceptibility shown in
Fig. 2(d). Thus, the possible ground states in this case include
the 3Q UUDD with Q1, Q2, and Q3 in addition to the 1Q and
2Q states.

Similar connections of the Fermi surface occur for Q1 =
(π/2,0) and Q2 = (0,π/2) at μ = −√

2(1 + √
2) on the

square lattice model with t2 = 0, and for Q1 = (π/2,0), Q2 =
(0,−π/2), and Q3 = (−π/2,π/2) at μ = −2(1 + √

2) on
the triangular lattice model with t2 = 0. In these two cases,
although χ0

q has maxima at ±Qν , it shows less q dependence
and the peaks are not clearly visible (not shown here),
compared to the previous cases shown in Figs. 2(b) and 2(d).
Nevertheless, we will discuss these two cases in addition to
the former two, as the perturbative arguments below indicate
that the instability toward the multiple-Q states appears in a
common manner.

For the situations above, the RKKY energy is degenerate
for the ground-state candidates. Hence, in order to discriminate
them, we need to take into account the higher-order contribu-
tions in the perturbative analysis [28,29]. The degeneracy at
the second-order RKKY level is lifted by the fourth-order
contribution with respect to J (note that the odd-order terms
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FIG. 3. The fourth-order contributions to the free energy F (4)
ν

and F
(4)
helical in Eqs. (14) and (15), respectively, divided by J 4,

as functions of the chemical potential μ for the ground-state
candidates at the RKKY level on (a), (b) square, and (c), (d)
triangular lattices. The parameters are (a) t2 = 0, Q1 = (π/2,0), and
Q2 = (0,π/2), (b) t2 = 0, Q1 = (π/2,π ), and Q2 = (π,−π/2), (c)
t2 = 0, Q1 = (π/2,0), Q2 = (0,−π/2), and Q3 = (−π/2,π/2), and
(d) t2 = 0.5, Q1 = (π/2,0), Q2 = (0,−π/2), and Q3 = (−π/2,π/2).
The data are calculated at T = 0.03. The vertical dashed lines point
to the optimal chemical potential where the bare susceptibility has
maxima at the corresponding wave numbers: (a) μ = −√

2(1 + √
2),

(b) −√
2, (c) −2(1 + √

2), and (d) 2.

vanish by symmetry). When we expand the free energy
F = −T

∑
μ ln[1 + exp(−Eμ/T )] (Eμ are the eigenvalues of

H and T is temperature) as F = F (0) + F (2) + F (4) . . . , the
fourth-order contribution F (4) for the four possible candidates
is analytically obtained as

F (4)
ν = J 4

2

{(
1 − 1

ν

)
A + 1

2ν
B

}
, (14)

F
(4)
helical = J 4

2
T

∑
kωp

G2
k+QG2

k, (15)

where

A = T
∑
kωp

(
G2

kGk+Qη
Gk+Qη′ + GkG

2
k+Qη

Gk+Qη+Qη′

− GkGk+Qη
Gk+Qη′ Gk+Qη+Qη′

)
, (16)

B = T
∑
kωp

(
G2

kG
2
k+Qη

− GkGk+Qη
Gk+2Qη

Gk+3Qη

+ 2GkG
2
k+Qη

Gk+2Qη

)
. (17)

In Eq. (14), ν = 1, 2, and 3 stand for the 1Q, 2Q, and
3Q UUDD states, and Gk(iωp) = [iωp − (εk − μ)]−1 is
noninteracting Green’s function, where ωp is the Matsubara
frequency. In Eqs. (16) and (17), (η,η′) = (1,2) for 2Q and
(η,η′) = (1,2), (1,3), and (2,3) for 3Q.

Figure 3 shows F (4) in Eqs. (14) and (15) while changing
the chemical potential μ around the values for which the
RKKY interaction favors magnetic orders with Q1 = (π/2,0)
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or Q1 = (π/2,π ) (the vertical dashed lines in each figure).
For the square lattice case, we find F

(4)
2 < F

(4)
1 < F

(4)
helical, as

shown in Figs. 3(a) and 3(b). The results indicate that the
fourth-order contribution favors the 2Q UUDD states near
the particular fillings, where the Fermi surfaces are connected
by Qν . Specifically, the 2Q UUDD states are favored at the
electron filling n ∼ 0.097 [μ ∼ −√

2(1 + √
2)] in Fig. 3(a)

and n ∼ 0.506 (μ ∼ √
2) in Fig. 3(b). On the other hand,

in the triangular-lattice case, we obtain F
(4)
3 < F

(4)
2 < F

(4)
1 <

F
(4)
helical, as shown in Fig. 3(c) for t2 = 0 and Fig. 3(d) for t2 =

0.5. Hence, in these cases, the fourth-order contribution prefers
to the 3Q UUDD states: at n ∼ 0.113 [μ ∼ −2(1 + √

2)] in
Fig. 3(c) and n ∼ 1.618 (μ ∼ 2) in Fig. 3(d).

Thus, in all cases, higher multiple-Q states are favored by
the fourth-order perturbation beyond the RKKY interaction.
The instability toward the multiple-Q states is understood by
the (partial) gap formation in the band structure of itinerant
electrons due to (partial) nesting of the Fermi surfaces. In
general, a magnetic order by the Fermi surface nesting opens
a partial gap at the Fermi surfaces connected by the ordering
vector. The multiple-Q orders have more connections than
the 1Q orders, as exemplified in Figs. 2(a) and 2(c). The
connections therefore lead to a larger energy gain owing to the
partial gap opening at the multiple points on the Fermi surfaces.
A similar mechanism was discussed for other noncoplanar
multiple-Q orders [26,28,29]. Therefore, in the small-J limit,
a 2Q (3Q) UUDD state is expected to be realized on the square
(triangular) lattice. However, it is worth noting that, although
the perturbative arguments above indicate the instabilities
toward the multiple-Q orders, the fourth-order corrections
in Eqs. (14) and (15) diverge in the limit of T → 0. This
suggests the breakdown of the perturbative theory and, hence,
we need to carefully check the validity by complementary
methods, such as numerical simulations, as we will discuss in
the following sections.

Let us remark on the comparison between the 1Q UUDD
and helical states. The fourth-order perturbative analysis shows
that the energy for the UUDD state is always lower than the
helical one near the particular electron fillings, as shown in
Fig. 3. This is because the UUDD state has more perturbative
processes than the helical one, as shown in Eqs. (14) and (15).
The difference is related with the inversion symmetry breaking
by the helical order. The UUDD order opens a partial gap in
the band structure owing to the multiple processes, whereas
the helical one does not. The preference of the 1Q UUDD state
with Q = π/2 than the helical one was indeed found in the
study for the one-dimensional Kondo lattice model [33,34].
Our perturbative arguments not only support the preference,
but also show that the tendency is general irrespective of the
system dimensions.

B. Variational calculation

In order to confirm the perturbative analysis, we numeri-
cally examine the ground state of the model in Eq. (1). In this
section, we perform a variational calculation: We compare the
grand potential at zero temperature 
 = E − μn (E = 〈H〉/N
is the internal energy per site) for variational states with
different magnetic orders in the localized spins, and determine
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FIG. 4. The grand potential at zero temperature as functions of
the chemical potential μ calculated by the variational calculation for
the Hamiltonian in Eq. (2) at J = 0.1 on (a), (b) square, and (c),
(d) triangular lattices. The grand potential for the 1Q, 2Q, and 3Q

UUDD magnetically ordered states is measured from that for the
helical state. The model parameters in each panel correspond to those
in Fig. 3.

the lowest-energy state. For the variational states, we assume
four different types of ordered states characterized by Q1, Q2,
and Q3 on the basis of the perturbative arguments in Sec. III A:
the helical [Eq. (7)], 1Q [Eq. (9)], 2Q [Eq. (10)], and 3Q

UUDD states [Eq. (11)]. These choices are appropriate for
J/t � 1 because the RKKY and fourth-order contributions
to the free energy play an important role in determining the
ground state. We consider these ordered states in a 16-site unit
cell (4 × 4), and compute 
 in the system with 1024 supercells
under the periodic boundary conditions.

Figure 4 shows μ dependences of the grand potential at
J = 0.1 for different variational states measured from that for
the helical ordering. The results support the perturbative results
in Fig. 3: In Figs. 4(a)–4(d), the grand potential for the 2Q (3Q)
UUDD state gives the lowest energy for the square (triangular)
lattice model, in the μ regions where the fourth-order free
energy F (4) becomes lowest for the corresponding state, as
shown in Figs. 3(a)–3(d). We note that the 3Q UUDD states
are also favored at μ ∼ 2.1 and 2.25, as shown in Fig. 4(d),
but they may be taken over by other states with slightly
different ordering vectors determined by the Fermi surface
at these values of the chemical potential. Thus, the multiple-Q
UUDD states are variationally stable near the electron fillings
where the fourth-order perturbation signals their instabilities.
Note that we also confirm the stability against the simple
ferromagnetic state at these fillings.

C. Langevin dynamics simulation

For further confirmation of the multiple-Q states, we per-
form the KPM-LD simulation. This is an unbiased numerical
simulation based on Langevin dynamics [30], in which the
kernel polynomial method [35] is utilized for enabling the
calculations for larger system sizes than the standard Monte
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FIG. 5. (a) Real-space configurations of localized spins and the z

components of vector chirality (χp
v )z [see Eq. (12)] in the optimized

ground state obtained by the KPM-LD simulation for the model in
Eq. (1) on the square lattice. The simulation is done for a 482-site
cluster at μ = −1.39 (n 
 0.522) for t2 = 0 and J = 0.3. Green
arrows at the vertices of the square lattice represent the directions of
localized spins, and the color for each square plaquette indicates the
value of (χp

v )z. (b) Enlarged picture of (a) in the dotted square. (c)
Spin structure factor divided by the system size obtained from the
spin configuration in (a).

Carlo simulation combined with the direct diagonalization. We
here apply the method to the square lattice model at μ ∼ −√

2,
where the perturbative and variational calculations coherently
point to the 2Q UUDD state, as shown in Figs. 3(b) and 4(b),
respectively. The simulation is done at zero temperature for a
482-site cluster of the square lattice with periodic boundary
conditions. In the kernel polynomial method, we expand
the density of states by up to 4000th order of Chebyshev
polynomials with 144 random vectors which are selected by
a probing technique [36]. In the Langevin dynamics, we use
a projected Heun scheme [37] for 1000 steps with the time
interval �τ = 10.

The results are shown in Fig. 5. In the simulation, we take
a slightly large value of J (J = 0.3) for ensuring the conver-
gence of numerical optimization. Figures 5(a) and 5(b) show
a snapshot of the configurations of localized spins and vector
chirality [Eq. (12)] in the optimized states. The obtained state
coincides well with the 2Q UUDD order with vector ChDW
in Fig. 1(f). Indeed, it shows eight (two independent) peaks in
the spin structure factor S(q) = (1/N)

∑
i,j Si · Sj e

iq·(ri−rj ), as

shown in Fig. 5(c). Thus, the unbiased numerical simulations
also support the emergence of multiple-Q UUDD states in the
ground state.

IV. ELECTRONIC STRUCTURE

In this section, we present the electronic band structures
of the multiple-Q UUDD states with ChDW. In Sec. IV A,
we show that ChDW may bring topological nature in the
band structure, e.g., the massless Dirac semimetal and Chern
insulator. The situation is totally different from helical states,
which in general show metallic band structures. We also
show that the edge states in these ChDW states appear in a
peculiar way depending on how the ChDW is terminated at
the edges in Sec. IV B. To elucidate the nontrivial electronic
structures by the multiple-Q states, hereafter, we assume that
the spin configurations in Eqs. (10) and (11) remain stable for
larger J . It remains as a future problem to examine whether
the multiple-Q states survive for large J by, e.g., unbiased
numerical simulations used in Sec. III C.

A. Bulk dispersion

The ChDW associated with the multiple-Q UUDD state
may modulate the electronic structure in a nontrivial way
through the spin Berry phase mechanism. This is demonstrated
in Fig. 6. Figure 6(a) shows a typical energy dispersion for the
2Q UUDD state with Q1 = (π/2,0) and Q2 = (0,π/2) on the
square lattice (t2 = 0 and J = 1). In this case, the spin texture
induces an antiferroic-type ChDW, as shown in Fig. 1(e) [see
also Fig. 7(a)]. There are 16 bands and each band is doubly
degenerate. As shown in the figure, the lowest band plotted
by thick curves touches the higher band at the single point
at (π/4,π/4), forming a linear dispersion. This is a massless
Dirac node, whose electron filling corresponds to n = 0.125.
Thus, the 2Q UUDD state with the antiferroic ChDW is a
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FIG. 6. Typical energy dispersions of (a) the 2Q UUDD state
on the square lattice and (b) the 3Q UUDD state on the trian-
gular lattice. The parameters are t2 = 0, J = 1, Q1 = (π/2,0), and
Q2 = (0,π/2) for the 2Q state, while t2 = 0, J = 2, Q1 = (π/2,0),
Q2 = (0,−π/2), and Q3 = (−π/2,π/2) for the 3Q state. The
dispersions are shown along the symmetric lines in the folded
Brillouin zones. The lowest thick curves show the occupied bands at
n = 0.125. In (a), the massless Dirac node appears at k = (kx,ky) =
(π/4,π/4) at n = 0.125 as well as several other fillings. Meanwhile,
the band gap opens at n = 0.125 in (b), in addition to several other
commensurate fillings. In (b), the values of the quantized topological
Hall conductivity in unit of e2/h, which are obtained when the Fermi
level locates inside the gap, are also shown in the right side of the
panel.
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Dirac semimetal at n = 0.125. The formation of the Dirac
node implies that the 2Q UUDD state may be stabilized at this
commensurate filling at nonzero J , although the instability in
the weak J limit occurs at a slightly smaller filling, n ∼ 0.097,
as discussed in the previous sections. Similar stabilization with
forming Dirac semimetal was discussed for square and cubic
lattices [20,22,32].

On the other hand, the other 2Q UUDD state in Fig. 1(f)
does not show such Dirac nodes; the bands are separated
by energy gaps, and the system is a trivial band insulator
at n = 0.5, 1.0, and 1.5 (not shown here). The difference
is understood by considering the J → ∞ limit: in the case
of Fig. 1(f), itinerant electrons are confined in each four-
site plaquette with nonzero vector chirality because of the
antiparallel spin configuration between the plaquettes, whereas
they are not in Fig. 1(e).

Figure 6(b) represents a typical energy dispersion for
the 3Q UUDD state with Q1 = (π/2,0), Q2 = (0,−π/2),
and Q3 = (−π/2,π/2) on the triangular lattice (t2 = 0 and
J = 2), which accompanies a partially ferroic-type ChDW,
as shown in Figs. 1(g) and 1(h). As shown in the figure,
the partially ferroic ChDW leads to a full gap opening at
the Fermi level for n = 0.125, which is close at n ∼ 0.113
where the instability toward the 3Q UUDD is anticipated in
the small-J limit. Similar to the square-lattice case above, the
gap opening suggests that the 3Q UUDD state may be stable
at n = 0.125 for finite J . Similar stabilization by gap opening
was discussed in Refs. [12,28]. We find that the insulating
state is a topologically nontrivial Chern insulator; the lowest
band acquires the Chern number +1, leading to the quantized
topological Hall conductivity σxy = e2/h (e is the elementary
charge and h is the Planck constant). Hence, the 3Q UUDD
state with partially ferroic ChDW provides a Chern insulator.
Note that there are other gaps at higher fillings, and the bands
separated by the gaps are assigned by the corresponding Chern
numbers, as shown in the right side of Fig. 6(b). Similar Chern
insulators were discussed for ferroic ChDW in noncoplanar
3Q states [11,12,32].

B. Edge states

Reflecting the topologically nontrivial nature induced by
ChDW in the multiple-Q UUDD states, peculiar edge states
are observed, as demonstrated in Fig. 7. Here, we consider
the systems with the (100) edges: the 2Q UUDD state on the
square lattice [Fig. 7(a); see also Fig. 1(e)] and the 3Q UUDD
state on the triangular lattice [Fig. 7(b); see also Fig, 1(h)]. We
adopt the periodic boundary condition in the (010) direction.
There are four choices for the edges depending on where we
cut the ChDW (two for each edge): Al or Bl for the left edge
and Ar or Br for the right edge, as shown in the figures. The
edge states appear in the electronic structure in a different form
depending on the choices, as demonstrated below.

Figure 7(c) shows the band dispersions near the Fermi level
at n = 0.125 for the 2Q UUDD state with antiferroic ChDW on
the square lattice with the (100) edges. In this case, the edge
states, which are represented by the thick red lines, appear
around the Dirac nodes when we take the (Al ,Ar ) edges. This
is presumably owing to the nonzero vector chirality in the
plaquettes on the edges. In fact, such edge states do not appear
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FIG. 7. Schematic picture of the system with the (100) edges
for (a) square lattice and (b) triangular lattice. The dashed boxes
represent unit cells used for the calculations of the edge states;
the unit cell contains 256 or 260 sites depending on where the
edges are terminated. The red (blue) plaquettes represent positive
(negative) values of (a) vector and (b) scalar chirality. (c), (d) Energy
dispersions near the Fermi level at n = 0.125 for (c) the 2Q and (d)
3Q UUDD states for the systems with open edges shown in (a) and
(b), respectively. In (c) [(d)], the solid and dashed lines represent
the dispersion in the systems with the (Al ,Ar ) [(Al ,Ar )] and (Bl ,Br )
[(Al ,Br )] edges, while the thick red lines the edge states in the systems
with the (Al ,Ar ) [(Al ,Ar )].

for the (Bl ,Br ) edges, where the vector chirality vanishes in
the plaquettes on the edges. We note that the two edge states
are doubly degenerate each in this case. Meanwhile, for the
(Al ,Br ) or (Bl ,Ar ) edges, one of the two edge states shows a
similar dispersion to that in the (Al ,Ar ) edge represented by
thick red lines in Fig. 7(c), while the other edge state is similar
to that in the (Bl ,Br ) edge (not shown here).

On the other hand, the 3Q UUDD state on the triangular
lattice shows gapless chiral edge states traversing the energy
gap of the Chern insulator, irrespective of the choice of the
edges, as shown in Fig. 7(d). These are topologically protected
edge states, as the partially ferroic ChDW is a Chern insulator
with nonzero net component of the scalar chirality. Even in this
situation, however, the chiral edge states behave differently
depending on the choice of the edges. For instance, as shown
in Fig. 7(d), when we change the right edge from Ar to Br

with keeping the left edge Al , the chiral edge dispersion with a
positive slope shows a drastic change. The result indicates that
we can control the edge currents by the location of the edges,
namely, by the phase of ChDW. Such phase-dependent edge
states suggest a new possibility of controlling the electronic
structures and transport properties by nanostructure of ChDW.

V. SUMMARY AND CONCLUDING REMARKS

To summarize, we have investigated the possibility of
vector and scalar ChDW in itinerant magnets, focusing on the
construction from multiple-Q superpositions of the UUDD

024424-8



ENGINEERING CHIRAL DENSITY WAVES AND . . . PHYSICAL REVIEW B 94, 024424 (2016)

collinear spin structures. We have examined the stability of
the multiple-Q UUDD states in the Kondo lattice model with
classical localized moments on square and triangular lattices,
using three complementary methods: perturbative analysis,
variational calculations, and Langevin dynamics simulations.
Contrary to the common belief that the RKKY interaction
stabilizes a helical state, all the results consistently indicate
that the itinerant systems exhibit the multiple-Q UUDD states
in the limit of weak spin-charge coupling. This occurs when
the Fermi surface is connected by the commensurate ordering
vectors that are related with each other by rotational symmetry
compatible to the lattice structure. Although they share the
stabilization mechanism with the previously studied multiple-
Q states, we showed that the multiple-Q UUDD states have
greater flexibility; for instance, they can accommodate two-
dimensional textures of vector and scalar chirality. We also
found that ChDW associated with the multiple-Q UUDD states
bring about nontrivial topology in the electronic structures,
such as massless Dirac semimetals and Chern insulators. In
addition, we clarified that, reflecting the spatial modulation of
vector and scalar chirality, the peculiar edge states appear in
the topologically nontrivial states, which depend on how the
ChDW are terminated at the edges. The results suggest the
controllability of edge currents by the phase of ChDW.

Finally, let us comment on the competition between the
multiple-Q UUDD states and multiple-Q helical states with
one-dimensional stripy ChDW [25,26]. In the current study,
we found that the multiple-Q UUDD state is more stable than
the multiple-Q helical ones with stripy ChDW by KPM-LD
numerical simulations for Q1 = (π/2,π ). We also confirmed
that the situation is also similar for Q1 = (π/2,0) by the

variational calculations (not shown here). Such preference
is restricted to particular ordering vectors Q1 = (π/2,0) or
Q1 = (π/2,π ); for other commensurate wave vectors, e.g.,
Q1 = (π/l,0) (l is an integer larger than two), we need higher
harmonics to constitute collinear orders, while we do not
for helical ones. Let us take an example of Q1 = (π/3,0).
In order to construct a UUUDDD collinear state, one needs
an additional ordering vector, Q′

1 = (π,0), in addition to
Q1 = (π/3,0), which leads to an energy cost even at the RKKY
level. Thus, the multiple-Q helical states with stripy ChDW
will be more stable than the multiple-Q UUUDDD states,
at least, in the weak J limit. The situation might be turned
over when considering large J and taking into account other
contributions, such as the coupling to lattice distortions, spin
anisotropy, and spin-orbit coupling. Such extensions are left
for future study.
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