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Interatomic interactions and ordering in fcc Ni-rich Ni-Re alloys are studied by means of first-principles
methods combined with statistical mechanics simulations based on the Ising Hamiltonian. First-principles
calculations are employed to obtain effective chemical and strain-induced interactions, as well as ordering
energies and enthalpies of formation of random and ordered Ni-Re alloys. Based on the nonmagnetic enthalpies
of formation, we speculate that the type of ordering can be different in alloys with Re content less than 10 at.%. We
demonstrate that effective chemical interactions in this system are quite sensitive to the alloy composition, atomic
volume, and magnetic state. In statistical thermodynamic simulations, we have used renormalized interactions,
which correctly reproduce ordering energies obtained in the direct total energy calculations. Monte Carlo
simulations for Ni0.91Re0.09 alloy show that there exists a strong ordering tendency of the (1 1

2 0) type leading to
precipitation of the D1a ordered structure at about 940 K. Our results for the atomic short-range order indicate,
however, that the presently applied theory overestimates the strength of the ordering tendency compared to that
observed in the experiment.
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I. INTRODUCTION

Re produces an outstanding and unique strengthening effect
on single-crystal Ni-based superalloys. In fact, generations
of Ni-based superalloys are usually grouped by their Re
content: the first generation alloys have no Re, the second and
third generation alloys contain 2–3 wt.% and 5–6 wt.% Re,
respectively [1]. Owing to the fundamental importance of Re
to Ni-based single-crystal superalloys, intensive investigations
of the effect of Re were performed [2–10]. It has been found
that Re atoms strongly partition to the γ phase [4,5,10], slow
down γ ′ precipitate coarsening kinetics [6], and modify the
misfit between the γ matrix and γ ′ precipitates [2,3]. While
the effect of Re additions on the Ni-based superalloys is well
documented [7]. Its origin is still under debate. Moreover, the
existing information about its distribution in the γ matrix is
highly controversial [8–10].

Scanning transmission electron microscopy and energy-
dispersive x-ray spectroscopy were utilized to investigate
distribution of Re and W in the second-generation superalloy
DD6 [10]. It was reported that Re and W were enriching in
the γ phase close to the γ /γ ′ interface after creep tests which
were conducted at 1100 ◦C under stress 140 MPa for 12 h with
the stress axis parallel to the [001] orientation. Mottura et al.
studied the local atomic structure around the solute atoms in
a Ni-Re binary alloy by the extended x-ray absorption fine
structure (EXAFS) technique [8] and found that Re atoms
were surrounded by Ni atoms only. They also investigated the
distribution of Re in binary Ni-Re alloys and the CMSX-4
superalloy using the atom probe tomography (APT) and found
no evidence for Re clustering [9].

According to the recent Ni-Re phase diagram [11], there is
a large miscibility gap in this system with a peritectic reaction
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at 1893 K and a peritectic composition of 17.4 at.% Re in the
Ni-rich part. On cooling below the peritectic temperature, the
solubility of Re in Ni decreases to 12.2 at.% Re at 1073 K,
and the solubility of Ni in Re is 14.3 at.% Ni, changing little
with temperature. Due to this large miscibility gap in the
Ni-Re phase diagram, it has been suggested that Re atoms
conglomerate into small clusters in the Ni matrix creating
efficient obstacles against dislocation motion [12,13].

Such a clustering of Re has been reported by Blavette et al.
[12] for Re-modified versions of CMSX-2 and PWA 1480
superalloys on the basis of the APT and by Wanderka et al.
[4] for the second-generation alloy CMSX-4, also by Rusing
et al. [14] for a model Ni-Al-Ta-Re superalloy. They found
a possible formation of nanometer-size Re clusters in the γ

matrix separated by about 20 nm [14], which acted as obstacles
against dislocation motion in the γ matrix [4,12].

At the same time, the most recent theoretical and exper-
imental investigations indicate the existence of pronounced
ordering in Ni-rich alloys [15–17]. In particular, Levy et al.
[15] conducted high-throughput density functional theory
(DFT) calculations for Re binary alloys, and predicted that two
compounds, D1a-Ni4Re and DO19-NiRe3, should be stable
at low temperature in the Ni-Re system. Mottura et al. [16]
calculated the binding energies of Re-Re pairs and the stability
of small Re clusters in Ni using DFT, and found strong
repulsion between the Re-Re nearest-neighbor pair while Re
clusters were unstable. The repulsion between Re-Re pairs
was rapidly reduced with the distance, so they suggested that
solute atoms should be isolated, which was equivalent to an
atomic ordering. A further investigation was done by Maisel
et al. [17] theoretically and experimentally for the Ni-Re binary
system up to 30 at.% Re. They also found that the D1a-Ni4Re
phase was stable in this concentration range. Combining with
Monte Carlo simulations and the EXAFS experiments, they
showed that the D1a-Ni4Re was most likely to precipitate in
Ni96.62Re3.38 at about 930 K [17].
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Unfortunately, little is known about the atomic short-
range order (SRO) in Ni-rich Ni-Re alloys. There is only
one experimental investigation by Schönfeld et al. using a
diffuse x-ray scattering technique for Ni-9.4 at.% Re alloy
composition at 873 K [18]. According to their results, the α110

Warren-Cowley SRO parameter is negative, which indicates
an ordering tendency; however, it is rather small and the
authors could not establish the type of the local order [18].
Although there exist several first-principles calculations of the
Ni-Re system [15–17], they do not shed light on the effective
interactions governing the atomic configuration and to great
extent the thermodynamics of this system. At the same time, in
the two latest investigations [17,19], the ferromagnetic (FM)
results were used to determine phase equilibria at temperatures
much higher than the Curie temperature of Ni.

Therefore, the main aim of this work is to investigate
the effective interactions in the Ni-Re system, in particular
their dependence on different internal and external parameters.
We consider various types of effective cluster interactions,
demonstrating their nontrivial behavior, which show up in
their dependence on volume, concentration, temperature, and
magnetic state. At the end, we perform Monte Carlo statistical
thermodynamic simulations of high-temperature ordering in
Ni-Re alloys and compare our results with existing theoretical
[17] and experimental data [18]. Our analysis of the phase
stability is based on the consideration of the interatomic
interactions, ordering energies, and enthalpies of formation
of random and ordered alloys.

II. METHODOLOGY

A. Effective interactions

In this paper, we will consider two types of effective
cluster interactions. First of all, we calculate fully renormalized
interactions, which describe the interactions of Re atoms in Ni
in the dilute limit. They can be obtained from a set of the
total energies of supercells where positions in a given cluster
are occupied by Ni and Re atoms in different configurations.
Such an n-site, or n-atom, interaction for a given cluster s is
determined as [20]

W (n)
s =

∑
t∈Re−even

Et −
∑

t∈Re−odd

Et, (1)

where the first sum is over all the configurations with an even
number of Re atoms in the cluster and the other one with an
odd number of Re atoms. For instance, the fully renormalized
Re-Re pair interaction at the pth coordination shell is

W (2)
p = EReRe

p − 2ERe
imp + ENi, (2)

where EReRe
p is the total energy of a supercell with two Re

atoms at the pth coordination shell, ERe
imp the total energy of

the supercell with one Re atom, and ENi the total energy of
pure Ni.

Let us note that these interactions are truly pair interactions
only in the case when either there are only two Re atoms
in the whole system or multisite interactions are negligible.
Neither of these cases is relevant for real Ni-Re alloys;
nevertheless, these interactions can be used for a qualitative
analysis of stability. This is so, since they are connected with

the effective interactions of the concentration-independent
(CI) Ising Hamiltonian

H CI = 1

222
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Ṽ (2)
p
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σiσj + 1

233
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Ṽ
(3)
t
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σiσjσk

+ 1
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∑
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σiσjσkσl + · · · (3)

in the following way:

W (2)
p = Ṽ (2)

p +
∑

t

D
(3)
t Ṽ

(3)
t +

∑
q

D(4)
q Ṽ (4)

q + · · · (4)

or in general

W (n)
p = Ṽ (n)

p +
∑

c

D(n+1)
c Ṽ (n+1)

c + · · · , (5)

where D(n)
s are the coefficients, which depend on the

geometry of the lattice. Thus the differences between the
fully renormalized multisite interactions and the usual effective
cluster interactions are given by higher-order effective cluster
interactions.

In the statistical thermodynamic simulations, we will use
concentration-dependent (CD) effective cluster interactions
(ECIs), which are parameters of the following Hamiltonian:

H CD = 1

2

∑
p

V (2)
p

∑
i,j∈p

δciδcj + 1

3

∑
t

V
(3)
t

∑
i,j,k∈t

δciδcj δck

+ 1

4

∑
q

V (4)
q

∑
i,j,k,l∈q

δciδcj δckδcl. (6)

Here, V (n)
s is the n-site effective interaction for the cluster

of an s type, which depends on the alloy composition,
lattice constant, and magnetic state; δci are the concentration
fluctuations at sites i: δci = ci − c, where ci is the occupation
number at site i, taking on values 1 or 0 if the site i

is occupied by the Re or Ni atom, respectively, and c is
the concentration of Re. Again, there is a mathematically
well-established connection between Ṽ and V [21,22], and
in particular, V (2)

p = Ṽ (2)
p = W (2)

p if multisite interactions are
negligible. However, in real systems, and especially in the
case of the Ni-Re system, these interactions are disconnected
by complicated physics of interatomic bonding.

Moreover, in Ni-Re alloys, the ECIs are implicitly temper-
ature dependent in a quite complicated way since the magnetic
state depends on the alloy configuration and composition.
Another source of the temperature dependence is a thermal
lattice expansion, which should also play an important role in
this system as will be shown below.

The ordering energy, i.e., the difference of the energies of
the ordered and random alloys for a fixed lattice constant in
terms of the ECI, can be expressed as

�Eord = 1

2
c(1 − c)

∑
p

zpV (2)
p αp + h.o.t., (7)

where the first term is the contribution from effective pair inter-
actions (EPIs) expressed using Warren-Cowley SRO parame-
ters [23,24] αp = (〈cicj 〉 − c2)[c(1 − c)]−1 and coordination
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number zp for the pth coordination shell, and h.o.t. stands for
higher-order terms due to multisite interactions.

B. First-principles methods

1. Green’s function exact muffin-tin orbital method

Several ab initio codes have been used in this work for
the total energy and effective interaction calculations. In order
to get the concentration-dependent ECIs and provide a model
description of random and paramagnetic alloys, the Green’s
function exact muffin-tin orbitals (EMTO) method [25–28]
has been used. The electronic structures of chemically and
magnetically random alloys were obtained in the coherent
potential approximation (CPA) [29,30]. The calculations have
been done by the Lyngby version of the code [31].

The screened generalized perturbation method (SGPM)
[32,33] as implemented in the Lyngby version of the EMTO
code has been used in the ECI calculations. The intersite
screening constants for the screened Coulomb interactions [32]
contributing to the pair interactions have been determined in
the nonmagnetic calculations of the Ni0.9Re0.1 random alloy
using the locally self-consistent Green’s function (ELSGF)
method within the EMTO technique [34,35]. The ELSGF
method accurately accounts for local environment effects in
alloys and it has been also used to calculate the total energies
of random Ni-Re alloys.

The total energies have been obtained in the generalized
gradient approximation (GGA) for the exchange-correlation
energy using the PBE functional [36]. All the self-consistent
EMTO-CPA and ELSGF calculations were performed by
using an orbital momentum cutoff of lmax = 3 for partial
waves. The integration over the Brillouin zone was performed
using a 28×28×28 grid of k points determined according
to the Monkhorst-Pack scheme [37] in all the EMTO-CPA
and ELSGF self-consistent calculations except for the SGPM
interactions. In the later case, the Monkhorst-Pack grid was
38×38×38.

The paramagnetic state has been modeled by the disordered
local moment (DLM) spin configuration [38,39] with longi-
tudinal spin fluctuations (LSFs) [40,41]. In order to simplify
calculations, we have used an approximate expression for the
entropy of the LSFs, SLSF = 3 ln(mi) [41], where mi is the lo-
cal magnetic moment. This expression corresponds to the clas-
sical high-temperature limit for the quadratic form of the LSF
energy, which is a reasonable approximation for Ni [40].

2. Projector augmented wave method calculations

Although the size mismatch of Ni and Re atoms is
rather moderate, about 10%, local lattice relaxations play an
important role in alloy energetics [42]. In order to take the local
relaxation effects into account, we have also used the projector
augmented wave (PAW) method [43,44] as implemented in
the Vienna ab initio simulation package (VASP) [45,46] in
the calculations of relaxation energies. All the calculations
have been performed using the PBE form of the GGA [36].
The Ni pseudopotential with ten valence electrons as updated
on 2 August 2007 and the Re pseudopotential updated on
17 January 2003 with seven valence electrons have been
employed [44].

Fully renormalized and strain-induced interactions have
been determined in the dilute limit using a 4×4×4 supercell of
the initial cubic 4-atom fcc unit cell in the ferromagnetic (FM)
and the nonmagnetic (NM) states. In order to keep the cubic
symmetry of the underlying fcc lattice, which is preserved on
average in real alloys, the translation vectors of supercells have
been fixed. The integration over the Brillouin zone has been
done using the 4×4×4 Monkhorst-Pack grid [37]. Due to the
different cell sizes of random and ordered structures, we have
chosen different k-point grids in our calculations following the
Monkhorst-Pack scheme using equivalent k-point densities in
order to avoid systematic errors.

In the calculations of the formation enthalpies of Ni-Re
alloys, all the structures for ordered alloys have been fully
relaxed, while in the case of random alloys, the shape of the
supercell has been fixed. Other details for all of the VASP-
PAW calculations are as follows. The convergence criteria for
the total energy was 10−5 eV/cell while for forces during
structural optimization was 9×10−3 eV/Å. Plane waves up to
350 eV were included in the PAW calculations.

The electronic structure and total energies of random
Ni-Re alloys in the PAW calculations have been obtained
by using supercells with different sizes. A Ni0.9375Re0.0625

random alloy was modeled by a 144-atom supercell formed by
3×3×4 translations of the 4-atom fcc cubic cell [3×3×4(×4)],
Ni0.89Re0.11 by a 216-atom supercell [6×6×6(×1)], Ni0.8Re0.2

by a 240-atom supercell [3×4×5(×4)], Ni0.75Re0.25 by a 256-
atom supercell [4×4×4(×4)], and Ni0.67Re0.33 by a 192-atom
supercell [3×4×4(×4)] with distribution of alloy components,
which satisfies the randomness condition for the first eight pair
correlation functions in all the cases [34,47]. The Monkhorst-
Pack grids for the supercells Ni0.9375Re0.0625, Ni0.89Re0.11,
Ni0.8Re0.2, Ni0.75Re0.25, and Ni0.67Re0.33 are 5×5×4, 4×4×4,
5×4×3, 4×4×4, and 5×4×4, respectively.

III. GROUND-STATE PROPERTIES OF Ni-Re ALLOYS

Ni is an itinerant ferromagnet with magnetic moment of
about 0.6 μB in the ground state [40,48,49]. The addition of
Re strongly suppresses spin polarization in Ni-Re alloys at 0 K,
which become nonmagnetic when Re concentration exceeds
12 at.%. [42,50]. In Fig. 1, we show the magnetic moment
of Ni in Ni-Re random alloys obtained in the EMTO-CPA
calculations together with the existing experimental data [50].
At finite temperatures, however, Ni can acquire a finite local
magnetic moment (in a simple static one-electron picture given
by the local spin-density approximation or GGA) due to the
LSF, which will be discussed latter.

The lattice parameters of Ni-Re alloys have been previously
obtained experimentally and theoretically in a number of
investigations [11,51–54]. In Fig. 2, we show our GGA-PBE
results for Ni-rich random alloys obtained in the EMTO-CPA
and supercell VASP-PAW calculations. In the NM state, our
calculated lattice parameters of pure Ni are 3.520 Å and
3.508 Å in the EMTO-CPA and VASP-PAW calculations,
respectively, while in the FM state, the lattice parameter of Ni
is 3.527 Å in the EMTO-CPA and 3.515 Å in the VASP-PAW
calculations. Note that the experimental 0 K lattice parameter
of Ni is about 3.515 Å [55], and the expected DFT value
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FIG. 1. Magnetic moment of Ni as a function of Re concentration
in Ni-Re alloys. The calculations have been done in the FM state at
a lattice constant of 3.515 Å. The experimental data are taken from
Ref. [50].

without a contribution from zero-point vibrations is 3.508 Å
[56].

This means that the EMTO-CPA method somewhat over-
estimates the equilibrium lattice constant of Ni (if the VASP-
PAW results are accurate in the DFT sense). The theoretical
concentration dependence of the lattice parameters at 0 K
in Ni-Re alloys is slightly steeper than the experimental
one at room temperature (RT) [11,51,53]. The latter is most
probably related to the fact that GGA noticeably overestimates
the equilibrium volume of 5 d metals [57–59]. As will be
clear from discussion below, it can affect to some extent the
concentration dependence of the formation enthalpies.

FIG. 2. Calculated 0 K lattice parameters of Ni-Re random alloys
without contribution from local atomic relaxations. The EMTO-CPA
calculations have been done in the FM and NM states. The VASP-
PAW calculations have been done in the NM state using random Ni-Re
alloys modeled by supercells of different sizes. The experimental
results are also shown for comparison [11,51,53].

FIG. 3. Calculated 0 K enthalpies of formation of ordered
structures and random Ni-Re alloys with respect to fcc Ni in the FM
(open symbols) and NM (filled symbols) states and hcp Re. Open
circles show the enthalpies of formation of random Ni-Re alloys
obtained by the EMTO-CPA method in the FM state.

The calculated enthalpies of formation of random and some
(presumably most stable Ni-rich) ordered Ni-Re alloys are
shown in Fig. 3. In these calculations, we have taken the hcp
Re and fcc Ni as the reference states. By open circles we show
the formation energies of the FM random alloys and by other
open symbols the formation enthalpies of the ordered alloys,
obtained by the PAW method, relative to the FM fcc Ni (all the
ordered structures come out nonmagnetic in our calculations
except A15B, whose magnetic energy, however, is only about
0.34 mRy/atom). They correspond to the stability at 0 K.
The NM enthalpies of formation (which means that they are
determined relative to the NM fcc Ni, whose energy is about
4.10 mRy higher than that of FM Ni) can be roughly associated
with the stability at elevated temperatures, i.e., above the Curie
temperature of Ni (630 K) [54].

It is obvious that the magnetic state produces a huge
effect on stability of Ni-rich Ni-Re alloys. The slope and the
curvature of the NM and FM formation energies of random
alloys in the dilute limit of Re in Ni clearly show the drastic
change from ordering to phase separation. This is a very
important point for consideration of the phase stability in
Ni-Re alloys at high temperatures, i.e., under processing and
service.

The point is that the enthalpies of formation of alloys with
concentration of Re less than 20 at.% exhibit quite pronounced
downward shift in the NM state leading to the different phase
equilibria picture. For the FM reference state, the D1a-Ni4Re
phase is the outermost Ni-rich stable phase, which is the result
of previous ab initio calculations in the FM state [15,17]. But
this is not the case for the NM reference state. In particular, a
Pt8Ti-type ordered structure [60] becomes stable for the alloy
composition Ni8Re against the phase separation to pure Ni and
D1a-Ni4Re, as one can see in Fig. 3.

A substantial shift of the energy of the NM Ni reference
state means that other ordered structures, with less content
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FIG. 4. A15B ordered structure. Positions of B atoms are shown
by large (red) spheres, while positions of A atoms are shown only
in one cubic fcc unit cell for clarity. The other positions of the A
atoms in the cell can be obtained by translations of the cubic unit cell
(without replacing B atoms shown in the figure).

of Re, which are unstable in the FM consideration, can also
become stable. For instance, we have checked the stability of
the A15B ordered structure shown in Fig. 4, and found that
it is highly stable against phase separation into fcc Ni and
D1a-Ni4Re, while the Pt8Ti-Ni8Re phase becomes unstable
if one considers its stability with respect to the A15B-Ni15Re
ordered structure and D1a-Ni4Re.

Let us note that our VASP-PAW result for the formation
enthalpy of the D1a-Ni4Re in the FM state, −4.53 mRy/atom,
is in good agreement with existing first-principles results,
which are −4.70 [15] and −4.23 [17] mRy/atom, respectively.
The formation enthalpy of the D1a-Ni4Re is −7.80 mRy/atom
for the NM Ni reference state.

We do not know whether there are some other (more)
stable ordered phases in the NM case. To some extent such a
simple 0 K consideration of the NM phases does not guarantee
in general that the found stable ordered phases are really
stable at high temperature, since the stability in this case
is determined by the Gibbs free energy, which includes all
the relevant thermal excitations. Unfortunately, obtaining the
Gibbs free energy is a formidable task for this system, since the
accurate account of thermal magnetic excitations at elevated
temperatures is practically impossible at the present time.
Therefore, it is a subject of speculation whether the “stable
by enthalpy consideration” NM ordered structures are indeed
stable at high temperatures. On the other hand, it is clear that
such NM enthalpies provide a valuable qualitative insight into
what may really be happening at high temperatures. At the
same time, the existing assumption that the FM consideration
of the enthalpies in Ni-Re alloys provides the basis for phase
stability consideration at high temperatures is highly doubtful.

In Fig. 3, we also show the formation enthalpies of random
Ni-Re alloys determined in the EMTO-CPA and VASP-PAW
calculations. As one can see the agreement between the
EMTO-CPA and VASP-PAW results, which is quite good up
to about 10 at.% of Re, is worsening beyond 15 at.% of Re,
similarly to the results of Ref. [54]. One of the possible reasons
why the EMTO-CPA results are higher than the VASP-PAW

ones is the overestimated lattice constants in the EMTO-CPA
calculations. The EMTO-CPA also produces higher values
for the enthalpies of formation of the ordered structures.
In particular, the EMTO-CPA enthalpy of formation of the
D1a structure is −6.5 mRy/atom. However, if the PBE-sol
functional [61] is used, which produces smaller equilibrium
lattice constants, the enthalpy becomes −7.5 mRy/atom,
which is close to the VASP-PAW result. The reason of such
sensitivity of the formation enthalpies to the equilibrium lattice
constants will become clear in the following sections. The
other possible reason is inaccuracy of the EMTO method
due to the use of the atomic sphere approximation (ASA)
for one-electron density and potential during self-consistent
interactions.

IV. EFFECTIVE INTERACTIONS AND ORDERING
IN Ni-Re ALLOYS

A. Fully renormalized interactions of Re atoms in Ni

In Table I, we show the first six total fully renormalized
pair Re interactions as they are determined in Eq. (2). The
calculations have been done in the NM and FM states using a
256-atom supercell [4×4×4(×4)] for a fixed lattice constant
of 3.585 Å, which corresponds to the experimental lattice
parameter of Ni at 1300 K [62] or Ni0.9Re0.1 alloy at about
1000 K. One can see that there is a huge difference between the
values of the nearest-neighbor pair interaction in the FM and
NM states: in the FM state, the interaction is strongly negative,
while it is very large and positive in the NM state. This is
reflected in the concentration dependence of the corresponding
enthalpies of formation of random alloys, whose slope is
roughly proportional to the value of the dominating interaction
(taken with the opposite sign).

The fully renormalized total interactions have been obtained
by finding the total energies of 4×4×4(×4) supercells whose
volumes and shapes were fixed, but the local atomic posi-
tions were relaxed. If the atomic positions are fixed to the
underlying fcc lattice, one obtains the chemical interactions.
The difference between chemical and total interactions is
the strain-induced interaction, which is associated with local
atomic relaxations.

In Table I, we also show the strain-induced interactions,
which have been obtained in the dilute limit. As one can see the
FM and NM strain-induced interactions do not differ much in

TABLE I. Fully renormalized strain-induced (SI) and total pair
interactions of Re in Ni (in mRy) obtained in the VASP-PAW
calculations in the FM and NM states.

FM NM

lmn SI Total SI Total

110 −2.80 −9.60 −3.01 29.55
200 −0.53 −11.75 −1.34 7.10
211 −0.13 −6.54 −0.32 3.67
220 −0.40 2.49 −1.21 8.84
310 −0.31 −3.58 −0.44 0.02
222 −0.04 −2.08 −0.14 −0.21
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TABLE II. Fully renormalized strain-induced (SI) and total three-
atom, W (3)

t , and four-atom, W (4)
q , interactions (in mRy) in the FM and

NM states.

FM NM

Interactions SI Total SI Total

W
(3)
111 −2.12 12.52 −4.37 −16.86

W
(3)
112 −1.60 10.28 −0.61 −5.63

W
(3)
113 −2.35 11.55 −2.37 −5.56

W
(3)
114 0.36 7.18 −1.99 −14.17

W
(4)
1111 −1.14 −11.34 1.55 11.72

contrast to the total interactions. They are also quite moderate
in size compared to the total interactions.

What we would like to demonstrate now is that those
fully renormalized pair interactions should contain substantial
contributions from the multisite (or many-atom) interactions.
In Table II, we show four fully renormalized three-site
interactions—W

(3)
111, W

(3)
112, W

(3)
113, and W

(3)
114, which are for the

triangle of the nearest neighbors and triangles formed by
two nearest neighbors and one next-nearest neighbor, the
third neighbor, and the fourth neighbor, respectively—and one
four-site interaction, W

(4)
1111, for the tetrahedron of the nearest

neighbors. As in the case of pair interactions, they have been
obtained directly from the total energies as defined by Eq. (1).

As in the case of pair interactions, fully renormalized
many-atom interactions strongly depend on the magnetic state.
They are quite large and do not show substantial decreasing
with increasing of the order: the four-atom interaction for
the tetrahedron of the nearest neighbors is as strong as the
interaction for the triangle of the nearest neighbors. Although
we have not checked the higher-order interactions, it is clear
that they can be quite large too.

In general, if the interactions of order n > m are negligible,
the interactions of the CI Hamiltonian in Eq. (3) can be
obtained in the direct calculations using Eq. (1), starting from
order m interactions and going down with the order. However,
in the case of the Ni-Re system, it is hardly possible, or
extremely time consuming.

Another interesting point is that the multisite strain-induced
interactions are also quite large. In the microscopic theory
of elasticity [63,64], it is assumed that the strain-induced
interactions of the order n � 3 are negligible. This is not
the case here if we compare them with pair strain-induced
interactions, although they are definitely much less than total
or chemical interactions.

B. SGPM effective chemical interactions

The existence of multisite interactions in the system that
are large and slowly decaying with the order means that
interatomic bonding and interactions in this system depend
strongly on the local and global alloy composition. In this case,
the ordering behavior in a restricted concentration range can
be investigated by the CD ECI. They can be easily obtained
by the SGPM, which is a quite accurate computational tool
for many metallic alloys. However, the SGPM interactions,
especially for the first-nearest-neighbor coordination shell,
can be in error due to inaccurate treatment of electrostatics

in the atomic sphere (or muffin-tin) approximations, though
the ASA is corrected by accounting for the multipole moment
contributions in the present implementation of the SGPM and
EMTO [20].

The latter is a problem in systems with large charge transfer,
like Ni-Re alloys, since the electrostatic contribution due
to the screened Coulomb interactions becomes very large,
amplifying the error of the ASA. However, the SGPM still has
its own advantages. It may not be advanced to produce very
accurate ordering energetics for this system; however, it allows
one to get a qualitative picture of the effective interactions in
the paramagnetic state in Ni-Re alloys at high temperature, as
will be discussed below.

As has been mentioned above, the disappearance of the
local magnetic moment in Ni-Re alloys above the Curie
temperature in the standard DFT calculations is a failure of
DFT to incorporate the thermal magnetic excitations. In a
simplified static approximation, the missing contribution from
the LSF can be included using different techniques [40,41]. But
all of them require the use of the DLM description of alloy
components. This is where the CPA-based ab initio techniques
have an advantage over the usual Hamiltonian methods, like
VASP-PAW. The SGPM calculations can reveal at least on
a semiquantitative level the effect of LSF on the effective
interactions.

In Fig. 5, we show the dependence of the local magnetic
moment of Ni on temperature in Ni0.9Re0.1 alloy at a fixed
lattice constant of 3.585 Å obtained using a simplified scheme
described above. As one can see, the Ni local magnetic moment
at 800 K becomes as large as in pure Ni in the ground state
and grows further with the temperature. This is, of course,
a qualitative result. However, it makes an important point
showing that a NM consideration of Ni-Re alloys at elevated
temperatures can be in error.

Next, in Fig. 6, we show the SGPM interactions together
with the corresponding one-electron and screened Coulomb
contributions for Ni0.9Re0.1 alloy in the NM and LSF states
at 1300 K obtained for lattice constant 3.585 Å. One can see
that the one-electron contribution is large and negative in both

FIG. 5. Temperature dependence of the local magnetic moment
of Ni in Ni0.9Re0.1 due to LSF.
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FIG. 6. SGPM interactions for Ni0.9Re0.1 alloy in the NM state
(filled symbols) and in the LSF (open symbols) state at 1300 K.
The one-electron contribution is shown by triangles and screened
Coulomb interactions by diamonds.

cases; i.e., electronic structure “favors” clustering or phase
separation in Ni-Re alloys (the LSF substantially decreases the
one-electron contribution in this case). At the same time, the
screened Coulomb interaction at the first coordination shell
has the opposite sign and it is about twice as large as the
one-electron contribution.

In other words, the screened Coulomb interaction gives
the dominating contribution to the effective interaction at the
first coordination shell, which, in the end, promotes strong
ordering in the system. Since the screened Coulomb interaction
is the result of the “charge transfer” effects originating from
the size difference of Ni and Re, this contribution is quite
sensitive to the lattice constant (see, for instance, the discussion
in Ref. [33] of interactions in Cu-Au). One can also see that the
contribution from the screened Coulomb interactions is larger
in the NM state than in the LSF. The latter is again partly a size
effect: the induced local magnetic moment on Ni in the LSF
state makes it larger thereby decreasing the charge transfer
between Ni and Re.

The concentration and lattice constant dependencies of the
strongest EPI at the first coordination shell, V

(2)
110, obtained in

the NM and LSF states are shown in Fig. 7. First of all, one
can see that there is a quite strong dependence of the EPI
on concentration especially in the NM case even for a fixed
lattice constant. If the calculations are done for the equilibrium
lattice constant (in this case we have used just Vegard’s law [65]
for the lattice parameters at the other concentrations), which
corresponds to the given composition, the value of chemical
interaction substantially decreases. This is so, since the charge
transfer becomes reduced with increasing lattice spacing and
therefore the screened Coulomb interactions also decrease.

The complexity of the Ni-Re system is also reflected in
the pronounced concentration dependence of the multisite

FIG. 7. The nearest-neighbor EPI, V (2)
110, in the NM state (squares)

and in the LSF state at 1300 K (circles). Filled symbols show the
interactions at a fixed lattice constant of 3.585 Å (experimental value
for pure Ni at 1300 K), while open symbols for lattice parameters
which correspond to the given concentrations using Vegard’s law
[65]. The lattice parameters of Re are taken from experimental data at
1300 K [66].

ECIs. In Fig. 8, we show the concentration dependence of
the strongest three- and four-site SGPM interactions in the
Ni-Re system: V

(3)
111 and V

(3)
114 are the three-site interactions for

the triangles formed by three nearest neighbors and by three
subsequent sites on the line in the close-packed direction [110];
V

(4)
1111 is the four-site interaction for tetrahedron of four nearest

neighbors. One can see that V
(4)

1111 decreases monotonically

FIG. 8. The strongest three-site, V (3)
t , and four-site, V (4)

q , chemical
interactions in Ni-Re alloys as a function of Re concentration. Filled
symbols show the interactions in the NM state and open symbols in
the LSF state at 1300 K. The lattice constant is fixed to the value of
3.585 Å.
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TABLE III. Ordering energies (in mRy/atom) of Ni-Re alloys in the NM state obtained from the total energy and SGPM interactions in
the EMTO calculations. The values in parentheses are obtained by the downshift of the nearest-neighbor effective pair interaction by 17 mRy
(see discussion in the text).

SGPM
Contributions

Structure Etot Total
∑

V (2)
∑

V (3)
∑

V (4)

A15B (Ni15Re) −0.34 −1.31 (−0.91) −1.15 −0.12 0.03
Pt8Ti (Ni8Re) −1.85 −2.75 (−1.49) −3.25 0.42 0.08
D1a (Ni4Re) −6.83 −10.29 (−6.21) −9.93 −0.14 −0.22
H60 (Ni3Re) −7.34 −11.95 (−7.44) −11.03 −0.90 −0.02
L12 (Ni3Re) 11.97 3.93 (10.69) −9.18 12.52 0.59
DO22 (Ni3Re) −2.43 −10.30 (−3.54) −13.97 3.53 0.14

with concentration and changes sign at about 18 at.% Re in
the LSF state, while it has a local maximum around 7 at.%
Re in the NM state. A nonmonotonic behavior of the four-site
interactions means that there should exist non-negligibly at
least six-site CI ECIs in the Ni-Re system.

C. Ordering energies in Ni-Re alloys

The quality of the SGPM interactions can be checked by
comparing the ordering energies calculated directly from the
total energies of the ordered and random phases, and those
obtained by the SGPM method at the same lattice constant and
concentration. In Table III, we show the ordering energies of
the A15B, Pt8Ti, D1a , H60, L12, and DO22 structures obtained
from the strongest SGPM interactions, which include the first
40 EPIs and 77 three-site and 26 four-site ECIs, and in the
corresponding total energy calculations. In all the cases, the
lattice constant was 3.585 Å.

As one can see, the overall ordering trends are quite well
reproduced by the SGPM interactions, although the SGPM
quite substantially overestimates the strength of ordering in
Ni-Re alloys. This is most probably due to the overestimated
screened Coulomb interaction at the first coordination shell.
It is obtained in the atomic sphere approximation and this
means that the error can be simply due to the overlapping of
the atomic spheres of the nearest-neighbor atoms. Taking into
consideration the fact that the value of the screened Coulomb
interactions at the first coordination shell is huge (see Fig. 6),
the ASA error can be also relatively large.

As one can see in Table III, the reduction of this interaction
by about 17 mRy brings the SGPM results for ordering energies
very close to the total energy EMTO results. Of course,
the other SGPM interactions, especially at the first several
coordination shells, can be in error; however, the resulting
interactions reproduce the quantitative picture of the ordering
in the NM state quite well.

The decomposition of the ordering energy into the con-
tributions from interactions of a different order shows the
importance of many-atom or multisite interactions in Ni-Re
alloys. In Table III we show the ordering energies of three
different structures, L12, DO22, and H60, for the same alloy
composition, Ni3Re. They are very different, although, for
instance, L12 and DO22 are closely related to each other.
Comparing contributions from interactions of different orders,
one can trace the origin of such a large difference: it stems from
the three-site interactions, which produce very large positive

contribution to the ordering energy of the L12 structure,
although the contribution of the three-site interactions to the
ordering energy of the H60 phase is small. This result shows
the nontrivial character of interactions and ordering in Ni-Re
alloys.

D. Short-range order

As has been pointed out, the origin of the overestimation
of the ordering energy by the SGPM is mainly due to the too
large screened Coulomb interaction at the first coordination
shell. Therefore in order to obtain atomic SRO parameters in
the Ni0.91Re0.09 alloy about 900 K, which are experimentally
known [18], we have used the renormalized in this way SGPM
interactions obtained in the LSF state at 900 K with additional
contributions from the strain-induced interactions presented
in Tables I and II in Monte Carlo statistical thermodynamic
simulations.

The Monte Carlo simulations have been done in the
canonical ensemble using the Metropolis algorithm [67].
The Monte Carlo simulation box contained 16 384 atoms
(16×16×16 supercell of the 4-atom fcc unit cell). The EPI
at the first 21 coordination shells, 17 strongest three-site,
and 2 strongest four-site interactions have been used in the
configurational Hamiltonian. At each temperature, the system
was first equilibrated for 4000 MC steps/atom. After that,
the statistical data were obtained by averaging over additional
4000 MC steps/atom.

The Warren-Cowley SRO parameters for the (200) and
(211) coordination shells are shown in Fig. 9. It is clear
that there is an order-disorder transition at about 940 K. The
snapshot of the MC simulation box at 300 K in this figure
shows that this is a phase separation transition where the
D1a ordered structure precipitates in pure Ni. This makes
the direct comparison of the experimental and theoretical
SRO parameters at 880 K impossible, since it is obvious that
according to the experimental SRO parameters the alloy is
most probably in a random state [18].

Therefore, in Table IV, we show the calculated Warren-
Cowley SRO parameters, αlmn, for Ni-9.0 at.% Re at 880 K
and 1000 K, i.e., those which are below and above the
transition temperature in our MC simulations, together with
the experimental data [18] of the Ni-9.4 at.% Re at 873 K. It
is obvious that the calculated atomic SRO is much stronger
than the experimental one even at 1000 K. The origin of the
disagreement is most probably the oversimplified theoretical
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FIG. 9. Calculated SRO parameters for α200 and α211 in
Ni0.91Re0.09. A low-temperature (300 K) snapshot out of a Monte
Carlo simulation box is shown for this composition. The ordered D1a

structure can be seen in this snapshot.

description of the high-temperature state of Ni-Re alloys and
corresponding effective interactions, although our results are
in qualitative agreement with theoretical simulations by Maisel
et al. [17]. Clearly, a more thorough investigation of the
Ni-Re system at high temperature is needed to resolve the
controversy.

V. SUMMARY

Ni-rich Ni-Re alloys exhibit very pronounced ordering in
the NM state, which actually becomes stronger with decreasing
Re concentration and making stable ordered structures like
A15B (at least against separation to pure Ni and D1a-Ni4Re).
This means that theoretical simulations [17] of the atomic
ordering in N96.62Re3.38 based on the FM state, which predict
the phase separation into pure Ni and D1a-Ni4Re at 930 K,

TABLE IV. Warren-Cowley SRO parameters, αlmn, as determined
in Monte Carlo simulations for Ni-9.0 at.% Re at 880 K and 1000 K.
The experimental parameters are taken from Ref. [18] for the Ni-9.4
at.% Re at 873 K. The experimental data were obtained using two
methods: Georgopoulos-Cohen (GC) and Borie-Sparks (BS).

αlmn

Ni-9.0 at.% Re (LSF) Ni-9.4 at.% Re (Ref. [18])

lmn 880 K 1000 K GC BS

000 1.000 1.000 1.062(11) 1.218(5)
110 −0.097 −0.086 −0.018(4) −0.024(2)
200 0.176 0.048 −0.028(4) −0.008(2)
211 0.166 0.061 0.011(2) 0.012(1)
220 −0.086 −0.040 −0.025(3) −0.036(1)
310 0.030 −0.006 −0.004(2) 0.003(1)
222 −0.088 −0.041
312 0.151 0.017
400 0.174 0.032
411 −0.078 −0.011
330 −0.076 −0.001

can be just an artifact of the FM presentation of the enthalpies
of formation.

On the other hand, the NM description of the phase
equilibria at high temperature is also an oversimplification: Ni
is an itinerant ferromagnet, whose atoms indeed lose their local
magnetic moment at 0 K upon their randomization, like in the
DLM model, which presents a paramagnetic state of the usual
Heisenberg system. However, in reality, the local magnetic
moments fluctuate at finite temperature, leading to a nonzero
local magnetic moment in the DLM presentation. In this paper,
we have shown that such LSFs produce a noticeable effect
upon interactions in the system: they reduce strong ordering
interactions at the first coordination shell (see Fig. 7) thereby
affecting the stability of different ordered phases.

Unfortunately, the latter is practically impossible to predict
using the usual DFT calculations. The problem is even more
complex than it may appear from the standard procedure
based on the cluster expansion and the consequent use of
the corresponding interactions in Monte Carlo simulations.
Although the enthalpies of formation are expanded for those
kinds of simulations, they do not take into consideration strain
effects, which should be pronounced when an ordered phase
with Re precipitates in Ni due to presumably substantial size
mismatch of these phases. This topic needs a further thorough
investigation.

In order to quantify theoretical results for CD ECI, we have
calculated the atomic SRO in Ni-9.0 at.% Re. According to
the existing experimental data this is a random alloy with not
so much pronounced SRO below 873 K. Our Monte Carlo
simulations with CD ECIs, which have been renormalized
to reproduce the ordering energy of the D1a and Pt8Ti
structures, predict a phase separation to the ordered D1a

phase and pure Ni at about 940 K. The calculated SRO
at 1000 K agrees qualitatively with the experimental data,
although it is substantially stronger. The latter means that
there is indeed substantial reduction of the ordering in real
Ni-Re alloys compared to the present theoretical simulations.
A further investigation of the behavior of Re in Ni under
experimental conditions is needed in order to understand
high-temperature phase equilibria and in the end the origin
of the Re strengthening effect in Ni-based superalloys.
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[15] O. Levy, M. Jahnátek, R. V. Chepulskii, G. L. Hart, and S.

Curtarolo, J. Am. Chem. Soc. 133, 158 (2010).
[16] A. Mottura, M. W. Finnis, and R. C. Reed, Acta Mater. 60, 2866

(2012).
[17] S. B. Maisel, N. Schindzielorz, A. Mottura, R. C. Reed, and S.

Müller, Phys. Rev. B 90, 094110 (2014).
[18] R. I. Barabash, G. E. Ice, and P. E. A. Turchi, eds., Dif-

fuse Scattering and the Fundamental Properties of Materials
(Momentum Press, New York, 2009).

[19] N. Schindzielorz, K. Nowak, S. Maisel, and S. Müller,
Acta Mater. 75, 307 (2014).

[20] A. V. Ruban and I. Abrikosov, Rep. Prog. Phys. 71, 046501
(2008).

[21] W. Schweika and A. E. Carlsson, Phys. Rev. B 40, 4990 (1989).
[22] M. Asta, C. Wolverton, D. de Fontaine, and H. Dreyssé,
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