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Reconsidering the origins of Forsbergh birefringence patterns
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In 1949, Forsbergh, Jr. reported spontaneous spatial ordering in the birefringence patterns seen in flux-grown
BaTiO3 crystals under the transmission polarized light microscope [Phys. Rev. 76, 1187 (1949)]. Stunningly
regular square-net arrays were often only found within a finite temperature window and could be induced on both
heating and cooling, suggesting genuine thermodynamic stability. At the time, Forsbergh rationalized the patterns
to have resulted from the impingement of ferroelastic domains, creating a complex tessellation of variously shaped
domain packets. However, no direct evidence for the intricate microstructural arrangement proposed by Forsbergh
has subsequently been found. Moreover, there are no robust thermodynamic arguments to explain the finite
region of thermal stability, its occurrence just below the Curie temperature, and the apparent increase in entropy
associated with the loss of the Forsbergh pattern on cooling. Despite decades of research on ferroelectrics, this
ordering phenomenon and its thermodynamic origin have hence remained a mystery. In this paper, we reexamine
the microstructure of flux-grown BaTiO3 crystals, which show Forsbergh birefringence patterns. Given an absence
of any obvious arrays of domain polyhedra or even regular shapes of domain packets, we suggest an alternative
origin for the Forsbergh pattern in which sheets of orthogonally oriented ferroelastic stripe domains simply
overlay one another. We show explicitly that the Forsbergh birefringence pattern occurs if the periodicity of the
stripe domains is above a critical value. Moreover, by considering well-established semiempirical models, we
show that the significant domain coarsening needed to generate the Forsbergh birefringence is fully expected in
a finite window below the Curie temperature. We hence present a much more straightforward rationalization of
the Forsbergh pattern than that originally proposed in which exotic thermodynamic arguments are unnecessary.

DOI: 10.1103/PhysRevB.94.024109

The spontaneous formation of periodic arrays, that go
beyond ordered atomic arrangements in conventional crys-
tals, is both visually arresting and scientifically compelling;
hexagonal arrays of flux quanta (and associated supercurrent
vortices) in type -I superconductors (Abrikosov vortex arrays)
[1–3], topologically complex magnetic dipole skyrmion arrays
[4–7], and static charge density wave structures [8,9], for
example, all generate very strong research interest. The
underlying physics responsible for the appearance of these
ordered states is fascinating, and the potential discovery of
unique properties, that novel periodic arrays might possess,
demands thorough investigation.

In ferroelectrics, the formation of ordered arrays of dipole
vortices has been predicted using atomistic simulations in
nanoscale geometries [10,11]. Experimentally, individual flux-
closure objects, ordered arrangements of flux-closed states
into chains, and genuine dipole vortex arrays have been seen
[12–20]. Examination of their dynamics of formation [21]
and the functional properties of these systems are currently
ongoing [22]. Despite this recent flurry of research activity,
the suggestion that dipole groups in ferroelectrics might
spontaneously form into periodic arrays is not new. Over 65
years ago Forsbergh [23], Matthias and von Hippel [24], and
later Sato et al. [25], Deguchi and Nakamura [26], Nakamura
et al. [27], and Lambert and co-workers [28] observed that
domains in flux-grown BaTiO3 generated striking square-net
birefringence patterns, just below the Curie temperature (TC).
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The phenomenon is illustrated in Fig. 1, which has been
produced by an automatic polarizing microscope system
(METRIPOL) [29]. This uses a rotating polarizer and a circular
analyzer for which the intensity transmitted is given by

I = I0

2
[1 − 2 sin(2α − 2φ)sin δ], (1)

where I0 is the transmitted light after absorption through the
specimen and δ is the phase shift induced and is related to the
birefringence by

δ = 2π

λ
(n1 − n2) d = 2π �n d

λ
. (2)

φ is the orientation of a major axis of the optical indicatrix; α

is the angle of rotation of the polarizer at any time; d is the
sample thickness. Images are collected on a CCD typically at
five or ten values of α. By refining the intensity at each pixel in
the image it is possible to separate out the three quantities I0,
| sin δ|, and φ, which are then used to create new false-color
images. The images seen in Fig. 1 are from a film showing the
change in orientation φ and in |sin δ | with temperature (the
complete videos can be downloaded from the Supplemental
Material [30]).

In his original work, Forsbergh noted that the regular
birefringent patterns only occurred when orthogonally ori-
ented sets of 90◦ a-c ferroelectric-ferroelastic domains met.
He supposed that the impingement of these sets induced the
formation of a complex array of pyramids containing a-a stripe
domains, pyramids of a single domain variant, and tetrahedra
containing a-c stripe domains. We note that in a later work,
Lambert et al. [28] suggested that a much less convoluted
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FIG. 1. Examination of a flux-grown BaTiO3 crystal, using the
METRIPOL microscope, shows the spontaneous formation of the
square-net pattern reported by Forsbergh [23], Matthias and von
Hippel [24], and Lambert et al. [28]. On heating, the periodic
array appears spontaneously at around 111 ◦C and disappears at the
Curie temperature of approximately 120 ◦C (as determined from the
collapse in birefringence). The images show the orientation φ (top
panels) and | sin δ| (bottom panels) distributions at three temperatures.
The crystal thickness is on the order of 300 μm.

domain pattern could form when two orthogonal a-c packets
intersected. However, in both approaches, square-net bire-
fringence was directly linked to an ordered array of domain
polyhedra, and in neither case was an explanation given for the
periodic birefringence often only occurring within a distinct
temperature range below TC . We directly examined the domain
patterns evident at room temperature near the surface of a
thin flux-grown crystal, displaying a Forsbergh birefringence
pattern with a period of ∼50 μm, using piezoresponse force
microscopy (PFM) and cross-sectional scanning transmission
electron microscopy (STEM). As can be seen in Fig. 2, packets
of 90◦ ferroelectric-ferroelastic domains are evident, but their
distribution is irregular, and there is no indication of the kinds
of well-defined polyhedral shapes suggested by Forsbergh.
There are several interpretations for this finding: First, that
the Forsbergh birefringence pattern is not related to tessellated

FIG. 2. Room-temperature lateral PFM imaging of the surface
of a region of a flux-grown BaTiO3 crystal in which the Forsbergh
birefringence pattern is found [amplitude (a) and phase (b)] shows
evidence for packets of domains. However, they are not regularly
distributed and do not obviously correspond to the specific polyhedral
shapes envisaged by Forsbergh [23]. For completeness, the inset
shows the orientation of the cantilever axis, and the arrows indicate
the directions of sensitivity to in-plane polarization components. The
crystal surface is {001}pseudocubic (pc).

FIG. 3. As noted by Forsbergh [23], square-net birefringence
patterns only occur where perpendicular sets of a-c ferroelastic
stripe domains meet as can be seen in (a). The a-c domain contrast
is indicated by line features parallel to the 〈100〉pc directions
(highlighted by fine blue arrows) consistent with lines of intersection
of (101)pc and (011)pc a-c ferroelastic domain walls with the (001)pc

BaTiO3 surface. The {110}pc a1-a2 domain walls would show stripe
contrast features parallel to 〈110〉pc directions on the same (001)pc

surface and so can be discounted as responsible for the contrast.
Where the perpendicular sets of lines meet, a square feature in
birefringence can be seen. This transmission optical image was
taken approximately 2 ◦C below TC (crystal temperature estimated
as 118 ◦C) under crossed polars using a white-light source. Rather
than consider hypothetical structures resulting from the impingement
of a-c domain packets as responsible for the Forsbergh birefringence,
an alternative microstructure was considered theoretically, in which
two slabs (labeled slab 1 and slab 2) of perpendicularly oriented a-c
domains are simply superposed (b). In this schematic, the orientation
of polarization within each domain in the slabs is indicated by the
coarse squat blue arrows.

polyhedra in the manner originally postulated; second, that the
polyhedra are still present but buried beneath a skin layer with
a different domain structure [31,32]; third, that the polyhedra
only develop within the temperature range below TC in which
the Forsbergh pattern can be seen and are then destroyed on
further cooling to room temperature. We attempted to examine
the domains at elevated temperatures using PFM, but the
signal-to-noise ratio became unfavorable. Nevertheless, we
found no suggestion of the development of strongly ordered
polyhedra at the surface just below TC .

Given the complexity of the polyhedral microstructure
suggested by Forsbergh and the lack of direct evidence for it,
other potential origins for the birefringence square-net array
need to be considered. Our optical observations confirmed
the strong association between the coincidence of orthogonal
sets of a-c domains and the existence of the Forsbergh
birefringence pattern [Fig. 3(a)]. However, we recognize that
in transmission microscopy it is not always trivial to tell
differences in the heights at which the imaged orthogonal
domain sets occur. Therefore, rather than make conjectures
about the manner in which a-c domain sets might impinge
[23,28], we here consider the birefringence that can be
generated when two identical sheets of orthogonal a-c domains
are stacked on top of each other [Fig. 3(b)].

Below TC , BaTiO3 belongs to the space group P4mm and
has an associated negative uniaxial optical indicatrix. When
polarized light propagates perpendicular to a single slab of a-c
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domains, the total retardation at each point is therefore given
by the total thickness of the a domains locally perpendicular
to the slab multiplied by the difference between the refractive
indices parallel to the a and c axes. Perpendicularly polarized
light components passing through the c domains are parallel
to the optic axis and hence do not experience any relative
retardation. If the domain periodicity (ω) is relatively fine
in relation to the thickness of the slab (d), then the overall
retardation shows no spatial variation. However, if the domain
period is sufficiently coarse that the ω/d ratio exceeds a critical
value of

√
2/2, then spatial modulation in retardation will

start to become evident and will locally reach a maximum
value of d(n1 − n3) (where n1 and n3 are the refractive indices
along the a and c crystallographic directions in BaTiO3) once
a second critical ω/d ratio of

√
2 is reached and exceeded

[Fig. 4(a)].
For two identical, orthogonally oriented, slabs of a-c

domains, stacked one above the other, the overall retardation
in two dimensions (x,y) is given by

� = (t1n1 + t2n3) − (t1n3 + t2n1), (3)

where t1 and t2 are the total thicknesses of a domains
perpendicular to the slab surfaces in slabs 1 and 2, respectively,
and are both functions of x and y. For the specific condition
that ω/d = √

2, the retardation has been calculated explicitly,
and the resultant form of the birefringence pattern is shown
in Fig. 4(b). The similarity to the Forsbergh birefringence
pattern is self-evident. Even if the two slabs are not of identical
thickness, square-net birefringence patterns still develop as
shown by the relative retardation pattern generated in Fig. 4(c).
Here one slab is kept the same as that considered above (with
a ω/d ratio of

√
2), whereas the thickness of the second

overlaying slab has been increased by a factor of 1.5. The
change in thickness was considered to also be associated with
a change in the domain period (the domain period increases as
the slab thickness increases), consistent with the Landau-Kittel
scaling law discussed below. Although the pattern generated
[Fig. 4(c)] is clearly different from that shown in Fig. 4(b),
square-net features are still evident; indeed, there are areas in
the images shown in Forsbergh’s original article [23] that are
strongly reminiscent of those in Fig. 4(c).

We should now address reasons why a birefringence pattern
generated in this way might not be seen at room temperature
but may be seen just below TC : The Landau-Kittel scaling
law for stripe domains generates the condition that under
equilibrium,

ω2 = γ

U
d = kd, (4)

where γ is a domain-wall energy density term, U is an
energy term associated with the order parameter within a
domain being expressed uniformly (strain, polarization, or
magnetization in the same sense, for example), k is equal
to γ /U , and d is traditionally taken to be the crystal
thickness. In previous research [33] on modern commercially
grown BaTiO3 crystals (top seeded), we have seen that when
packets of domains are evident in the microstructure, the local
dimensions of the packets define the thicknesses that determine
the equilibrium periodicity of the stripe domains they contain;
the overall crystal dimensions are not of primary importance.

FIG. 4. The optical retardation (�) through each slab of a-c stripe
domains will start to show spatial modulation when the ratio of
domain periodicity (ω) to slab thickness (d) is greater than or equal
to

√
2/2. The amplitude of the optical retardation will locally reach a

maximum when ω/d �
√

2. The case where ω/d = √
2 is considered

schematically in (a) with a cross section of the a-c stripe domains
within a single slab (top panel) and the corresponding relative optical
retardation (�/�max) variation as a function of the ratio of distance
x divided by domain period ω [bottom panel in (a)]. When two such
slabs of a-c domains are placed one above the other and at 90◦ to each
other, the spatial variation in retardation is such that the Forsbergh
pattern is reproduced when viewed from above (b). Here, dark blue
corresponds to the minimum relative retardation (0), and dark red
corresponds to the maximum relative retardation (1) as indicated on
the color scale. Even if the slabs are not of equal thickness, square-net
birefringence still occurs: As an illustration, in (c) the thickness of
one slab is kept the same as that considered in (a), but the thickness
of the second slab is increased by a factor of 1.5.

Figure 5(a), for example, shows a STEM image of a BaTiO3

nanocolumn (taken at room temperature), patterned from a
bulk single crystal as described in Ref. [33]. The periodicity
of the ferroelastic domains responsible for the stripe contrast
within these columns can be seen to vary. It is approximately
constant when the domain packet size is defined by the width
of the column but decreases as the domain packet size is
progressively constrained into the triangular points formed
at junctions between packets of stripe domains. By taking
measurements of the individual domain period of pairs of
domains (an effective ω) as a function of the local packet width
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FIG. 5. STEM image of a single crystal BaTiO3 pillar (beam
parallel to the 〈100〉pc direction), similar to those published by
Schilling et al. in Ref. [33] and fabricated by focused ion-beam (FIB)
patterning in the same manner as described in Ref. [33] (a); the
image illustrates the way in which ferroelastic domain periodicity
depends on the local dimensions of the domain packet containing the
stripe domains: Note how the domain periodicity decreases as the
packet dimensions become progressively more constrained towards
the points of the triangles in individual domain packets. For this
image, the local domain period (ω) has been examined as a function
of the local domain packet width (d), and the Landau-Kittel scaling
relationship was found to hold reasonably well (b). By considering the
way in which ω/d varies with temperature, using Eq. (6) and literature
values for Young’s modulus, spontaneous strain, and domain wall
energy (c), it can be seen that the ω/d ratio in slabs of a-c stripe
domains only exceeds the two critical values of

√
2/2 and

√
2 in a

narrow region just below TC . The width of this region grows as the slab
thickness decreases. However it is much narrower than that observed
experimentally in Fig. 1, for example. Recalculating the expected
ω/d values using measurements by Walker et al. in Ref. [41] for the
specific crystals studied herein (d), shows that the sudden collapse in
spontaneous strain evident from x-ray diffraction causes a dramatic
increase in the window of stability of the Forsbergh patterns (visible
when the ω/d ratio exceeds

√
2/2).

at each point (an effective dimension d), reasonable adherence
to Landau-Kittel scaling can be seen [Fig. 5(b)]. Thus, in our
model, d is taken to refer to the thickness of each of the two
slabs of a-c stripe domains and not the overall thickness of
the crystal. As mentioned above, for contrast associated with
the Forsbergh birefringence pattern to even begin to emerge,
ω/d �

√
2/2. Using Eq. (4), this condition can be reexpressed

in terms of d only as follows:

ω2

d2
� 1

2
and hence

k

d
� 1

2
∴ d � 2k. (5)

For thin free-standing BaTiO3 sheets cut from recently
grown commercial single crystals (top seeded), Schilling et al.
have already mapped the periodicity of 90◦ stripe domains
as a function of thickness [34] and confirmed adherence
to Landau-Kittel scaling with k ∼ 45 nm. Similar data from
flux-grown samples are unfortunately not available. However,
if similar parameters transfer to flux-grown BaTiO3, this
implies that the effective thickness of individual a-c slabs
would have to be below ∼100 nm for stripe domains to be
sufficiently coarse (relative to the slab thickness) for a periodic
birefringent pattern to even begin to emerge under equilibrium
conditions at room temperature. This scale of microstructure
may be too fine to occur in most circumstances.

However, using temperature-variable PFM on the same
batch of crystals used in the work of Schilling et al. [34],
McGilly et al. [35] have already directly observed that ferroe-
lastic stripe domains in BaTiO3 significantly coarsen within
a few degrees of TC . In addition, they have rationalized the
coarsening phenomenon by adapting a number of established
semiempirical models to obtain the expression,

ω(T ) = c

[
γ (T )d

E(T )s(T )2

]1/2

, (6)

where the domain period (ω) is now a function of temperature
(T ) as is the domain-wall energy density (γ ), Young’s modulus
(E), and spontaneous strain (s); c is a temperature-independent
constant. The form of this expression is valid for any
ferroelectric system. Using the same literature sources [36–38]
for γ (T ) , E(T ), and s(T ) as used by McGilly et al. [35], we
have plotted the behavior of ω/d as a function of temperature
implied by Eq. (6) in Fig. 5(c). Importantly, studies [36,38]
involve either direct measurements on flux-grown crystals or
the use of data taken from prior measurements on flux-grown
crystals and so are particularly relevant for this discussion.
Reference [37] involves the study of ceramic BaTiO3, but
when the behavior of Young’s modulus around and below
TC taken from Ref. [37] is extrapolated to room temperature,
it approximates well to the values determined at room
temperature specifically for flux-grown single crystals [39,40].
The form of the function shown in Fig. 5(c) makes it clear that
the two critical values associated with observable periodic
birefringence development should only occur close to TC .
It should be noted that, as the dimensions of the domain
packets decrease, the thermal stability of the Forsbergh pattern
increases. In principle, this nicely rationalizes the existence of
the narrow temperature window just below TC in which the
Forsbergh birefringence is observed.

Unfortunately, direct use of data obtained, interpolated,
and extrapolated from Refs. [36–38] predicts a temperature
window which is dramatically narrower than that associated
with the images in Fig. 1, where stable Forsbergh patterns exist
between 111 ◦C and the Curie temperature (measured through
birefringence to be ∼120 ◦C). This would be equivalent to the
onset of square-net birefringence at T/TC of ∼0.98 compared
to the ∼0.9975 associated with Fig. 5(c). We note, however,
that the behavior of the spontaneous strain, measured using
x-ray diffraction by Walker et al. [41], on the same crystals as
those illustrated in Fig. 1, shows a dramatic collapse at 111 ◦C.
Equation (6) shows that the domain periodicity is strongly
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dependent on spontaneous strain and so the temperature
dependence of ω/d was recalculated using the Walker et al.
[41] data, as opposed to that from Megaw [38]. As can
be seen in Fig. 5(d), this dramatically expands the thermal
window in which Forsbergh patterns should be visible: in this
case to T/TC ∼ 0.98 for slab thicknesses around 50 μm. This
T/TC value matches experiment extremely well, as the sharp
anomaly in ω/d seen in Fig. 5(d) is a direct result of the
collapse in spontaneous strain observed. The slab thickness of
50 μm implies an overall crystal thickness of 100 μm, which
is somewhat thinner than the crystals examined. However,
in calculating the values of ω/d in Fig. 5(d), we have
assumed that the strain measured by Walker et al. [41]
between 111 ◦C and 120 ◦C is entirely due to the spontaneous
strain in the system. This is erroneous as Walker et al. [41]
explicitly state that most of this observed strain within this
temperature window is not due to spontaneous strain but is
rather residual strain in the crystal; our calculated values of
ω/d for each slab thickness are therefore underestimated in
the region of 0.98 < T/TC < 1. Unfortunately, Walker et al.
[41] could not explicitly determine the relative contribution of
the spontaneous strain in this temperature window, and so we
are forced to accept that the crystal thickness of 100 μm is a
lower limit estimate and that the actual maximum thickness, at
which Forsbergh patterns may be seen, should be significantly
higher.

To summarize, we have reevaluated the potential origins
for the spontaneously occurring self-ordered pattern of bire-
fringence that has been known to occur in flux-grown BaTiO3

crystals for over 65 years. Despite the obvious complexity
of the original explanation, suggested by Forsbergh [23], few
alternative models have been forthcoming to date. Rather, it
has been widely accepted for decades that transient complex

arrays of tessellating polyhedra spontaneously form just below
TC because of the impingement of orthogonal a-c domain sets
and then disappear on further cooling. Since microstructural
investigations of regions of crystal in which Forsbergh birefrin-
gence occurs do not show direct evidence for highly ordered
arrangements of specific domain polyhedra, an alternative and
simpler explanation has been considered in which orthogonally
oriented slabs of a-c domains are stacked one above the
other. We have shown that this arrangement can readily
generate the Forsbergh [23] birefringence pattern, provided
the periodicity of the a-c domains is sufficiently coarse in
relation to the thickness of the slabs. At room temperature and
under the equilibrium scaling laws developed by Kittel and by
Landau and Lifshitz, Forsbergh birefringence should only be
evident if the slabs are thinner than ∼100 nm. However, on
heating, we show that this condition is dramatically relaxed
and, close to TC , domain coarsening caused by reductions
in spontaneous strain should result in a distinct window in
which the Forsbergh birefringence array would be observed.
The size of this thermal window increases dramatically when
the spontaneous strain collapse measured by Walker et al.
[41] is explicitly considered. The simplicity of the required
microstructure and the associated straightforward explanation
for a region of thermal stability for the square-net birefringence
below TC make our stacked slab model an attractive alternative
explanation to that given by Forsbergh [23].

A.S., J.M.G., R.G.P.McQ., and A.K. acknowledge the
support of the Engineering and Physical Sciences Research
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