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Acoustic transmission through compound subwavelength slit arrays
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The angular dependence of the transmission of sound in air through four types of two-dimensional slit arrays
formed of aluminium slats is explored, both experimentally and numerically. For a simple, subwavelength periodic
slit array, it is well known that Fabry-Perot-like waveguide resonances, supported by the slit cavities, coupled to
diffracted evanescent waves, result in enhanced acoustic transmission at frequencies determined by the length,
width, and separation of each slit cavity. We demonstrate that altering the spacing or width of some of the slits
to form a compound array (i.e., an array having a basis comprised of more than one slit) results in sharp dips
in the transmission spectra, which may have a strong angular dependence. These features correspond to phase
resonances, which have been studied extensively in the electromagnetic case. This geometry allows for additional
near-field configurations compared to the simple array, whereby the field in adjacent cavities can be out of phase.
Several types of compound slit arrays are investigated; one such structure is optimized to minimize the effect
of boundary-layer loss mechanisms present in each slit cavity, thereby achieving a deep, sharp transmission
minimum in a broad maximum.
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The experimental discovery of extraordinary optical trans-
mission (EOT) through subwavelength hole arrays [1] opened
a new area of research into how structured resonant layers
can affect the propagation of light. This research has been
extended to the acoustic case, where similar behavior is
observed, sometimes termed enhanced acoustic transmission
(EAT) (not extraordinary, since longitudinal sound waves have
no cutoff when propagating through gaps/holes in rigid bodies
with sound-hard walls) [2–7]. The observed phenomena for
both electromagnetic and acoustic cases in such structures
is due to the complex interplay between surface-wave (or
surface-wave-like) modes and waveguide modes, the exact
nature being dependent on many structural parameters [6–8].
Other types of transmission anomalies have been discovered
in the electromagnetic case that stem from EOT. One such
anomaly is the phase resonance, which appears as a sharp
dip in the transmission of transverse magnetic polarized light
through so-called compound grating structures, i.e., gratings
with structure factor comprised of multiple elements [9–14].
In the case of a two-dimensional (2D) metal slit array, this
can be achieved by having unequally sized slits or multiple
slits in each period. In a singularly periodic grating structure,
symmetry requires that the fields in all slit cavities are identical
when excited by a normally incident planar wave. Compound
gratings introduce new degrees of freedom to the near-field
configurations and, at specific frequencies, fields in adjacent
cavities may be both out of phase with one another and strongly
enhanced [10], leading to phase-resonant features in their
electromagnetic response. Being simply a lattice/symmetry
phenomena, there is an expectation that these phase resonances
will also exist in the acoustic case [15–17].

Here, we experimentally demonstrate the existence of the
airborne acoustic phase resonance with a compound slit-
array grating, finding good agreement with numerical model
predictions. We also optimize the grating structure to achieve

the strongest possible coupling to the phase resonance, with
viscous and thermal boundary layer effects being accounted
for.

The experimental samples are illustrated in Fig. 1 and
the measurement setup is illustrated in Fig. 2. J denotes the
number of slits per grating period, with J = 3a and J = 3b
having the same number of slits but with different slit-width
ratios. Such gratings are formed of aluminium slats of size
600×2.9×19.8 mm, stacked in a wooden sample holder, with
small polyester spacers used to create the appropriately sized
air gaps. The total sample area is 560 × 400 mm, and it is
placed with the slats vertical, on a rotating table, symmetrically
situated between two spherical mirrors 3 m apart, of radius
220 mm and focal length 1 m. One mirror collimates the
sound of a speaker placed at its focal point, directed so that
the beam is normal to the face of the slit cavities when the
rotating table is set to θ = 0◦ (normal incidence) producing
a beam width smaller than the sample face to approximate
an infinite sample size. The other mirror focuses the beam
transmitted through the sample onto a Brüel and Kjær 4190
microphone. The speaker is driven by a signal generator
producing a Gaussian pulse centered on 8 kHz, containing
a broad range of audible frequencies. The sample is rotated
between −2.5◦ � θ � 65◦ (limited by the sample size and
frame), and the averaged time-domain signal from multiple
pulses of the speaker for each angle is recorded by a PC-based
oscilloscope. To account for small leakage of the signal around
the sample, a large sound opaque slab with antireflection
absorber foam attached is placed on the incident side of the
source. Transmission measurements are then repeated for all
angles, and the resulting data are subtracted from the original
sample data in the time-domain spectra, leaving only the signal
transmitted through the sample holder. This is then Fourier
analyzed to obtain the angular-dependent frequency response
of the sample. A reference spectrum for each angle is obtained
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FIG. 1. Schematic of a unit cell of each array sample (not to
scale). The gray blocks represent the aluminium slats that form the
sample, of width wA = 2.9 mm and length L = 19.8 mm. The air
gaps that form the cavities are the same size as the slats, except for
the J = 3b sample, where the central cavity wB has width 5.9 mm,
and the outer two have wC = 1.5 mm. Each sample has a period
D = 8wA = 23.2 mm.

by repeating the experiment with only the wooden sample
frame in place, and used to normalize the transmitted signal in
the frequency domain.

Figure 3 shows the transmissivity spectra for each sample
when probed at normal incidence, as a function of the ratio
of array periodicity D to incident wavelength of radiation
λ. Also included are the predicted spectra calculated using
a finite-element method (FEM). The red dashed line is the
result obtained from the model solving the lossless acoustic
wave equation, while the blue long-dashed line comes from
a model which solves the linearized Navier-Stokes equation,

FIG. 2. To-scale schematic of the transmission measurement
experimental setup, labeled accordingly. The speaker was placed at
the focal point of the first mirror, which directed the collimated beam
toward the sample. The transmitted signal was then focused onto the
microphone by the second mirror. The sample frame was placed onto
a computer controlled rotating table, allowing control of the incident
angle θ . An acoustic absorber was placed at appropriate positions to
reduce unwanted reflections from the solid surfaces that make up the
measuring kit (not shown).
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FIG. 3. Normal-incidence transmissivity spectra as a function of
the ratio of array periodicity D to incident radiation wavelength λ for
each of the sample types illustrated in Fig. 1. The solid black line is the
experimental data, the short-dashed red and long-dashed blue lines
are the lossless and viscous-thermal loss-including numerical model
spectra for comparison. The diffraction edge for each experimental
sample occurs when D

λ
= 1. Fluctuations in the ambient temperature

are accounted for in the calculation of λ.

accounting for viscous and thermal boundary layer effects at
each rigid, sound-hard wall [18]. The position of the onset
of diffraction corresponds to D

λ
= 1. The calculated incident

wavelength for each sample takes into account changes in
ambient temperature between measurements, acting to vary
the speed of sound in air c. Atmospheric pressure and humidity
changes have a negligible effect [19].

It is well known that sound incident on an air cavity bounded
by two parallel, infinitely wide, rigid-solid walls of length L

will have a broad transmission peak at a frequency naı̈vely
predicted by the Fabry-Perot condition, fFP = nc

2L
, where c is

the speed of sound and n is an integer. There is a correction �L

that takes into account end effects at the exit/entrance of each
cavity, which to first order is approximated by �L = 8w

3π
, with

w being the width of the slit [20]. When such cavities are placed
in an equally spaced array of period D, such as in sample J =
1, the coherent effect of these diffractive evanescent waves
is to form a collective resonance, which is guided along the
surface of the grating but decays exponentially away from it
[21]. Thus, in the air, they are surface-wave-like in character
and are henceforth referred to as spoof-surface-acoustic waves
(SSAWs). The enhanced fields associated with the SSAW on
each face of the array couple together via the FP-like modes
in the slit cavities. This is the mechanism by which EAT can
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FIG. 4. FEM simulations of the instantaneous pressure fields �p

corresponding to the three available eigenmodes, + + +, + − +, and
+ 0 −, of the J = 3a system when there is no net phase shift along
x between unit cells, shown at a temporal phase corresponding to
maximum field amplitude. The color scales have been normalized
with normalization constants 2.19, 4.01, and 3.39, respectively.
The three eigenmodes have resonant frequencies which correspond
to D

λ
values of 0.54, 0.5, and 0.48, respectively. These were

calculated using a loss-free FEM model. The gray blocks represent
the aluminium slats, in the same orientation as illustrated in Fig. 1.

occur at specific frequencies, resulting in large peaks in the
transmission spectrum of such a grating. Indeed, Fig. 3 shows
two broad peaks in the J = 1 spectrum, at D

λ
= 0.5 and 0.92.

These correspond to the first- and second-order FP-like modes,
with the frequency of the n = 2 mode perturbed by the strong
evanescent diffracted fields near the onset of diffraction. This
mechanism has been studied extensively in the past decade
[4–7].

The transmission spectrum of the J = 2 sample is little
different, except for a slight broadening of the FP modes and a
small upward frequency shift due to a reduction in the strength
of the Fourier amplitude component of the grating profile that
causes first-order scattering. For the J = 3 samples as well as
further broadening of the FP-like modes, a new feature, i.e.,
the phase resonance, appears in the low-frequency wing of
each primary resonance. As described in the electromagnetic
case by both Skigin et al. [10] and Hibbins et al. [12], this is
because there is a new degree of freedom in the system. In the
J = 1 and J = 2 cases, the fields in each adjacent cavity must
have identical phase at normal incidence; hence an incident
planar wave cannot excite a phase resonance. However, with
three cavities per period, the outer two slits have different
surroundings to the central one. Hence, by symmetry, two
field configurations can now be excited at normal incidence:
all of the fields in phase (labeled the + + + mode), and the
central and outer cavity fields out of phase (the + − + mode,
where − corresponds to a phase shift of π relative to +). This
is illustrated in both Figs. 4 and 5.

Figure 4 shows the instantaneous pressure field of the
eigenmodes of the J = 3a system with no net phase change
across the unit cell in the x direction (which simulates exci-
tation by a plane wave at normal incidence), calculated with
the lossless FEM model, and normalized to their maximum
amplitude of �p, different for each mode. The mode labeled
+ + + corresponds to the primary resonance at D

λ
= 0.53,

where all of the cavities are resonating in phase, with similar

FIG. 5. Lossless (dotted red line) and viscous-thermal (solid blue
line) FEM models of the difference in the phase |�φInner, Outer| of the
tangential particle velocity Vx of the central and outer cavities, for
the J = 3a and J = 3b samples, plotted as a function of the ratio of
array periodicity to incident wavelength D

λ
. The predicted diffraction

edge is at D

λ
= 1. Phases were evaluated in the center of each cavity

on the transmitting side of the grating.

amplitude. This mode is highly radiative and results in the
broad transmission peak, with the maximum absolute pressure
amplitude within the slits being 3.1 greater than in the incident
wave. The second panel of Fig. 4, with the mode labeled
+ − +, illustrates the phase-resonance eigenmode that is
excitable at normal incidence. The outer two cavities are
oscillating exactly π out of phase with the central one, which,
as the color scale shows, has a greater field amplitude. Note
that the maximum absolute pressure field amplitude within
the cavities has now become 55.7 times greater than in the
incident wave, a significant increase compared to the + + +
mode, indicating a stronger degree of localization. Another
interesting feature is the apparent standing wave that has
formed across the x direction, seen from looking at just the
top or bottom of the slits—the cavity resonances appear to be
coupled with each other. There is a third field configuration
available in the form of the antisymmetric + 0 − mode, where
the outer two cavities are π radians out of phase with each
other, and π/2 radians out of phase with the central cavity,
having no mode amplitude. The J = 2 configuration supports a
similar +− mode, but in neither configuration are these modes
excitable by an incoming plane wave at normal incidence, as
they require a phase change along the surface (incidentally,
a weak feature has appeared in the experimental data for the
J = 2 sample as the collimating mirror does not produce a
perfect planar wave, and allows weak coupling to this mode).
Direct coupling to any of the phase-resonant configurations
is impossible as the pressure field within the slit cavities is
out of phase with the incident field. Hence, they can only be
excited via coupling between slits, and appear as sharp dips in
transmission, sat in the primary + + + resonance peak.

Another way of illustrating the phase resonance is shown
in Fig. 5, which is a plot of the numerically calculated phase
difference |�φInner, Outer| of the velocity field Vx between
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the central and outer slits, evaluated at the midwidth of the
transmitting side of each slit cavity. The structure was excited
by a normally incident planar wave, with varying frequency.
For both J = 3a and J = 3b samples, at frequencies corre-
sponding to the position of the transmission dips in Fig. 3,
the lossless acoustic-wave equation model (red dashed line)
predicts a π phase difference between the slits, while away
from these resonances and below the onset of diffraction,
|�φInner, Outer| is close to zero.

To obtain the strongest possible reduction in transmission
at the phase-resonant frequency, there must be a perfect
balance between the radiative and nonradiative losses in the
system. This is the well-known critical coupling condition.
Nonradiative thermodynamic loss effects form a part of this
balance and thus must be accounted for. With sample J = 3a,
the + − + resonance is a weak feature in the experiment,
only reducing transmission by 15% at D

λ
= 0.49, being much

stronger in the second-order mode (D
λ

= 0.94), reaching a
reduction of ∼50%. The lossless FEM model, solving the
acoustic-wave equation, predicts a very sharp, 100% deep
resonance at D

λ
= 0.49 in the transmission spectrum. However,

when viscous-thermal contributions are included (via solving
of the linearized Navier-Stokes equation)—which results in
a much better agreement with the experimental data—this
resonance is significantly more damped. The effect stems from
the viscous-thermal boundary layers at the rigid, sound-hard
walls that cause significant attenuation of the fields within
the slit cavities [18]. Note that we have checked that a
simpler model that includes only a bulk loss term added to

the free-space acoustic-wave equation does not predict the
increased damping effect.

Sample J = 3b is optimized geometrically to balance the
radiative and nonradiative loss effects as close to critical
coupling as possible while keeping periodicity and slat size
constant. This grating is a simple modification of the J = 3a
sample, with an inner-cavity-to-outer-cavity ratio of around
four to one. As Fig. 3 shows, the experimental data exhibits a
much deeper, broader phase resonance in both the fundamental
and second-order modes. Figure 5 gives extra insight into this
phenomenon, showing that the loss-inclusive model for the
J = 3a sample predicts a maximum |�φInner, Outer| of ∼0.75π

radians at the occurrence of the phase resonance, while it
reaches ∼0.9π radians for the optimized J = 3b sample, thus
displaying stronger coupling to the + − + eigenmode.

By recording angle (θ ) dependent data, we map the
dispersion and attain a greater understanding of the origin
of these modes. Figure 6 shows the transmissivity of each
grating as a function of the ratio of array periodicity to
incident wavelength, and reduced in-plane wave vector kx

kg
,

where kx = k0 sin θ and kg = 2π
D

.
The sample J = 1 grating exhibits a fundamental mode that

is largely flat banded, being strongly localized in the slit cavity
with FP-like fields, where the cavity’s length L and width
wA are the dominant variables in determining the resonance
position. This mode starts from the FP frequency at kx = 0,
and only becomes perturbed as the diffracted sound line from
kx = kg is approached. There is similar to the perturbation of
the second-order mode ( D

λ
= 0.9).

FIG. 6. Transmission data illustrating mode dispersion for each sample illustrated in Fig. 1, labeled accordingly. The ratio of array
periodicity to incident wavelength D

λ
is plotted as a function of reduced in-plane wave vector kx

kg
, where a value of kx

kg
= 0.5 corresponds to

the first Brillouin-zone boundary. The top row is the recorded experimental data, whereas the bottom row is the numerical results calculated
by the viscous-thermal loss-inclusive FEM model. For reference, a solid green line representing grazing incidence k0 is included on each plot.
The onset of first-order diffraction is represented by the green dashed line. Fluctuations in ambient room temperature are accounted for in all
calculations of λ.
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Additional transmission dips become apparent in the
response of the J = 2,3a, and 3b samples at D

λ
= 0.5 and

0.1 � kx

kg
� 0.4. These are the antisymmetric phase resonances

that can now be excited with the addition of a phase difference
along the grating surface [11,12], associated with θ �= 0. For
J = 2, at high kx, it is now possible to excite the + − mode,
where the two cavities are π radians out of phase. The J = 3a
and J = 3b samples also exhibit the additional feature, which
has appeared on the low-frequency wing of the FP resonance at
D
λ

= 0.5. This corresponds to the antisymmetric + 0 − phase
resonance shown in Fig. 4. In all cases, one can see that at
least one of the phase resonances has a strong kx dependence,
indicating that they are surface-wave-like in character. It is
possible to deploy a surface-wave band-folding picture to
explain the dispersion relations in Fig. 6. To understand this,
it is helpful to plot the band structure of each sample using
the extended zone scheme representation, i.e., by drawing the
band structure without band folding present. This is illustrated
in Fig. 7.

Adding structure factor to each grating periodicity opens
up new degrees of freedom to the system, and allows coupling
of the phase-resonant near-field configurations to diffracted
fields (SSAWs) that originate from the diffractive end effects.
Figure 7 is a plot of the underlying band structure of the
eigenmodes of the J = 1, J = 2, and J = 3a samples, in the form
of a dispersion diagram with the same axes as those in Fig. 6.
The eigenfrequencies were calculated using the loss-free FEM
model.

With one cavity per unit cell, the J = 1 configuration
has only two modes available (considering only first-order
harmonics): the naturally radiative primary FP-like resonance
(denoted by the solid blue line) and the low-frequency SSAW
(denoted by the solid orange line) that is only accessible in the
nonradiative regime as it has in-plane wave vector kx > k0.
Here, k0 is represented by the black dashed line, i.e., the
sound line. This is the wave vector that a grazing incidence
pressure wave would possess. Since this structure only has
one cavity per unit cell, and the sample walls can be treated
as perfectly rigid, the only degree of freedom available to
the near field is the cavity being either a positive or negative
antinode. This means that any mode which has a shorter surface
wavelength than the spacing of the cavities D cannot exist, as
they must require a pressure field maximum within the rigid
walls. Thus, beyond the first Brillouin zone at kx = kg

2 , the
SSAW ceases to exist—at normal incidence, with band folding
(where the grating periodicity kg can be added or subtracted
to any mode, thereby scattering nonradiative modes into the
radiative regime), we will only see the primary FP-like mode.

When there are two cavities per unit cell (sample J = 2),
there is another possible field configuration apart from the
FP-like + + mode. The adjacent cavities can now oscillate
π radians out of phase with each other, creating the anti-
symmetric + − phase resonance. Now, it is possible for a
SSAW with a shorter wavelength than D to exist, since the
extra antinode per unit cell it requires can now be satisfied.
Thus, the low-frequency SSAW which previously vanished
above kx = kg

2 now band splits at this first Brillouin zone,
and continues up to the next one at kx = kg . This mode is
represented by the green line in Fig. 7, and is band folded

FIG. 7. Dispersion diagrams showing the extended zone scheme
representation of the eigenmodes of the J = 1, J = 2, and J = 3a
systems (all labeled), plotted as a function of the ratio of array
periodicity to incident wavelength D

λ
vs reduced in-plane wave

vector kx

kg
. Individual eigenfrequencies were calculated using loss-free

FEM models. The sound line k0 is represented by the black dashed
line. Integer and half-integer values of kx

kg
correspond to different

Brillouin-zone boundaries, which have been marked with vertical
black dotted lines. The solid lines represent the different eigenmodes
supported by each grating structure, with colors signifying different
field configurations. Blue is the naturally radiative Fabry-Perot-like
mode, with pink being its band split pair. Orange is the nonradiative
low-frequency SSAW, green is the SSAW coupled to the low-energy
phase resonance, and cyan is the SSAW coupled to the high-energy
phase resonance.

back into the radiative regime by first-order scattering from kg ,
forming the deep, sharp resonance in our experimental data for
the J = 2 sample at high kx . Above kx = kg , the SSAW again
ceases to exist; as before, it requires another antinode per unit
cell, and this is forbidden by the lack of a possible near-field
configuration.

Finally, by increasing the number of cavities per unit cell
to three (sample J = 3a), yet another degree of freedom
is available to the near field. There is now the primary
+ + + configuration, the + − + π mode, and the + 0 −
antisymmetric mode. Thus, the three-antinodes-per-unit-cell
condition required for wave vectors larger than kx = kg is
satisfied, the SSAW band splits at kx = kg and extends to
the next Brillouin zone at kx = 3kg

2 , where the same pattern
repeats, and beyond this the mode ceases to exist. The
second-order scattering at kx = 2kg band folds this SSAW
back into the radiative regime, resulting in the two sharp
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FIG. 8. Dispersion diagram showing the experimental transmis-
sivity T data for the J = 3a sample, with its numerically calculated
eigenfrequencies overlaid, plotted as a function of the ratio of
array periodicity to incident wavelength D

λ
vs reduced in-plane

wave vector kx

kg
. The value of kx

kg
= 0.5 corresponds to the first

Brillouin-zone boundary. The solid black line represents the wave
vector k0 of a grazing incidence pressure wave. The onset of
first-order diffraction is represented by the black dashed line, being
D

λ
= 1 at normal incidence ( kx

kg
= 0). The hollow points represent

the different eigenmodes supported by the J = 3a grating structure,
with shapes signifying different field configurations. The triangles
are the naturally radiative Fabry-Perot-like mode, circles are the
SSAW coupled to the + − + phase resonance, and the diamonds
are the SSAW coupled to the + 0 − phase resonance. The squares are
the nonradiative low-frequency SSAW which cannot be seen in this
transmission experiment.

dips seen in the experimental dispersion data for the J = 3a
sample (the band structure for the J = 3b sample is identical
in shape since it has the same number of cavities per unit cell;
only the coupling strengths and frequencies have changed).
This is illustrated in Fig. 8, where the band-folded eigenmodes
calculated using the loss-free FEM model are overlaid onto
the J = 3a experimental transmission data. One can see that
the dips in transmissivity correspond to the diffracted SSAWs.
Using this band-folding picture, it is easy to see that every time
one adds an air cavity to the unit cell, a new degree of freedom
is available to the near field, and hence a shorter wavelength
SSAW is able to be band folded back into the radiative regime,
resulting in the appearance of a sharp dip in the transmission
spectrum.

It is important to note that the frequency ordering of the
modes’ field configuration is not fixed at normal incidence.
This is demonstrated by a further change in behavior visible
between the J = 3a and J = 3b samples in Fig. 6. For
the identical width cavity J = 3a case, one can see that
the + 0 − mode that is not excitable at normal incidence
is occupied by the low-energy band with high curvature,
while the + − + configuration is coupled to the high-energy
flat-banded mode. When the central slit is widened to create
the J = 3b sample, this behavior is reversed, and now the low-

energy band is excitable at normal incidence. This is because
widening the central cavity has redistributed the energies of the
SSAWs coupling to the + − + configuration and the + 0 −
configuration, where the + 0 − SSAW now has the greater
energy of the two (possessing a sharper field gradient) and is
at a higher frequency. This highlights an important point. At
arbitrary values of kx , it is meaningless to assign + 0 − and
+ − + labels to each of the modes, as there is no standing
wave formed across the grating surface. This is only true when
kx is some integer value of kg , and hence the surface mode
phase change is commensurate with the grating periodicity.
In addition, such a labeling system still breaks down at the
first Brillouin zone kx = kg

2 ; the π phase shift across each unit
cell in the x direction requires that two be labeled before the
pattern repeats. This results in, for example, the + − + − +−
or + 0 − − 0 + configurations. Incidentally, the order of
the field configurations at normal incidence bears no relation
to how they appear at this first Brillouin zone. If at normal
incidence the mode labeled + 0 − is at the higher energy, it
will evolve to look like the + − + − +− mode at the first
Brillouin zone. The former’s pressure field is forced through a
π phase shift between every cavity, so this field configuration
always possesses a greater energy than the + 0 − − 0 +
configuration, no matter what the sizes or separations of the
cavities are.

A further change in behavior is visible when the central
cavity is widened. In the J = 3b sample, the + 0 − mode is
significantly weaker than it was for the J = 3a configuration.
Narrowing the cavities to 1.5 mm has both increased the quality
factor of the mode and increased the relative size of the viscous
and thermal boundary layers, leading to significant attenuation
[18].

We have checked that it is possible to pull the frequency
of the primary + + + mode down below the + − + and
+ 0 − phase resonances by heavily perturbing the grating
structure, so that the two inner rigid slats are very thin
and thus the three cavities are very closely spaced (with
periodicity constant). This increases the coupling strength
between cavities, so that they begin to behave as a single wide
cavity, thus increasing length correction �L, thereby reducing
the resonant frequency. This also increases the strength of
the first-order scattering Fourier component, again acting to
reduce the resonant frequency. The phase resonances are
simultaneously pushed to a higher frequency; the phase shift
between cavities has to occur over a shorter distance in x,
increasing their energy as before.

In conclusion, we have experimentally and numerically
demonstrated the existence of the acoustic phase-resonance
phenomenon, by studying the transmission of sound through
a 2D array of airborne metal slits arranged in four separate
configurations. We find that increasing the number of cavity
slits per array period, while keeping that period constant, opens
up new degrees of freedom to the near field. As well as the
standard coupling of the Fabry-Perot modes with diffracted
evanescent waves that result in broad transmission peaks, we
find dips in the normal-incidence transmission spectra that
appear when there are three cavities per grating period, being
the phase-resonant modes. We also map out the transmission
of these structures as a function of incident angle θ , and find
that extra field configurations can be excited with the addition
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of a phase change across the grating surface, for any sample
that has more than one slit per period. With this information,
we describe the origin of each feature with a surface-wave
band-folding picture; each mode is a diffractively coupled
spoof-acoustic-surface wave, which can be excited via the new
field configurations. Finally, we demonstrate the importance
of including thermodynamic loss effects when modeling this
sort of structure. We optimize one of our samples taking

attenuation by viscous and thermal boundary layer effects
into account, resulting in measured broad and deep phase
resonances that could be useful for the design of acoustic
filters.

The authors would like to thank the UK Ministry of De-
fence’s Defence Science and Technology Laboratorty (DSTL)
for their financial support and permission to publish.
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