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Kondo route to spin inhomogeneities in the honeycomb Kitaev model
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Paramagnetic impurities in a quantum spin liquid give rise to Kondo effects with highly unusual properties.
We have studied the effect of locally coupling a paramagnetic impurity with the spin- 1

2 honeycomb Kitaev model
in its gapless spin-liquid phase. The (impurity) scaling equations are found to be insensitive to the sign of the
coupling. The weak and strong coupling fixed points are stable, with the latter corresponding to a noninteracting
vacancy and an interacting, spin-1 defect for the antiferromagnetic and ferromagnetic cases, respectively. The
ground state in the strong coupling limit in both cases has a nontrivial topology associated with a finite Z2

flux at the impurity site. For the antiferromagnetic case, this result has been obtained straightforwardly owing
to the integrability of the Kitaev model with a vacancy. The strong-coupling limit of the ferromagnetic case
is, however, nonintegrable, and we address this problem through exact-diagonalization calculations with finite
Kitaev fragments. Our exact diagonalization calculations indicate that the weak-to-strong coupling transition
and the topological phase transition occur rather close to each other and are possibly coincident. We also find
an intriguing similarity between the magnetic response of the defect and the impurity susceptibility in the
two-channel Kondo problem.

DOI: 10.1103/PhysRevB.94.024411

I. INTRODUCTION

A study of disorder in condensed matter systems is useful
from two perspectives. Disorder is inherent in most condensed
matter systems and often has profound effects on their
properties. Incorporation of small amounts of paramagnetic
impurities in a metallic host can result in the Kondo effect
which gives the well-known logarithmic temperature depen-
dence of the resistivity upon cooling, and eventually crosses
over to a Fermi-liquid regime with a characteristic low-energy
scale, the Kondo temperature. Conversely, impurities at low
concentrations can act as a probe providing specific signatures
of the environment they exist in. From the latter perspective,
the Kondo effect is a set of signatures of certain low-energy
excitations of the host lacking long-range magnetic order. For
instance, exotic Kondo effects are known to arise in itinerant
electron magnets near criticality [1–3] and in insulating
quantum spin-liquid systems [4–6] owing to the paramagnons
and spinonic excitations, respectively.

A study of impurity effects in the spin- 1
2 honeycomb Kitaev

model [7] is very appealing in this context. This Kitaev model
is integrable and the ground state is either a gapless or gapped
quantum (Z2) spin liquid with extremely short-ranged spin
correlations [8]. The elementary excitations are not spin-1
bosons that one typically expects for magnetic systems in
two dimensions and higher, but emergent dispersing Majorana
fermions (spinons) and Z2 vortices (π − flux excitations asso-
ciated with spins at the vertices of the hexagonal plaquettes)
which in the gapless phase are known to be non-Abelian
anyons [7]. Experimental realization looks increasingly im-
minent with several interesting proposals to realize Kitaev
physics in two-dimensional quantum-compass materials such
as the alkali-metal iridates [9] and ruthenium trichloride [10],
and independently in cold-atom optical lattices [11].

Introducing a paramagnetic impurity into the model through
local exchange coupling of the impurity spin with a host

(Kitaev) spin results in a highly unusual Kondo effect [12]
owing to the peculiar elementary excitations in the host. For
an S = 1/2 Kitaev model with an energy scale J coupled
locally to a spin-S impurity, the perturbative scaling equations
for the impurity coupling K turn out to be independent of
its sign, with an intermediate coupling unstable fixed point
|K| ∼ J/S separating weak and strong coupling regimes. Such
scaling differs qualitatively from the Kondo effect in metals
(and graphene [13]) where a nontrivial effect is seen only for
antiferromagnetic coupling, but is similar to the Kondo scaling
reported for paramagnetic impurities in certain pseudogapped
bosonic spin liquids [6]. The distinguishing feature of the
Kitaev-Kondo problem is that the weak and strong cou-
pling limits correspond to different topologies of the ground
state [12].

Despite the insensitivity of the scaling equations to the sign
of impurity coupling, the strong coupling limits for K > 0 and
K < 0 are very different physically. In the antiferromagnetic
case (K > 0), the strong-coupling limit for an S = 1/2
impurity spin corresponds to a spin singlet at the impurity
site—equivalent to the Kitaev model with a missing site,
which is an integrable model. In the ferromagnetic case, the
strong-coupling limit corresponds to a nonintegrable problem
where one of the sites has S = 1, while the rest have S = 1/2.

The problem of missing sites (spinless vacancies) in the
Kitaev model has received much attention in recent times. It
was independently reported in Refs. [12,14] that the ground
state of the Kitaev model with a missing site is associated with
a finite Z2 flux through the defect. That would not be the case,
for example, in graphene, where although the Dirac fermions
have the same dispersion as the emergent Majorana fermions
in the Kitaev model, the phases of the intersite hopping matrix
elements in graphene are identical for every bond and do not
change upon the creation of defects. In contrast, the phases of
the intersite hopping elements of the Majorana fermions in the
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Kitaev model are a degree of freedom and can take values 0
or π. For the missing site problem, the magnetic susceptibility
is predicted [14,15] to have logarithmic singularities both as
a function of the magnetic field as well as the temperature.
Some of the singularities in magnetic susceptibility reported
in Refs. [14,15] are reminiscent of the two-channel Kondo
problem, and we demonstrate the connection between such
singularities and the presence of bound, zero energy Majorana
fermions in the Kitaev model with a vacancy [12] as is also the
case for the two-channel Kondo model [16]. Vacancy induced
spin textures have also been studied by exact diagonalization
[17] of finite clusters of up to 24 spins described by more
general (and nonintegrable) Kitaev-Heisenberg models in the
presence of a small magnetic field. In Ref. [17], it was reported
that a vacancy induces longer ranged spin-spin correlations
that extend beyond the single bond correlations one has in
the defect-free Kitaev model [8]. The low-energy properties
of the Kitaev model with a random and dilute concentration
of vacancies are also quite interesting. Such rare but locally
singular perturbations are predicted to result in qualitatively
different low-energy properties compared to that expected for
Gaussian white noise type disorder [15].

In contrast to the understanding we currently have on the
effects of single and multiple vacancies in the Kitaev model,
much less is known about the effect of spinful defects where
the defect site has a different (nonzero) spin compared to
the host sites. Part of the reason is that while the vacancy
problem is integrable and affords a simplification of a difficult
problem where interactions and disorder are both present, the
problem with an S = 1 defect cannot be reduced to a nonin-
teracting one. Some progress was made in Ref. [12] where
it was explicitly demonstrated that the ground states of both
the vacancy as well as S = 1 defect problems have a twofold
degeneracy. However, it could not be established whether the
S = 1 defect was also associated with a finite Z2 flux that is the
case when a vacancy is present. It was also not demonstrated
whether the strong coupling fixed points were indeed stable.
The stability is an important issue, for otherwise one would
expect new intermediate coupling stable fixed points and not
only would our understanding of the Kondo effect in the Kitaev
model be incomplete, but also the paramagnetic impurity route
for generating vacancies and spinful defects would no longer
be appropriate. The latter issue is of interest from a practical
point of view, too, since it would make it possible to generate
non-Abelian anyons conveniently using a spin-polarized STM
tip to bind a Kitaev spin ferromagnetically or antiferromagnet-
ically. It is also not clear whether the topological transition and
the magnetic transitions are coincident or occur at the same
value of the impurity coupling strength.

We address the above open questions and make the
following findings. We demonstrate the stability of the strong
coupling limit for the ferromagnetic and antiferromagnetic
cases which implies stability of the spin-0 vacancies and
spin-1 defects created through this route. We perform exact
diagonalization calculations for a finite fragment of the Kitaev
model coupled to a paramagnetic impurity and show that while
for weak impurity coupling, the ground state corresponds to
zero Z2 flux at the impurity site, for strong coupling, the
ground state has a finite flux irrespective of the sign of impurity
coupling. For the value of impurity coupling that corresponds

to this topological transition, we also observe the total spin at
the impurity site going to zero or one depending on the sign
of coupling; this establishes that the topological as well as the
weak coupling to strong coupling transitions occur very close
to each other and possibly at the same point. As a corollary, we
find that the ground state with a spin-1 defect corresponds to a
finite flux at the defect site. Finally, we identify an intriguing
connection between the susceptibilities of a vacancy in the
Kitaev model and of the magnetic impurity in a two-channel
Kondo model.

The rest of the paper is organized as follows. Section II
provides a brief introduction to the honeycomb spin- 1

2 Kitaev
model. In Sec. III we study the effect of coupling an external
paramagnetic impurity to the Kitaev host through a local
exchange coupling. A poor man’s scaling analysis of the
impurity coupling reveals an unstable fixed point separating the
weak- and strong-coupling regimes. The stability of the strong-
coupling fixed point is demonstrated for both ferromagnetic
and antiferromagnetic impurity couplings. It is also shown that
the strong- and weak-coupling limits correspond to different
topologies of the ground state. New conserved quantities are
identified which are composite operators of an impurity spin
component and two Kitaev flux operators. Section IV contains
the result of exact diagonalization calculations of finite Kitaev
fragments coupled to external spins. The key findings in this
section are (a) establishing that a finite Z2 flux is associated
with the ground state of the spin- 1

2 Kitaev model with a spin-1
defect, just as in the case of a vacancy, and (b) the magnetic
(Kondo) and topological transitions occur very close to each
other and are possibly coincident. In Sec. V we report some
intriguing parallels between the low-temperature magnetic
response of the Kitaev model with a missing site and the
two-channel Kondo model. Section VI contains a discussion
of the results and possible future directions.

II. THE SPIN-1/2 KITAEV MODEL ON THE
HONEYCOMB LATTICE

Kitaev’s spin- 1
2 honeycomb lattice model for a quantum

spin liquid is a model of direction dependent nearest neigh-
bor exchange interactions on a honeycomb lattice [7]. The
Hamiltonian for this model is given by

H0 = −Jx

∑
x-links

σx
j σ x

k − Jy

∑
y-links

σ
y

j σ
y

k − Jz

∑
z-links

σ z
j σ z

k , (1)

where the three bonds at each site (see Fig. 1) are labeled as
x, y, and z. The model is exactly solvable [7]. As was shown
by Kitaev, the flux operators Wp = σx

1 σ
y

2 σ z
3 σx

4 σ
y

5 σ z
6 defined

for each elementary plaquette p are conserved (Fig. 1), with
eigenvalues ±1, and form a set of commuting observables.
The Kitaev spins can be represented in terms of four Majorana
fermions bx

i , b
y

i , b
z
i , ci as σα

i = ibα
i ci . This representation

spans a larger Fock space, and we restrict to the physical
Hilbert space of the spins by choosing the gauge [7] Di =
ibx

i b
y

i b
z
i ci = 1.

For each α-type bond, uα
ij = ibα

i bα
j is also conserved and

the flux operators Wp can be written as a product of uij ’s
on the plaquette �〈ij〉∈Plaq.uij . The ground-state manifold
corresponds to a vortex-free state where all Wi are equal. In
the vortex-free state, we can fix all uij = 1 (corresponds to
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FIG. 1. (a) Schematic of a fragment of the Kitaev lattice showing
the A and B sites and the x, y, and z types of bonds. (b) Figure showing
the reciprocal lattice vectors for the A sublattice. The Dirac point for
the massless Majorana fermions is denoted by kF and momentum
summations are over the (shaded) half Brillouin zone.

Wp = 1) and the Hamiltonian can be written as a tight-binding
model of noninteracting Majorana fermions. The reduced
Hamiltonian for this ground-state manifold is given by H0 =
i
4

∑
jk Ajkcj ck, where Ajk = 2Jα

jk
if j, k are neighboring

sites on an α bond and zero otherwise. The excited states (with
finite vorticity) are separated from the ground-state manifolds
by a gap of order Jα.

The free Majorana fermion hopping Hamiltonian can be
diagonalized in momentum space by defining the Bravais
lattice with a two-point basis with n1 ,n2 as lattice vectors
(Fig. 1). In momentum space,

H0 =1

4

∑
q>0,α={0,1}

εα(q)a†
q,αaq,α, (2)

with ε0,1(q) = ±|f (q)|, f (q) = 2i(Jxe
ia0q·n1 + Jye

ia0q·n2 +
Jz), where a0 is the nearest neighbor spin distance. The
eigenstates are aq,0 = c̃q,A + c̃q,Be−iα̃(q) and aq,1 = c̃q,A −
c̃q,Be−iα̃(q), with α̃(q) being the phase of f (q). c̃q,A/B is the
momentum space representation of cA/B-Majorana fermions.

The Kitaev model has gapless excitations for a region of
parameter space where Jα’s satisfy the triangle inequalities
|Jx | + |Jy | � |Jz|, etc., and a gapped spectrum outside this
parameter regime. The gapless phase has a point Fermi surface
where ε(kF ) = 0 and ε(q) has a linear dispersion around kF

(Fig. 1). For simplicity, we will assume Jx = Jy = Jz = J

for further analysis. For this case, the Fermi points are at
(±4π/3

√
3a0,0).

The ground state of the Kitaev model is a quantum spin
liquid with only nearest neighbor spin-spin correlations [8].
On an α bond, only 〈σα

i σ α
j 〉 is nonzero and other two-spin

(a) bβ̃ q , α̃q, α
bβ

Sβ̃Sβ̃ Sβ

(b)

Sβ̃Sβ̃ Sβ

q, α bβ

q , α̃ bβ̃

FIG. 2. Diagrams contributing to the scaling of Kondo
coupling Kα .

correlations are zero. Four-spin bond-bond correlations are
long-ranged with power-law decay in the gapless phase of the
Kitaev model.

III. TOPOLOGICAL KONDO EFFECT

Consider a spin S impurity locally (and anisotropically)
exchange coupled to a host (Kitaev) spin at an A site (r = 0):

VK = i
∑

β={x,y,z}
KβSβbβcA

= i
∑

q∈HBZ,β

Kβ

√
2N

Sβbβ(c̃q,A + c̃
†
q,A)

≡ 1√
N

∑
q∈HBZ,α={0,1},β

QβSβbβ (aq,α + a†
q,α), (3)

where the momentum sums are over half of the Brillouin
zone (HBZ) and Qβ = iKβ/2

√
2. We perform a poor man’s

scaling analysis [18,19] for the impurity coupling K to study
the screening of the impurity spin by the host excitations. We
consider the Lippmann-Schwinger expansion for the T -matrix
element for scattering of a dispersing Majorana fermion with
momentum q and band index α into a localized bβ Majorana.
Making a perturbation expansion T = T (1) + T (2) + · · · in
increasing powers of K and following its variation as a function
of the decrease of the bandwidth from (−D,D) to (−D +
δD,D − δD), we find that the first correction to the bare T

matrix comes from two third-order terms T (3),a,T (3),b (see
Fig. 2). The contribution from on-site scattering [Fig. 2(a)] is

T (3),a = QβSβ

N

∑
(D−δD)�|εq′ |,|εq′′ |�D,α̃,β̃,α̃′

(Qβ̃)2(Sβ̃)2〈bβ |bβ(aq′′,α̃′ + a
†
q′′,α̃′ )G+

0 (ε) bβ̃(aq′,α̃ + a
†
q′,α̃) G+

0 (ε) bβ̃(aq,α + a†
q,α)|(q,α)〉

= −QβSβ

N

∑
q′,β̃

(Qβ̃)2(Sβ̃)2

〈
a
†
q′,1aq′,1

1

E − (H0 − εq ′,1)
+ aq′,0a

†
q′,0

1

E − (H0 + εq ′,0)

〉
1

E − εb

	 −2QβSβ ρ(D)a2|δD|
E − D

· 1

E − J

∑
β̃

(Qβ̃)2(Sβ̃)2. (4)
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Here ρ(D) is the density of states at the band edge, a is the
lattice constant, and G+

0 (E) is the retarded Green’s func-
tion (E − H0 + iδ)−1.|bβ〉, |(q,α)〉 are the scattering states
corresponding to the external b and dispersing fermion
legs, respectively, in Fig. 2. α,α̃ represent the band indices
{0,1} while β,β̃ = {x,y,z} are (spin component) labels on
the b Majoranas. In the second quantized notation, the

scattering states are created from the vacuum state |
〉, which
satisfies aq,α|
〉 = 0. In this notation, the scattering states are
|(q,α)〉 = a

†
q,α|
〉 and bβ |
〉 = |bβ〉. The angular brackets in

the second line of Eq. (4) denote averaging over the ground
state. Finally we note that the energy scale for a b-Majorana
excitation is εb 	 J.

Similarly, the contribution from Fig. 2(b) is

T (3),b = QβSβ

N

∑
(D−δD)�|εq′ |,|εq′′ |�D,α̃,β̃,α̃′

(Qβ̃)2(Sβ̃)2〈bβ | bβ̃(aq,α + a†
q,α)G+

0 (ε) bβ̃(aq′,α̃ + a
†
q′,α̃) G+

0 (ε) bβ(aq′,α̃ + a
†
q′,α̃)|(q,α)〉

= − QβSβ

N

∑
q′,β̃

(Qβ̃)2(Sβ̃)2 1

E − 2εb

〈
a
†
q′,1aq′,1

1

E − (−εq ′,1 + εb + εq,0)
+ aq′,0a

†
q′,0

1

E − (εq ′,0 + εb + εq,0)

〉

	 −2QβSβ ρ(D)a2|δD|
E − D − J

· 1

E − 2J

∑
β̃

(Qβ̃)2(Sβ̃)2. (5)

Adding the two contributions (taking E 	 0),

T (3) 	 2QβSβρ(D)
a2δD

εb

∑
β̃

(Qβ̃)2(Sβ̃)2

{
1

D
+ 1

2(D + J )

}
.

(6)

Here we have taken E,εq,α 
 D, J and neglected them.
If either the impurity is a S = 1

2 spin, or the Kondo
interaction is rotationally symmetric, the above contribution
renormalizes the Kondo coupling constant. However, for
S �= 1

2 with anisotropic coupling, new terms are generated and
one needs to go to higher order diagrams to obtain the scaling
of these new coupling terms. For S = 1/2 or for symmetric
impurity coupling we thus have

δK ∼ −2K3S(S + 1)ρ(D)a2 δD

J

{
1

D
+ 1

2(D + J )

}
. (7)

Just as for the Kondo effect in graphene [13], owing to
the change in the density of states with bandwidth [here
ρ(ε) = (1/2πv2

F )|ε| ≡ C|ε|], we also need to consider the
change in K due to the rescaling done in order to keep
the total number of states fixed. This gives a contribution
K → K(D′/D), (D′ = D − |δD|). In addition, as we shall
scale the bandwidth D to smaller values, the second term in
Eq. (7) may be dropped. Thus,

δK 	 −2K3S(S + 1)ρ(D)a2 δD

DJ
+ K

δD

D

= −K
δD

D

(
2K2a2CDS(S + 1)/J − 1

)
. (8)

Thus, as we decrease the bandwidth by integrating out the
high energy excitations, the effective coupling K has an
unstable fixed point at Kc =

√
J/[2a2ρ(D)S(S + 1)]; or in

other words, Kc ∼
√

J/S2a2CD ∼ J/S. Here we used D �
J and C ∼ 1/(Ja)2. Clearly for K > Kc, the coupling flows to
infinity independent of the nature of coupling (ferromagnetic
or antiferromagnetic), while for K < Kc, the coupling flows

to zero. For anisotropic Kondo coupling we can show

δKz,± ∼ −Kz,±
δD

D

[
2a2ρ(D)S(S + 1)

K2
z + K+K−

J
− 1

]
.

(9)

The two-parameter Kondo flow is therefore given by

δKz

δK±
= Kz

K±
⇒ Kz

K±
= const. (10)

A comparison of the Kondo effect in graphene [13], a
bosonic spin bath [6] and the Kitaev model are shown in
Table I.

A. Stability of strong-coupling point

The poor man’s scaling analysis is only valid for small
Kondo couplings as the perturbation theory breaks down much
before the critical value of the coupling. While we have shown
that the coupling flows to larger values above the critical value
Kc, it remains to be seen whether there is any other fixed point
beyond Kc but less than the ∞. Below we study the model in
the strong-coupling limit and see if it is a stable fixed point.
In the strong-coupling limit, K is the largest energy scale and
the impurity spins form a singlet/triplet with the Kitaev spin
at origin.

We consider the Hamiltonian such that the Kondo term and
the Kitaev model with one spin missing (HK−) constitute the
unperturbed Hamiltonian and Kitaev coupling to the site at
origin is the perturbation:

H0 = KS · σ0 + HK−, (11)

V = J
(
σx

0 σx
1 + σ

y

0 σ
y

2 + σ z
0 σ z

3

)
. (12)

For antiferromagnetic Kondo coupling (K > 0), the ground
state consists of a Kondo singlet of S and σ0 and the Kitaev
model with one spin missing. The perturbation term causes
transitions from singlet to triplet states of the Kondo singlet.
We use the effective Hamiltonian scheme [20] to include
the effects of the perturbation terms within the projected
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TABLE I. Comparison of Kondo effect in graphene, a Z2 bosonic spin bath with a pseudogap density of states and the Kitaev model on the
honeycomb lattice.

Graphene

Z2 bosonic spin bath with
pseudogap density of states

ρ(ε) = C|ε| Kitaev, honeycomb lattice

Kondo scaling Unstable intermediate coupling
fixed point only for AFM coupling.
Only AFM flows to strong coupling
above unstable fixed point.

Flow direction is independent of the
sign of magnetic impurity coupling.
Unstable intermediate coupling
fixed point for both FM and AFM.

Scaling same as Z2 bosonic spin
bath case. However, a topological
transition is associated with the
unstable fixed point.

ground-state subspace.

Heff = eiQHe−iQ, (13)

where Q is chosen such that the terms which take us out of the
reduced Hilbert space are canceled order by order. This gives
the reduced Hamiltonian as

Heff = H0 + H1 + H2 + O(V 3), (14)

〈α|H1|β〉 = 〈α|V |β〉, (15)

〈α|H2|β〉= 1

2

∑
γ �=α,β

〈α|V |γ 〉〈γ |V |β〉
(

1

Eα − Eγ

+ 1

Eβ − Eγ

)
,

(16)

where α,β belong to the ground-state manifold and γ belongs
to the excited state manifold. The eigenstates of the Kondo

term are singlet |s〉 and triplet states |t,(0, ± 1)〉:

|s〉 = 1√
2

(|↑,⇓〉 − |↓,⇑〉), (17)

|t,1〉 = |↑,⇑〉,

|t,0〉 = 1√
2

(|↑,⇓〉 + |↓,⇑〉),

|t,−1〉 = |↓,⇓〉. (18)

Here ↑ refers to the Kitaev spin and ⇑ refers to the impurity
spin state.

Antiferromagnetic Kondo coupling

For the antiferromagnetic Kondo coupling case, the impu-
rity forms a singlet state with the host spin at the origin. We
project the Hamiltonian to the singlet subspace. It is easily
seen that 〈s|V |s〉 = 0 and

〈s,K−|H2|s,K ′
−〉 = 1

2

∑
a={±1,0},K ′′−

〈s,K−|V |ta,K ′′
−〉〈ta,K ′′

−|V |s,K ′
−〉

(
1

E0 − Et

+ 1

E′
0 − Et

)
. (19)

The labels K−,K ′
−, and K ′′

− refer to the eigenstates of the Kitaev Hamiltonian with a vacancy and ta denotes the triplet states
defined in Eq. (18). Since the energies of the Kitaev part are of the order of J 
 K , we ignore their contribution in the energy
denominators of the perturbation term. The matrix elements of H2 are then

〈s,K−|H2|s,K ′
−〉 	 J 2

E0 − Et

∑
α,β={x,y,z},a,K ′′−

〈s|σα
0 |ta〉〈ta|σβ

0 |s〉〈K−|σα
iα
|K ′′

−〉〈K ′′
−|σβ

iβ
|K ′

−〉

	 −J 2

K

∑
α,β

〈s|σα
0 (1 − |s〉〈s|)σβ

0 |s〉〈K−|σα
iα
σ

β

iβ
|K ′

−〉

= −J 2

K

∑
α,β

δα,β〈K−|σα
iα
σ

β

iβ
|K ′

−〉 = −3J 2

K
. (20)

Here, in σα
iα
, the subscript iα, iβ refers to the position of

a neighboring site of the origin in the direction of the
α bond (ix = 1, iy = 2, iz = 3). It is evident that in the
antiferromagnetic coupling case, the Kondo singlet decouples
from the rest of the Kitaev model and a small interaction
(J 2/K 
 J ) is generated between the Kitaev spin at the origin
and the spins at the three neighboring sites in the second order
of perturbation in the hybridization J. The strong coupling
fixed point is thus stable and is equivalent to the Kitaev model
with one site missing.

Ferromagnetic Kondo coupling

In the ferromagnetic Kondo coupling case, the triplet
states form the ground-state manifold. We perform degenerate
perturbation theory to get the effective Hamiltonian:

〈ta,K ′
−|H1|ta′,K−〉 = J 〈ta,K ′

−|V |ta′,K−〉
=

∑
α

〈ta|σα
0 |ta′ 〉〈K ′

−|σα
iα
|K−〉. (21)
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Here ta,ta′ stand for the various triplet states. If we calculate
the matrix elements 〈ta|σα

0 |ta′ 〉, these matrices are just the
spin − 1 matrices:

σx
0 =

⎛
⎜⎝

0 1√
2

0
1√
2

0 1√
2

0 1√
2

0

⎞
⎟⎠,

σ
y

0 =

⎛
⎜⎝

0 − i√
2

0
i√
2

0 − i√
2

0 i√
2

0

⎞
⎟⎠,

σ z
0 =

⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠,

and the Hamiltonian in the reduced subspace becomes

H1 = JSα
effσ

α
iα
, (22)

where Seff represents the effective spin-1 at the origin.
Thus for ferromagnetic impurity coupling, the new terms

which couple the triplet and the rest of the Kitaev model are
similar to the original Kitaev coupling and of the same strength.
We get a Kitaev-like model with a spin-1 at the origin and
spin-1/2 elsewhere. Here the Kondo triplet does not decouple
from the rest of the Kitaev model in the strong-coupling limit
and does not lend itself to a simple treatment, unlike the
corresponding antiferromagnetic case.

Strong-coupling expansion to O(1/K) is not sufficient for
determining the ground-state flux, for which one needs to
go to high order in perturbation theory involving a loop of
spins around the defect. Instead of taking this route, below
we present analytic arguments and numerical calculations
showing a nonzero ground-state flux in the strong coupling
limit. A finite ground-state flux in the strong-coupling limit
also has implications for the perturbative scaling analysis
of the impurity coupling (which determines the magnetic
impurity binding transition), for the orthogonality of states
of different topology means that the impurity coupling scaling
from the weak- or strong-coupling ends cannot be taken across
a topological transition. In Sec. IV we show that to numerical
accuracy, the magnetic and topological transitions coincide.

B. Topological transition

A remarkable property of the Kondo effect in the Kitaev
model is that the unstable fixed point is associated with a
topological transition from the zero flux state to a finite flux
state. The strong antiferromagnetic coupling limit amounts to
studying the Kitaev model with a missing site or cutting the
three bonds linking this site to the neighbors. It was shown
in Kitaev’s original paper [7] that such states with an odd
number of cuts are associated with a finite flux, and also that
these vortices are associated with unpaired Majorana fermions
and have non-Abelian statistics under exchange. It has also
been shown numerically for the gapless phase [14] that the
ground state of the Kitaev model with one spin missing has a
finite flux pinned to the defect site. We argue the existence of a
localized zero energy Majorana mode from the degeneracy of

2 1

3

bz
3

bx
1by

2

3W

2W1W

FIG. 3. Schematic of the three unpaired b-Majorana fermions
formed as a result of cutting the links to the Kitaev spin at the origin.
Any two of the three can be given an expectation value (dotted bond).

the ground state in the presence of impurity spin and elucidate
on the nature of this zero mode.

For the Hamiltonian H = H0 + VK, the three plaquettes
W1,W2, and W3 (Fig. 3) that touch the impurity site are no
longer associated with conserved flux operators, while the flux
operators that do not include the origin remain conserved. The
three plaquette operator W0 = W1W2W3 is still conserved and
W0 = 1 in the ground state of the unperturbed Kitaev model.

We now define composite operators τ x = W2W3S
x,τ y =

W3W1S
y , and τ z = W1W2S

z (Sα are the Pauli spin matrices
corresponding to the impurity). Remarkably, these composite
operators represent conserved quantities for arbitrary values
of the impurity coupling. The τα’s do not commute with each
other and instead obey an SU (2) algebra, [τα,τ β] = 2iεαβγ τ γ .

This SU (2) symmetry, which is exact for all couplings is
realized in the spin-1/2 representation ((τα)2 = 1). Clearly, all
eigenstates, including the ground state are doubly degenerate
(corresponding to τ z = ±1), and this applies also to the strong
coupling limit.

In the strong antiferromagnetic coupling limit K → ∞, the
low-energy states will be the ones in which the spin at the origin
forms a singlet |0〉 with the impurity spin, |ψ〉 = |ψK−〉 ⊗ |0〉.
Here |ψK−〉 represents the low-energy states of the Kitaev
model with the spin at the origin removed. To see the action of
the SU (2) symmetry generators on these states, we note that
they can be written as τα = W̃ α ⊗ σα

0 ⊗ Sα and W̃ α do not
involve the components of the spin at the origin, σα

0 . We then
have τα|ψ〉 = −(W̃ α|ψK−〉) ⊗ |0〉. So, in the strong coupling
limit, the symmetry generators act nontrivially only in the
Kitaev model sector, implying that the low-energy states of the
Kitaev model with one spin removed are all doubly degenerate,
with the double degeneracy emerging from the Kitaev sector.
This is also true for the zero-energy mode in the single-
particle spectrum: The two degenerate states correspond to
the zero mode being occupied or unoccupied. The τ operators
discussed above were obtained for the first time in Ref. [12].
Operators similar to our τα have also been constructed in the
context of the Kitaev model with a vacancy [21].
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Let us examine the structure of the zero mode. Removing a
Kitaev spin creates three unpaired b-Majorana fermions at the
neighboring sites, say, bz

3, bx
1 , and b

y

2 (Fig. 3). Now ibx
1b

y

2 is
conserved and commutes with all the conserved flux operators
Wi but not with the two other combinations ib

y

2bz
3 and ibz

3b
x
1 .

So, we can choose a gauge where the expectation value of
ibx

1b
y

2 is equal to +1 such that these two b modes drop out of the
problem and we equivalently have one unpaired b-Majorana
fermion. The unpaired bz

3 Majorana has dimension
√

2 and
therefore, there must be an unpaired Majorana mode in the c

sector (again of dimension
√

2) so that together these two give
the full (doubly degenerate) zero energy mode. Also, while the
bz

3 mode is sharply localized, the wave function of the c mode
can be spread out in the lattice.

For the ferromagnetic case, while the strong coupling limit
also leads to a model with doubly degenerate levels, we are
unable to explicitly identify a zero energy unpaired Majorana
fermion. Therefore to address the question if a nontrivial Z2

flux is associated with closed paths enclosing the S = 1 defect,
we perform a numerical exact diagonalization calculation.

IV. NUMERICAL STUDIES

We have used a modified Lanczos algorithm to calculate the
ground-state properties of a finite Kitaev fragment exchange
coupled to an external spin-1/2 impurity spin as discussed in
the previous sections.

For the antiferromagnetic case, where we already know that
the strong-coupling limit K/J → ∞ is associated with a non-
trivial flux W0 = −1 at the defect site, an exact-diagonalization
calculation with a fragment as small as three hexagons (open
boundary conditions, impurity spin coupled to central site) is
sufficient to confirm W0 = −1. Figure 4 shows the expectation
value of the flux operator W and the square of the total spin
STot = S + σ0 as a function of the impurity coupling K. It is
seen that W0 = 1 for K = 0 (i.e., in the pure Kitaev case) as
it should be, since the ground state of Kitaev model is flux
free, whereas it changes to −1 as K is increased, implying
a finite Z2 flux at the origin. Within numerical accuracy, it
also appears that the topological transition from W0 = 1 to
W0 = −1 practically occurs at the same value of K at which a
bound singlet state is formed between the impurity spin and the
Kitaev host. For negative values of K for this three-hexagon
fragment, W0 appears to stay close to one implying a flux-free
state even as the total spin at the defect site begins approaching
STot = 1. We suspect this anomalous result is not generally true
for larger fragments and may have originated from the presence
of boundary spins. We thus performed exact-diagonalization
calculations with a larger fragment with six hexagons (open
boundary conditions, impurity spin coupled to central site).
As we increase the ferromagnetic impurity coupling, we
clearly observe the W0 = 1 to W0 = −1 topological transition.
Once again, the topological phase transition and the magnetic
transition (at which the total spin at the defect site becomes
STot = 1, are practically coincident.

Since the numerical exact-diagonalization calculations can
only be performed for small Kitaev fragments with discrete
spectra, it is not possible to make a direct comparison with the
poor man’s scaling results which rely on successively integrat-
ing out (continuum) states in small energy ranges. Moreover,

FIG. 4. (Top) Evolution of expectation values of the flux operator
(W0) and the square of the total spin STot = S + σ0 at the impurity site
with K/J evaluated on a three hexagon fragment. The impurity spin
(indicated by the red circle) is coupled to the central spin and the flux
is calculated over the boundary. When K = 0, 〈S2

Tot〉 = S(S + 1) +
σ0(σ0 + 1) = 3/2. For K/J � 1, the formation of a bound singlet
state means 〈S2

Tot〉 → 0. The inset shows the slight decrease of W0

from 1 for ferromagnetic coupling whereas for antiferromagnetic
coupling W0 changes to −1. (Bottom) W0 and total spin at the impurity
site evaluated for a six-hexagon fragment showing the transition to
W0 = −1 state for ferromagnetic coupling. Formation of a bound
spin-1 state for K/J ∼ −1 is evident from the saturation of 〈S2

Tot〉
towards 2. Up to numerical accuracy, it appears that the topological
transition and the magnetic transition occur around the same value
of K/J.

the scaling calculations are perturbative. Nevertheless, some
common traits are evident. For S = 1/2, the scaling analysis
suggests the formation of a bound spin state for K/J ∼ 1,

which is in agreement with the numerical results in Fig. 4.
Another check can be made by observing the manner in which
the total spin at the impurity site evolves as K/J increases
from zero. Numerically, S2

Tot evolves linearly from the K = 0
value of 3/2 and tends to saturate around |K/J | ∼ 1. The
same behavior is seen in the scaling equations for the impurity
coupling: for small K/J, the correction is linear in K but for
|K/J | ∼ 1, the cubic corrections become important.

The following physical picture emerges from the scaling
analysis and numerical calculations. From the weak-coupling
side, scaling is performed in the zero flux sector which
indicates a critical impurity coupling at which the magnetic
binding transition takes place. Upon magnetic binding, the
ground state acquires a finite flux at the defect site. Thus in
our picture, the topological transition is a consequence of the
magnetic transition, and in this sense we differ from a recent
preprint, Ref. [22], where a scaling approach to the transition
has been criticized on grounds that on the two sides of the
transition, the topology of the ground states is different.
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V. TWO-CHANNEL KONDO BEHAVIOR

In Ref. [14], the temperature and magnetic field depen-
dencies of the magnetic susceptibility of the Kitaev model
with a missing site were obtained as χimp(T ) ∼ ln(1/T )
and χimp(h) ∼ ln(1/h), respectively, which bears striking
resemblance to the low-temperature impurity susceptibility
in the two-channel Kondo model [23,24]. This is not a mere
coincidence. In the two-channel Kondo problem, it is long
known [16] that the low-energy physics is described by a model
of a localized, zero energy Majorana fermion interacting with
a band of dispersing Majorana fermions with a finite density of
states at the Fermi energy. Likewise, in the Kitaev model with
a missing site, we can clearly identify a localized zero energy
Majorana b fermion coexisting with dispersing Majorana c

fermions with a nonvanishing density of states [14] at zero
energy. A nonvanishing density of states for the dispersing
Majoranas is a very unusual result for a honeycomb lattice, and
is associated with the fact that the missing site is associated
with a finite Z2 flux. If one instead estimates the density of
states for the dispersing fermions in the absence of a π flux, the
density of states would vanish [14] at the Fermi energy; indeed,
this would be the case in graphene. To compute the magnetic
susceptibility, we choose a gauge where bz

3 is the zero energy
localized Majorana fermion. Using Sz

3 = ic3b
z
3 the magnetic

susceptibility of the defect can be expressed as

χimp = T
∑
n,k

1

iνn − εk

1

iνn

∼ ln(1/T ), (23)

where (iνn − εk)−1 and 1/iνn are, respectively, the Green
functions of the dispersing and the (zero-energy) localized
Majorana fermions and we used the fact that the density of
states of the dispersing Majorana fermions does not vanish at
zero energy. For finite fields h in the low-temperature limit, the
logarithmic divergence of Eq. (23) gets cut off by the field, and
one obtains χimp(h) ∼ ln(1/h). For the ground-state entropy,
one notes that the dispersing Majorana fermions have zero
entropy at T = 0 while the localized zero energy Majorana
fermions has a finite entropy S = (1/2) ln(2). It has been
recently argued [22] that the ground-state entropy is larger than
the two-channel Kondo result [23] Simp = 1/2 ln(2) because of
the difference in the number of localized zero energy Majorana
modes.

VI. DISCUSSION

In summary, we analyzed the problem of spinless and
spinful defects in the honeycomb S = 1/2 Kitaev model from a

more general “Kondo perspective” of local exchange coupling
of external paramagnetic impurities with a host spin. On
one hand, such an approach gives us a new class of Kondo
effects where the magnetic binding-unbinding transition is
accompanied by a change of topology of the ground state. On
the other hand, some intriguing recent observations, such as
logarithmic singularities in the magnetic response of Kitaev
models with vacancies, are now recognizable as familiar
Kondo stories—in this case, we note a remarkable similarity
with the two-channel Kondo problem. NMR and Knight shift
probes could provide a possible way to detect such behavior
[25] just as they have been done in the context of defects
in correlated metals and superconductors [26]. It would be
interesting to study a lattice of vacancies in the Kitaev model
from a two-channel Kondo lattice viewpoint. We would like
to better understand the Kitaev model with a S = 1 defect.
This nonintegrable nature of this problem prevents us from
repeating the kind of analysis one could make for the vacancy
case where similarity with the two-channel Kondo problem
was observed. Our numerical approach, based on exact
diagonalization calculations of relatively small fragments,
cannot answer questions such as the density of states of
low-energy excitations.

Another direction for future study would be to consider
spin inhomogeneities in more general models where Ki-
taev interactions compete with Heisenberg-type and other
anisotropic exchange. Depending upon the relative strength
and sign of competing interactions, the Kitaev spin liquid
phase is known to become unstable to phase transitions to
a variety of magnetically ordered phases [27,28]. What makes
such systems very exciting from a Kondo perspective is that
the nature of elementary excitations changes qualitatively
from being spinful bosons (magnons) in the magnetically
ordered phases to Majorana fermions in the Kitaev phase.
Understanding the behavior of the Kondo effect at the
quantum critical point separating the Kitaev spin-liquid phase
from the magnetically ordered phases would be particularly
interesting.
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