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Unconventional critical activated scaling of two-dimensional quantum spin glasses
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We study the critical behavior of two-dimensional short-range quantum spin glasses by numerical simulations.
Using a parallel tempering algorithm, we calculate the Binder cumulant for the Ising spin glass in a transverse
magnetic field with two different short-range bond distributions, the bimodal and the Gaussian ones. Through an
exhaustive finite-size analysis, we show that the cumulant probably follows an unconventional activated scaling,
which we interpret as new evidence supporting the hypothesis that the quantum critical behavior is governed by
an infinite randomness fixed point.
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Quantum phase transitions in condensed matter have been
a subject of special interest though many decades [1]. This
phenomenon manifests itself in systems where quantum
instead of thermal fluctuations are relevant. An order-disorder
phase transition can occur even at zero temperature, if a
suitable parameter (a magnetic field, for example) is tuned
externally through the critical region. Simple models, e.g., the
pure Ising ferromagnet chain in a transverse field, have been
used as prototypes for testing our understanding in the vicinity
of such critical points [2]. More interesting still is the criticality
found in disordered systems. It has been established that the
quantum phase transition in diluted and random Ising models
in a transverse field, is controlled by the so-called infinite
randomness fixed point (IRFP) [3] which, among other things,
is characterized by a divergent dynamical exponent z and an
unconventional dynamic scaling [2,4,5].

The critical behavior of the quantum disordered and
frustrated systems, however, is very poorly understood [1].
Spin glasses are the paradigmatic models of such theoretical
challenge and, presumably, their phase transitions should gov-
ern by the IRFP [6]. Although recent theoretical works [7–9]
support this conjecture, old Monte Carlo studies concluded
that for two [10] and three [11] dimensions, the quantum phase
transition of such systems is instead conventional (with z takes
a finite value). Subsequent simulation research has explored
this same problem concluding that in two dimensions and at
the critical point, several observables (different versions of the
Binder cumulant and the correlation length) do not follow a
conventional dynamic scaling [12]. Such disagreements are
still an open question, which often is circumvented in favor
of the IRFP scenario by noting that small system sizes were
used in these numerical works. Being that the simulations
of disordered and highly frustrated systems as spin glasses
inevitably suffer from this drawback, at first sight this obstacle
seems impossible to overcome without the use of an alternative
strategy.

In this paper, we use a quantum parallel-tempering Monte
Carlo algorithm to simulate the two-dimensional Ising spin
glass model in a transverse magnetic field. Through an
exhaustive finite-size scaling analysis of the Binder cumulants,
we present new evidence for the existence of an IRFP in this
system.

The Hamiltonian of the two-dimensional Ising spin-glass
model in a transverse magnetic field is

H = −
∑
〈i,j〉

Jijσ
z
i σ z

j − �

N∑
i=1

σx
i , (1)

where the first sum runs over the pairs of nearest-neighbor
sites of a square lattice of linear size L (with N = L2 spins),
σi are Pauli spin matrices, � is the strength of the transverse
field, and the interactions Jij are independent random variables
drawn from a given distribution with mean zero and variance
one. We consider both, the bimodal (±1) and the Gaussian
bond distributions.

To perform a Monte Carlo simulation, first we use the
Suzuki-Trotter formalism [13] to map the d-dimensional quan-
tum model onto an effective (d + 1)-dimensional classical one,
whose action is [10]

A = −
Lτ∑

τ=1

∑
〈i,j〉

KijSi(τ )Sj (τ ) − K

Lτ∑
τ=1

N∑
i=1

Si(τ )Si(τ + 1),

(2)

where Kij = �τJij and K = 1
2 ln[coth (�τ�)], Si = ±1 are

classical Ising spins, and the index i (j ) run over the sites
of the original square lattice. Here τ represent the imaginary
time or Trotter dimension, which we divide into Lτ slices
of width �τ = 1/T Lτ , with T being the temperature. To
strictly reproduce the ground state of the quantum Hamiltonian
Eq. (1), we need take �τ → 0. However, as it has been
argued elsewhere [10,11], the universal properties of the phase
transition should not depend on the short-length-scale details
of the model, and therefore we can take �τ = 1 without any
loss of generality. Then, by setting the standard deviation of
Kij equal to K , the Hamiltonian of the (d + 1)-dimensional
system is written as

Hcl = −
Lτ∑

τ=1

∑
〈i,j〉

JijSi(τ )Sj (τ ) −
Lτ∑

τ=1

N∑
i=1

Si(τ )Si(τ + 1),

(3)
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with K−1 acting as an effective temperature for the classical
model. Thus, the statistical weight of each spin configuration
is proportional to exp(−KHcl).

We simulate the classical model (3) using a Monte Carlo
parallel-tempering algorithm [14], with 12 replicas of the
system set at temperatures between K−1

i = 3.3 and K−1
f = 3.6

(K−1
i = 3.2 and K−1

f = 3.4) for the bimodal (Gaussian) case.
The calculations were carried out for cubic lattices of size
L × L × Lτ with fully periodic boundary conditions, and
the largest system reached was 20 × 20 × 96 for which 104

Monte Carlo sweeps were necessary to achieve equilibrium.
All quantities were averaged over 6 × 103 different disorder
samples. In particular, for the Gaussian case, it was necessary
to simulate a set of systems of larger sizes up to 24 × 24 × 96.

We focus on the Binder cumulant [15],

gav = 1

2

[
3 − 〈q4〉

〈q2〉2

]
av

, (4)

where 〈· · · 〉 and [· · · ]av denote thermal and disorder averages,
respectively. q is the Edward-Anderson order parameter which
is defined by the overlap between the configurations of two
replicas of the system, α and β, with the same disorder,

q = 1

L2Lτ

∑
i,τ

Sα
i (τ ) S

β

j (τ ). (5)

If the dynamical exponent z is finite, the Binder cumulant (4)
is expected to obey the conventional finite-size scaling form,

gav = g̃c(δL1/ν,Lτ /L
z). (6)

Here δ = K/Kc − 1, with K−1
c being the critical temperature,

is the distance from the critical point, and ν is the exponent for
the average correlation length [5]. On the other hand, within an
IRFP scenario, the cumulant should follow an unconventional
finite-size scaling,

gav = g̃u(δL1/ν, ln Lτ/L
ψ ), (7)

where ψ is called the activated exponent [4]. To determine
which of these scaling relationships is the correct one, we
need to perform a comprehensive study of the Monte Carlo
data.

First of all, we calculate the critical temperature following
the lines of Refs. [10,11]. Because the Binder cumulant
vanishes for a disordered phase, it is expected that when
L → ∞ for fixed Lτ , as well as when Lτ → ∞ for fixed L,
gav → 0. The reason is simple: In the first limit the model
tends to a classical two-dimensional spin glass, while in
the second limit it turns into an effective one-dimensional
ferromagnetic chain, both systems having a disordered phase
at any finite temperature. In between these extremes the Binder
cumulant reaches a maximum, making evident the existence
of an ordered phase. Besides, both scaling relations (6) and (7)
predict that at the critical temperature (δ = 0) and if a suitable
relation between L and Lτ is imposed (since the system is very
anisotropic), this maximum does not depend on L.

This last observation suggests a simple way to determine
K−1

c . Figures 1(a)–1(c) show, for bimodal interactions, the

FIG. 1. (a)–(c) Show the Binder cumulant for the bimodal case,
as function of Lτ for different lattice sizes L and three temperatures
as indicated. (d) Shows for both, the bimodal and the Gaussian cases,
the slope of the straight line that intersects the maxima of the Binder
ratio gmax

av against K−1.

Binder cumulant as a function of Lτ for different lattice sizes L

and, respectively, for temperatures K−1 < K−1
c , K−1 ≈ K−1

c ,
and K−1 > K−1

c . In each cases, the maximum values of the
Binder ratio gmax

av describes approximately a straight line whose
slope vanishes at the critical point. Then, by plotting this slope
against K−1, Fig. 1(d), we can calculate a very accurate value
for the critical temperatures. We obtain K−1

c = 3.49(1) for
the bimodal case. To our knowledge this critical temperature
had not been previously calculated. On the other hand, for the
Gaussian case we obtain K−1

c = 3.32(3), a value very close to
that reported by Rieger and Young, K−1

c = 3.275(25) [10].
Having found the critical points we carry out, for each

system, new simulations at exactly the corresponding critical
temperatures [the curves at K−1

c look like that displayed in
Fig. 1(b)]. Then, the data set obtained is analyzed in the light of
the scaling relations (6) and (7). A simple way to decide which
of these two functions is the right one, consist in plotting Lτ

versus L for constant gav. According to Eq. (6), at the critical
point (δ = 0) these lengths should be related as Lτ ∼ Lz. In the
bimodal case Fig. 2(a) shows that, for the maximum (gmax

av ≈
0.28), this scaling is met very well with z ≈ 1.36. However, for
the Gaussian case, although we observe a similar behavior the
exponent obtained is z ≈ 1.5, a little different but compatible
with the value previously calculated in Ref. [10]. On the other
hand, according to Eq. (7), the true relation between Lτ and L

should be ln(Lτ ) ∼ Lψ . Figure 2(b) seems to indicate that, for
the maximum of the Binder ratio, this functionality is probably
only fulfilled for large lattice sizes with an exponent ψ ≈ 0.45.
Also, for Gaussian interactions, we observe a similar trend with
ψ ≈ 0.46.

024201-2



UNCONVENTIONAL CRITICAL ACTIVATED SCALING OF . . . PHYSICAL REVIEW B 94, 024201 (2016)

FIG. 2. The dependence of (a) Lτ and (b) ln(Lτ ) with L, for
different values of gav as indicated. Curves are plotted in a log-log
scale.

For other values of gav, Fig. 2(a) shows that the conventional
scaling fails because different values of z should be consid-
ered to fit the data well. Here, gav = 0.23− (gav = 0.23+)
correspond to points with gav = 0.23 but that lies to the left
(right) of the maximum. This drawback does not occur for
the unconventional scaling [see Fig. 2(b)], since a single value
of ψ is sufficient to describe approximately the data range.
The same is observed for the Gaussian case and also using
ψ ≈ 0.46. In this context we see that the hypothesis, assumed
by us above, that the universality class does not depend on
the exact form of the bond distribution, is valid only if the
unconventional scaling is the correct one.

A more comprehensive study can be done by performing a
data collapse analysis, thereby determining the best candidate
values for the critical exponents z and ψ . Specifically, to
test the scaling relation (6) at the critical point, we plot the
Binder cumulant for all lattice sizes as function of Lτ/L

z∗

and, for different values of z∗, we calculate a suitable function
I (z∗) in order to measure the goodness of the collapse.

FIG. 3. I (z∗) (solid symbols) and I (ψ∗) (open symbols) for
different Lτ,i as indicated, for (a) the bimodal and (b) the Gaussian
systems at the critical point. The insets show how ψ∗

min depends on
Lτ,i (see text).

We choose I (z∗) equal to the normalized sum of the areas
between all pairs of curves that are contiguous in L, i.e., those
for which the difference between the corresponding lattice
sizes is the smallest (namely, L = 6 with L = 8, L = 8 with
L = 12, etc.). Then, the best candidate value for z, z∗

min, is
obtained by minimizing this special function. Furthermore, to
analyze the unconventional scaling we proceed in the same
way, but now we plot the Binder cumulant as a function of
ln(Lτ )/Lψ∗

, and then we minimize I (ψ∗) to calculate ψ∗
min.

The details of this procedure are given in the Supplemental
Material [16].

For the bimodal case, Fig. 3(a) shows what happens when
we calculate the function I using all data available. That
is, by doing the calculations taking into account systems
with 6 � L � 20 and 2 � Lτ � 96. These curves are labeled
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with Lτ,i = 2, the smallest value of Lτ in the set. From
the conventional scaling (solid black squares) we obtain a
minimum at z∗

min ≈ 1.21, while for the unconventional one
(open black squares) this extreme is located at ψ∗

min ≈ 0.71,
the former being the deepest. A direct interpretation of this
result tells us that the best data collapse is achieved within the
conventional framework. However, this is a hasty conclusion.

By simple inspection of the procedure used, it is easy to
see that the Binder cumulants of systems with the smaller
sizes dominate such calculations. Then, to overcome finite-size
effects, we calculate again the function I but now gradually
removing such small lattices starting from low to high values
of Lτ,i , i.e., considering only systems with 6 � L � 20 and
Lτ,i � Lτ � 96. Figure 3(a) shows also the curves for Lτ,i =
4, 6, and 10. From these plots arise two important observations:
The minimum of I for the unconventional scaling is always the
deepest and, more important, ψ∗

min converges quickly to ψ =
0.46(1) [see inset in Fig. 3(a)] while z∗

min changes continuously
without apparently reaching a limit value (at least for Lτ,i =
10, z∗

min ≈ 1.7).
For Gaussian interactions the finite-size effects are larger.

To overcome this problem, we simulate systems of dimensions
up to 24 × 24 × 96 increasing our data set to 6 � L � 24 and
2 � Lτ � 96. Figure 3(b) shows the functions I (z∗) and I (ψ∗)
for Lτ,i = 2–10. The data show the same trend observed for
the bimodal case, but now the convergence is much slower:
ψ∗

min converges to ψ = 0.44(3), while z∗
min does not tend to a

definite limit. Nevertheless, z∗
min ≈ 1.55 for Lτ,i = 10.

These results suggest again that, for the range of system
sizes studied here, the unconventional scaling is the most
appropriate to achieve a consistent data collapse of the Binder
cumulants.

Finally, Figs. 4(a) and 4(b) show, respectively, the uncon-
ventional data collapse of the Binder cumulants at the critical
point for the bimodal and the Gaussian systems, where we
have used the above calculated values of ψ . For each case inset
also shows the (best) conventional data collapse. At first sight
we observe that, in contradiction with our previous findings,
the latter looks like the most adequate scaling because the
corresponding curves overlap nicely, while the points to the
left of the peak for the unconventional one does not collapse
completely well. Notice, however, that these points correspond
to the smaller values of Lτ discarded in our calculations
in order to overcome finite-size effects. This shows that a
“qualitative” analysis looking for good data collapses, is not
enough to replace the “quantitative” and systematic procedure
presented in this work.

In summary, we have carried out an exhaustive scaling
analysis of the Binder cumulant for a two-dimensional
quantum spin glass in a transverse magnetic field with both
bimodal and Gaussian interactions. We determine that, at
the critical point, the most probable scenario is that such
a data set follows an unconventional finite-size scaling (7)
with an activated exponent ψ 	 0.44–0.46. These values are
compatible with ψ = 0.48(2) obtained by a strong disorder
renormalization group method [7], but are very different from
ψ 	 0.65 calculated recently by block renormalization [9]. In
addition, from the derivate of gav with respect to K at the
critical point, we have also calculated ν = 1.2(4) (bimodal)
and ν = 1.13(5) (Gaussian), the exponents for the average

FIG. 4. The unconventional data collapse of the Binder cumulants
for (a) the bimodal and (b) the Gaussian systems. The insets show the
respective conventional data collapses.

correlation length. These values agree very well with those
obtained previously: ν = 1.24(2) [7], ν = 1.21(9) [8], and
ν 	 1.25 [9].

In conclusion, our findings support the hypothesis that
the critical behavior of this two-dimensional quantum spin
glass model is controlled by an IRFP, a result contrary to
the standard picture reported in Ref. [10], probably the only
available simulation study of such a system.
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