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Current materials-related calculations employ density-functional theory (DFT), commonly using the (semi-)
local-density approximations for the exchange-correlation (xc) functional. The difficulties in arriving at a
reasonable description of van der Waals (vdW) interactions by DFT-based models is to date a big challenge.
In this work, we use various flavors of vdW-corrected DFT xc functionals—ranging from the quasiempirical
force-field add-on vdW corrections to self-consistent nonlocal correlation functionals—to study the bulk lattice
and mechanical properties (including the elastic constants and anisotropic indices) of the coinage metals (copper,
silver, and gold). We critically assess the reliability of the different vdW-corrected DFT methods in describing
their anisotropic mechanical properties which have been less reported in the literature. In the context of this
work, we regard that our results reiterate the fact that advocating a so-called perfect vdW-inclusive xc functional
for describing the general physics and chemistry of these coinage metals could be a little premature. These
challenges to modern-day functionals for anisotropically strained coinage metals (e.g., at the faceted surfaces of
nanostructures) may well be relevant to other strained material systems.
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I. INTRODUCTION

It is undisputed that density-functional theory (DFT)
calculations have been commonly used for computational
studies of modern-day materials [1]. Despite its popularity and
recognition, the commonly used (semi)local approximations
to the exchange-correlation (xc) functionals are still, to date,
plagued by their failure to account for and describe the critical
role of long-range van der Waals (vdW)–type interactions for
many molecular and solid-state systems [2–4].

Of late, there have been various attempts to incorporate
vdW-type corrections in standard DFT calculations. This has
been nicely reviewed in recent literature, e.g., in Refs. [2,5,6].
Broadly speaking, these vdW correction schemes may be
classified into two main categories: (1) the dispersion energy
(Edisp) add-on corrections to standard xc functionals and (2)
self-consistent nonlocal correlation functionals.

In the dispersion energy correction scheme, the dispersion
energy (Edisp) is often added onto the DFT energy (EDFT)
where the total energy, Etot = EDFT + Edisp. This dispersive
interaction term is routinely computed via the dispersion co-
efficient, Cx . Here, Cx is xth-order coefficient of the attractive
1/rx asymptotic potential. Examples of this scheme are the
empirical force-field correction approach due to Grimme et al.
[4,7,8] and the Tkatchenko-Scheffler (TS) approach [9,10]
where the dispersion coefficients and damping function are
determined self-consistently from the electron charge density.

The former Grimme’s vdW correction approach is geom-
etry dependent and largely relies on the local coordination of
each atom to scale the atomic C6 coefficient in a pairwise
fashion [8]. In this case, either the zero damping method (D3)
or the damping method due to Becke and Johnson (D3BJ)
is usually adopted in the Grimme scheme. It was proposed
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that the D3BJ correction may provide a better description of
anisotropies in materials over the D3 method [2,8].

On the other hand, the TS scheme and its variants calculate
the effective atomic polarizability and the C6 values via
the Hirshfeld partitioning method to account for the local
chemical environment [9]. In hope to improve the TS method
for solid-state systems, a self-consistent screening (TS+SCS)
recipe was suggested to obtain more accurate values of the
C6 coefficient [10]. For bulk ionic solids, a further improved
iterative Hirshfeld partitioning scheme (TS+HI) has been
proposed to address the failure of the conventional Hirshfeld
partitioning method to adequately describe the structure and
energetics of these ionic solids [11].

Turning now to the self-consistent nonlocal correlation
functionals, the common practice here is to treat the nonlocal
correlation energy term, Enl

c , via an explicit inclusion of the
nonlocal (e.g., long-range London dispersion interactions) to
the (semi)local correlation functionals in a self-consistent way
[12–17]. These so-called vdW density functionals (vdW-xc)
reformulate the xc energy, Exc, by keeping the generalized
gradient approximation (GGA) exchange energy, EGGA

x , while
replacing the GGA correlation energy with a certain proportion
of the local-density approximation (LDA) correlation energy,
ELDA

c , and the Enl
c [15], where Exc = EGGA

x + aELDA
c + bEnl

c .
This results in various flavors of vdW-corrected xc functionals
with different underlying GGAs such as vdW-DF1, vdW-DF2,
optPBE, optB88, and opt86B, just to name a few [2,15–18].

To date, much work and progress in applying these
vdW corrections have been focused on affording a more
accurate description of weak interlayer bonding properties
of low-dimensional materials, in particular to various con-
jugated π -π molecular systems and the recently discovered
two-dimensional (2D) nanomaterials (e.g., graphene and
transition-metal dichalcogenides) where weak vdW effects
may be dominant [19–26]. It was noted that the influence
of vdW forces on the fundamental bonding properties, such
as lattice constants, cohesion, and sliding mechanisms, are
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non-negligible, and its repercussion on the mechanical
properties of these nanomaterials is still an open question
[23,24,26,27].

On this note, the understanding of the influence of vdW
in more complex bulk systems, e.g., transition metals, is far
from complete. It was first reported in the seminal work
of Rehr, Zaremba, and Kohn, where they estimated that the
nontrivial contribution of vdW effects to the cohesive energy
(on a per atom basis) is about 6%, 14%, and 16% for Cu,
Ag, and Au, respectively [28]. The impact on this non-
negligible vdW contribution to their metal bonds may have
far-reaching implications—from surface chemical catalysis to
mechanoelectronic surface responses, e.g., in molecule-metal
bond formation via surface adsorption processes and work
function modulations of these coinage metals under stress
and/or strain [29,30]. It is only recently that we have begun
to appreciate and develop an interest in a more accurate
description of vdW effects in these bulk metals and their
surfaces [31,32].

Given that metals are well thought of as a delicate interplay
between delocalized nearly free electrons and polarizable
ionic cores, it is not clear if current approximate theories
and implementation of vdW corrections may adequately
describe this interplay satisfactorily. It is indeed questionable
if the commonly ascribed force-field Grimme’s dispersion
correction scheme (which is based on a pairwise-additive,
localized atom-based description of dispersion forces) is really
appropriate for metals.

In this sense, it is aim of this work to examine and assess the
influence of the vdW corrections to semilocal functionals on
the equilibrium properties of the coinage metals (Cu, Ag, and
Au), as well as to use these metals as a test case to investigate
the impact of vdW corrections to describe their stretch metal
bonds under anisotropic mechanical stress and/or strain. In
particular, using current vdW-corrected xc DFT functionals,
we calculate their angular-dependent (anisotropic) Young’s
modulus and Poisson’s ratio, as well as well-defined elastic
anisotropic indices to compare with available experimental
values.

II. METHODOLOGY AND COMPUTATIONAL
APPROACHES

A. Density-functional theory calculations

All calculations are performed using density-functional the-
ory (DFT) as implemented in the Vienna ab initio simulation
package (VASP) code [33,34]. The Kohn-Sham orbitals are
expanded in a plane-wave basis set with a kinetic energy
cutoff of up to 500 eV and the electron-ion interactions
are described using the projector augmented wave (PAW)
method [35,36]. We employ the semilocal generalized gradient
approximation (GGA) due to Perdew, Burke, and Ernzerhof
(i.e., Refs. [37] and [38]) for the exchange-correlation (xc)
functional. To correct for the vdW effect, we follow the
scheme of Grimme with two forms of damping functions—
with zero damping (D3) and damping due to Becke and
Johnson (D3BJ), following the set of parameters listed in
Refs. [7,8,39]. These follow the internal parameter set (e.g.,
C6 and RvdW) as implemented in the VASP code. Here, we

note that, similar to Ref. [40], we have also found anomalous
values for the elastic constants using the earlier D2 scheme
due to Grimme and have excluded them in this work. In
addition, we have included DFT-PBE calculations based on
the recent Tkatchenko-Scheffler (TS) vdW correction scheme
[9], including the self-consistent long-range screening (SCS)
term [10]. Lastly, we have also performed calculations based
on four self-consistent nonlocal vdW-corrected functionals
[15–18]—namely, vdW-DF1, vdW-DF2, optB86b, and
optB88.

To afford a consistent k-point description for all calcu-
lations, we use a fairly dense k-point grid as generated

by the γ -centered k-spacing method of 0.125 Å
−1

for all
Brillouin-zone integrations. This setting corresponds to, for
example, a 24 × 24 × 24 k-point grid with 56 special k points
in the irreducible Brillouin zone (IBZ) of the Cu primitive unit
cell. The smearing method based on the Methfessel-Paxton
scheme is used with a broadening of 0.1 eV to ease Brillouin-
zone integrations. Using this dense number of k points, we
perform structural optimization to obtain the equilibrium
lattice constants and total energies, as well as various elastic
constants, which will be discussed in the text below. All DFT
calculations have been tested systematically for convergence
whereby the total energy and forces on atoms are within

10−4 eV and 10−3 eVÅ
−1

, respectively.
The equilibrium lattice constant, a0, and the ground-state

bulk modulus, B0, are obtained by fitting the calculated total
energies to the third-order Birch-Murnaghan equation of state
[41,42]. To obtain the cohesive energy of system, Ecoh, spin-
polarized DFT calculations are performed for the metal atoms

using a 15 × 15.5 × 16 Å
3

asymmetric cell. The asymmetry
of this cell breaks the symmetry of the system, and thus helps
to ensure the accurate ground-state electronic configuration
of metals atoms is achieved where partial occupancies are
prohibited [43].

The second-order elastic constants, Cij , are defined by the
curvature of the total energy plot with respect to the anisotropic
strains applied about the equilibrium bulk positions of the
atoms. In this work, we apply elastic deformations in step sizes
of ±0.001 and ±0.002, ensuring the calculations of the second-
order elastic constants converge to 1% (approximately less
than 1 GPa). Here, for the calculation of the elastic constants,
we have used the tetrahedron method with Blöchl corrections
to ensure highly accurate total energies are obtained [44]. In
all cases, the calculated elastic constants satisfy the Born’s
criteria for mechanical stability in a cubic crystal lattice [45].

Given that the calculation of these second-order Cij are
more sensitive to small errors made in the DFT total energies,
we have carefully tested the convergence of their values for,
e.g., applied deformation strain, number of k points used, and
the kinetic energy cutoff for the expansion of the plane waves
used in this work. Overall, we have found that the calculated
Cij values are less sensitive to the numerical error made in
k-point sampling and the kinetic energy cutoff used, and this
agrees with literature [46]. More important, we found that for
total energy calculation at each deformation strain applied, the
use of the tetrahedron method (with Blöch correction terms)
[35,47] for the integration of the Brillouin zone is crucial to
ensure that the energy-strain curves are smooth (i.e., without
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unphysical kinks that may result in negative elastic constants).
As a caution, we do notice that our C12 is generally slightly
underestimated in certain isolated cases. For instance, using
the PBE xc functional, we have calculated the C12 value of Cu
to be 93 GPa, while the reported literature value averages at
121 GPa [44]. This 23% error bar is not small [45], but we find
that this does not affect the results discussed in this work.

B. Elastic constants, elastic modulus, and anisotropic indices

These second-order elastic constants, also commonly
known as the elastic stiffness tensor components Cij , are useful
for the determination of the compliance components, Sji . From
generalized Hooke’s law, the defined linear functions for the
stresses and strains are written as [48]

σi = Cij εj , (1)

εj = Sjiσi, (2)

where i,j = 1,2, . . . ,6. The calculated stiffness Cij is then
used to resolve the corresponding Sji by observing the
relations given in Ref. [48], where

S11 = C11 + C12

C2
11 + C11C12 − 2C2

12

, (3)

S12 = − C12

C2
11 + C11C12 − 2C2

12

, (4)

S44 = 1

C44
. (5)

To complement the numerical method outlined above,
we also consider an analytical approach to calculate the
anisotropic Young’s modulus Ehkl for a given [hkl] direction.
For cubic crystals, one can derive the following equation
[48–51]:

1

Ehkl

= S11 − 2SA

h2k2 + k2l2 + l2h2

h2 + k2 + l2
, (6)

where SA = S11 − S12 − S44/2 are defined in Eqs. (3), (4),
and (5).

In a similar fashion, one could also define the direction-
dependent Poisson’s ratio νhkl by calculating the applied stress
along the [hkl] direction (which is parallel to the [hkl] vector,
n) with the induced stress along the transverse direction m
(which is normal to n), by averaging all components of m in
the transverse direction [52].

To visualize these results in three-dimensional (3D) repre-
sentation surfaces, we convert the coordination of [hkl] into a
spherical coordinates (r , ϕ, θ ) system with a constant radius
(r = 1) for both the anisotropic Young’s modulus as well as
the anisotropic Poisson’s ratio, where θ is the angle between
the z Cartesian axis and n (0 < θ < π ), and ϕ is the angle
between the x Cartesian axis and the projection of n on the xy

plane (0 < ϕ < 2π ) [52]. To give an example, the anisotropic
Poisson’s ratio is defined as a function of angles ν(ϕ,θ ), with
the following equation:

ν(ϕ,θ ) = − AS12 + B(S44 − 2)

16CS11 + 16D(2S12 + S44)
, (7)

where

A = 106 + 8 cos 2θ + 14 cos 4θ + 16 cos 4ϕ sin4 θ, (8)

B = −11 + 4 cos 2θ + 7 cos 4θ + 8 cos 4ϕ sin4 θ, (9)

C = 8 cos4 θ + 6 sin4 θ + 2 cos 4ϕ sin4 θ, (10)

D = 2 sin2 2θ + 2 sin4 θ sin2 2ϕ. (11)

Similarly, a set of E(ϕ,θ ) could be derived as well. Hereafter,
the Cartesian [hkl] system will be used interchangeably with
the spherical (r , ϕ, θ ) system in our discussion.

Lastly, we consider the commonly used anisotropic indices
to measure the degree of anisotropy in these bulk coinage
metals. These indices are useful to quantitatively discriminate
the effect of the vdW corrections applied for each metal in
this study, as well as among the metals themselves. Here, we
introduce the Zener (A), Chung-Buessem (AC), and universal
(AU) anisotropic indices, and for the cubic metals, they are
defined as [53]

A = 2C44

C11 − C12
, (12)

AC = 3(A − 1)2

3(A − 1)2 + 25A
, (13)

AU = 6

5

(√
A − 1√

A

)
. (14)

By definition, if AU = AC = 0 and A = 1, the cubic crystal is
ideally isotropic [53].

III. RESULTS AND DISCUSSION

A. Bulk equilibrium lattice properties and
second-order elastic constants

There have already been a few systematic and detailed
studies of the influence of the xc functional on the bulk lattice
constants, cohesive energies, and isotropic bulk moduli of
various metals and compounds (including the coinage metals
Cu, Ag, and Au, which are studied in this work) [16,54,55]. It
is not our aim to solely revisit and reproduce the results, but we
have summarized our findings in the Supporting Information
([56], Fig. S1 and Table S1). There, we plot the bar-chart
graphs of (a) the lattice constant, a0, (b) the cohesive energy,
Ecoh, and (c) the isotropic bulk modulus, B0 as a function
of the various xc functionals listed in Sec. II. These bulk
values are determined by fitting our DFT calculated values
to a third-order Birch-Murnaghan equation of state. Overall,
we find that our results agree with previous reported values
with a mean absolute relative error (MARE) of 0.1% for a0,
1.2% for Ecoh, and 1.67% for B0 [16,54].

Upon ensuring that our bulk lattice parameters agree well
with other reported literatures, we now turn our attention to
the higher order total energy derivative terms, namely the
second-order elastic constants, Cij [57]. Given the coinage
metals (Cu, Ag, and Au) naturally crystallize in the cubic
fcc lattice, we could reduce the elastic tensor to three terms,
namely the C11, C12, and C44 constants. The calculated values
are tabulated in Table S2 of the Supporting Information [56],
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FIG. 1. The percentage relative error analysis for Cij and B0 in various vdW-corrected xc functionals. Here, X denotes either Cij or B0.
The black, blue, and red bars are the relative errors (with respect to experimental values) of the calculated elastic constants, C11, C12, and C44,
respectively. The gray patterned bars are then the relative errors (with respect to experimental values) of the calculated bulk modulus, B0, for
each xc functional for Cu, Ag, and Au.

as well as shown graphically in Fig. S4. Here, we define
the percentage relative errors via (Xcal − Xexp)/Xexp × 100%,
where X denotes the corresponding theoretically calculated
(Xcal) and experimentally determined (Xexp) values for C11,
C12, C44, and B0.

The experimental reference values used are averaged to
minimize the dispersion of values found. These averaged
elastic constants, C̄

exp
11 , C̄

exp
12 , and C̄

exp
44 , are 171.14, 122.62,

and 73.92 GPa for Cu; 123.1, 92.6, and 46.1 GPa for
Ag; and 188.0,159.0, and 42.15 GPa for Au, respectively
[44,58–60]. From this set of averaged experimental elastic
constants, in a similar fashion, we then determine an estimate
of the (experimental) bulk modulus within the Voit-Ruess-Hill
approximation, i.e., B̄

exp
0 = (C̄exp

11 + 2C̄
exp
12 )/3 [61,62]. These

values are then used to compare with our calculated B0

as obtained from using the third-order Birch-Murnaghan
equation of state.

In Fig. 1, at a glance, the trend in the error bars for the
Cij values of all three coinage metals follow that of their
B0. In general, we notice that PBEsol tends to overestimate
the elastic constants when compared to PBE, which agrees
well with previous reports [16,54]. We find that including
the non-self-consistent vdW corrected xc functionals of D3,
D3BJ, and TS tends to overestimate the elastic constants when
compared to the respective cases of PBE and PBEsol while
TS+SCS narrows this gap.

To better understand the effect of these commonly used
dispersion energy correction schemes to both PBE and PBEsol
on the elastic constants, we plot the changes to the absolute
values of the PBE and PBEsol calculated Cij and B0 for all

three coinage metals upon applying these vdW corrections in
Fig. 2. We define this change via the term 	X where 	X =
Xxc+vdW − Xxc in which xc is the GGA in question (i.e., either
PBE or PBEsol) and vdW refers to the applied vdW correction,
namely, the D3, D3BJ, TS, and TS+SCS schemes.

From Fig. 2, we find that the force-field-type vdW correc-
tions (Grimme’s D3 and D3BJ) almost always increase the Cij

and B0 values (i.e., 	X > 0) with a similar amount for both
PBE and PBEsol (i.e., less sensitive to the starting GGA func-
tional). Interestingly, we generally observe that the application
of these vdW corrections do not increase the Cij values by the
same amount as 	C11 > 	C12 > 	C44, with the exception
of the D3 effect on Au. In particular, when comparing to the
self-consistent PBE+TS and PBE+TS+SCS, we find that the
latter greatly reduces the changes only in the C11 and C44

values in contrast to the former.
Returning to Fig. 1, we find a surprising opposite trend

for the self-consistent vdW functionals, namely vdW-DF1,
vdW-DF2, optB86b, and optB88. vdW-DF1 and vdW-DF2
greatly underestimate the elastic constants (up to 78% for Au),
while the more recently refined optB86b and optB88 show
much better agreement with available experimental data (with
an exception to the C44 of Au). It has been previously reported
that the vdW-DF1 and vdW-DF2 functionals are known to
generally underestimate binding energies, which may have a
direct consequence on its poor description of elastic properties
[16].

Given that these self-consistent vdW functionals are
constructed upon a semilocal GGA functional, it will be
instructive to inspect the influence of the underlying GGA
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FIG. 2. Changes to the Cij and B0 of the coinage metals under
the influence of various vdW corrections to the PBE and PBEsol xc
functionals, namely, D3, D3BJ, TS, and TS+SCS. Here, X denotes
either Cij or B0. The black, blue, and red bars are the relative errors
(with respect to the corresponding PBE and PBEsol values) of the
calculated elastic constants, C11, C12, and C44, respectively. The gray
patterned bars are then the relative errors (with respect to respective
PBE and PBEsol values) of the calculated bulk modulus, B0, for each
xc functional for Cu, Ag, and Au.

functionals. Namely, the corresponding underlying GGAs
for vdW-DF1, vdW-DF2, and optB86b are revPBE [63],
rPW96 [64,65], and an optimized version of B86b, i.e.,

(opt)B86b [16], respectively. Using these underlying GGAs,
we have performed additional calculations of the elastic
constants at the equilibrium lattice constants determined using
the corresponding vdW-corrected functionals. In Table I,
we define 	Cvdw

ij = CvdW−xc
ij − C

exp
ij and 	C

gga
ij = CunGGA

ij −
C

exp
ij where the calculated values using the vdW-corrected

functionals (CvdW−xc
ij ) and that with the underlying GGA

(CunGGA
ij ) are compared to those of experiments (Cexp

ij ).
We find that, indeed, the underlying GGA plays a non-

negligible role, and as reported in Refs. [66] and [16], the
gradient of the enhancement factor (Fx) with respect to a
small reduced density gradient (s, around the 0 < s < 1) in
these GGAs is known to be important for describing the bulk
properties of transition metals. In comparison, we find that the
Fx varies as follows: rPW96 > revPBE ∼ PBE > optB88 >

optB86b ∼ PBEsol [16,66], where rPW96 and revPBE show
the steepest Fx for this low s range. As seen in Table I, it
is already clear that (opt)B86b GGA yields a relatively small
error (	C

gga
ij ) as compared to that of revPBE and rPW96, and

the errors in the calculated Cij values (	Cvdw
ij ) are carried

over from the underlying GGA functionals (i.e., the relative
ordering of 	C44 < 	C11 < 	C12 is preserved), although
reduced somewhat when corrected for vdW interactions.

From this analysis, we gather that optB86b (and similarly,
optB88) not only increases the accuracy of describing the
lattice constants, cohesive energies, and bulk moduli of these
coinage metals but also provides a noticeable improvement
in determining the elastic constants when compared to the
semilocal PBE and PBEsol xc functionals.

B. Angular-dependent anisotropic mechanical properties

Collectively, these findings would then lead to the question
if these modern-day vdW-corrected xc functionals are indeed
accurate enough to describe angular-dependent anisotropic
mechanical properties like the Young’s modulus and the
Poisson’s ratio, which are a function of these second-order
elastic constants. Indeed, it has very recently been reported
that these vdW-corrected xc functionals can have a substantial
effect on the stress-strain behavior of bulk metals like Pd [40].

After an overview of the effects of vdW corrections to the
various bulk parameters and elastic constants along certain

TABLE I. Differences in the calculated elastic constants for Cu, Ag, and Au using various xc functionals keeping its equilibrium lattice
constant as determined by the corresponding vdW-corrected functionals. We define 	Cvdw

ij = CvdW-xc
ij − C

exp
ij and 	C

gga
ij = CunGGA

ij − C
exp
ij

where the calculated Cij values of the vdW-corrected functionals (vdW-xc) and that of the underlying GGA (unGGA) are compared to those
of experiments (exp). All values are reported in GPa.

Metal vdW-xc/unGGA 	 Cvdw
11 	 Cvdw

12 	 Cvdw
44 	 C

gga
11 	 C

gga
12 	 C

gga
44

vdW-DF1/revPBE − 51.9 − 48.1 − 15.5 − 56.0 − 55.2 − 12.6
Cu vdW-DF2/rPW96 − 66.2 − 55.1 − 26.7 − 71.8 − 63.9 − 24.0

optB86b/(opt)B86b − 3.3 − 12.2 8.1 − 8.1 − 19.3 11.2

vdW-DF1/revPBE − 41.1 − 30.0 − 13.4 − 45.7 − 35.5 − 10.7
Ag vdW-DF2/rPW96 − 53.8 − 37.8 − 20.1 − 56.3 − 41.5 − 16.1

optB86b/(opt)B86b 4.8 4.7 5.1 − 1.4 − 2.5 6.8

vdW-DF1/revPBE − 73.3 − 55.9 − 24.0 − 81.1 − 63.9 − 25.1
Au vdW-DF2/rPW96 − 95.7 − 72.3 − 32.2 − 102.4 − 79.4 − 32.9

optB86b/(opt)B86b − 15.3 − 11.0 − 8.7 − 22.7 − 17.9 − 11.3
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FIG. 3. Three-dimensional representation surfaces of the anisotropic Youngs modulus, Ehkl , of the coinage metals Cu, Ag, and Au. For
each direction, the length of vectors is equated to the value of Ehkl (in units of GPa) where the range of values lie within the maxima (yellow)
and minima (black) as indicated for each coinage metal.

high-symmetry directions (e.g., C11, C12, and C44), we further
extend our analysis to include multidirection dependencies,
i.e., tracing the elastic mechanical responses of the coinage
metals on a 3D representation surface under the influence of
various vdW corrections to the xc functional.

To assess the accuracy of these various vdW-corrected xc
functionals, we start by examining the anisotropic, angular-
dependent (i.e., direction-dependent) Young’s modulus, Ehkl ,
the fully reversible stiffness modulus as expressed within the
linear elastic Hooke’s law.

In Fig. 3, the angular dependence of Ehkl is graphically
plotted for Cu, Ag, and Au within the PBE, PBEsol, and
various vdW-corrected xc functionals. The three-dimensional
(3D) polar plots based on experimental values for all three
coinage metals are also shown for comparison, showing

generally eight rounded protuberances at the corners in the
{111} direction (cf., 3/(3S11 − 2SA)) and six depressed basins
in the {100} direction (cf. 1/S11). The range of the plotting
grids for the 3D surface plots of Ehkl is set to ±200, ±150,
and ±100 GPa for Cu, Ag, and Au, respectively, to portray
the topology of the surfaces. Values of the Sij are reported in
Table S3 of the Supporting Information [56].

At a glance, for all xc functionals, the maxima and minima
for all three coinage metals are found in the {111} and {100}
directions, agreeing with previous literature [51]. This is very
characteristic for fcc d metals, as opposed to highly isotropic
metals like bcc W and fcc Al [49].

Referring to Fig. 3, we find that PBE, PBEsol, and their D3-
and D3BJ-corrected counterparts capture the anisotropic 3D
representation surfaces. The D3 and D3BJ vdW corrections
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FIG. 4. Three-dimensional representation surfaces of the anisotropic Poisson’s ratio, νhkl , of the coinage metals Cu, Ag, and Au. For each
direction, the length of vectors is equated to the value of νhkl where the range of values lie within the maxima (blue) and minima (cyan) as
indicated for each coinage metal.

generally increase the Ehkl values at the corners more than
PBE and PBEsol, with D3BJ corrected xc functional having
a larger increase. It is suggested that the BJ-damping function
in the D3BJ correction includes more long-range interactions
than the zero-damping function in D3 [2,8,10], and thus the
D3BJ correction may further enhance the anisotropy in Ehkl .

We find that the PBE+TS xc functional greatly reduces the
anisotropy in the Ehkl topology for Ag and Au, while slightly
overestimating the Ehkl values for Cu when compared to the
experimental Ehkl 3D topologies. For Ag and Au, PBE+TS
yields an almost cubelike Ehkl topology, greatly reducing the
E111/E100 anisotropic ratio. More interestingly, after including
self-consistent screening effects, the PBE+TS+SCS generally
reduces the absolute values of Ehkl but sharply overestimates
the E111/E100 anisotropic ratio for all metals.

We attribute this acute increase in the E111/E100 anisotropic
ratio to the corresponding decrease in the metallic bonding
along the {100} and {110} directions (see Table S4 of the
Supporting Information [56]). Referring to the PBE+TS+SCS
Ehkl 3D topology of Ag, it closely resembles the represen-
tation surface of an auxetic memory shape alloy, CuAlNi,
as described in Ref. [67]. There, the memory shape alloy
was also found to exhibit a negative Poisson’s ratio in the
[110] direction. This anisotropic weakening of the bond
strength (along certain crystallographic directions) may be
associated with the incorporated polarizability anisotropy in
the construction of this TS+SCS correction to the PBE xc

functional [2,10].
Evidently, the anisotropic 3D representation surfaces are

best described by the self-consistent optB88 and optB86b vdW
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xc functionals, giving a better balance between the overall 3D
representation topology as well as the E111/E100 anisotropy.
This is especially true for Cu and Ag, while underestimating for
more polarizable Au. On this note, it is necessary to mention
that the vdW-DF1 and vdW-DF2 severely underestimate the
Ehkl values, yielding rather unrealistic 3D topology profiles
for all metals. This is closely linked to the underestimated Cij

values obtained with the vdW-DF1 and vdW-DF2 vdW xc

functionals (see Fig. 1).
Now, we proceed to examine another anisotropic, angular-

dependent (i.e., direction-dependent) mechanical property—
the Poisson’s ratio, νhkl , which is defined as the negative value
of the ratio of the lateral (transverse) strain to the longitudinal
strain. Using Eq. (7), we average the lateral responses for
each longitudinal strain [52] and plot the normalized νhkl 3D
representation surfaces for the three coinage metals within the
PBE, PBEsol, and various vdW-corrected xc functionals in
Fig. 4. (Tabulated values of νhkl can be found in Table S5
of the Supporting Information [56].) The range of the plotting
grids in this case is set to ±0.5 for Cu, Ag, and Au, respectively.
We note that the negative scale of the 3D plot only reflects the
direction, rather than an auxetic behavior.

The 3D surfaces based on the experimental νhkl values for
Cu, Ag, and Au are also shown for comparison. The generic
νhkl 3D profile for the coinage metals comprises six rounded
protuberances along the {100} direction and eight depressed
basins along the {111} direction. Considering the relative
values of νhkl for these metals, we find that νCu < νAg <

νAu, and this trend corroborates well with the experimental
polycrystalline Poisson’s ratios of 0.35, 0.37, and 0.42 for Cu,
Ag, and Au, respectively [68].

Although the influence of the vdW corrections on the νhkl

3D representation surfaces is evident in Fig. 4, the extent
is less pronounced than that of Ehkl 3D plots (as shown in
Fig. 3). However, certain observations can be noted. The D3
and D3BJ corrections do not greatly change the original GGA
3D profiles for Cu and Ag, while for Au these Grimme-type
vdW corrections show higher values of νhkl in D3 and
smaller values of that in D3BJ, when compared to PBE and
PBEsol. The PBE+TS tends to underestimate νhkl values
while PBE+TS+SCS severely overestimates. Consistent with
our observations for Ehkl , the νhkl 3D representation surfaces
predicted with self-consistent optB88 and optB86b vdW xc
functionals agree much better with the experimental plots (with
optB86b providing the best agreement). Both the vdW-DF1
and vdW-DF2 vdW xc functionals predict a fairly similar
3D topology to experiments for Cu and Ag, but markedly
overestimate for Au.

C. Elastic anisotropic indices

In retrospect, the influence of the vdW corrections to the
PBE and PBEsol xc functionals investigated so far for the bulk
lattice constants, second-order elastics constants, as well as
the angular-dependent Young’s modulus and Poisson’s ratio
of the three coinage metals is apparent but its measurable
impact on the extent of elastic anisotropy of these metals is
still rather ambiguous. Here, we adopt the numeric schemes
due to Zener, Chung, and Ranganathan et al. [53,69,70] to
quantify the elastic anisotropy in these coinage metals via

the anisotropic indices of Zerner (A), Chung-Buessem (AC),
and the universal anisotropic index (AU) [53]. According to
Eq. (14), we then plot A and AC as a function of AU and
include the error analysis of the predicted AU for the three
coinage metals in Fig. 5 (see also Table S6 of the Supporting
Information [56]). The experimental A and AU are derived
from their corresponding experimental Cij values, and are
shown as dashed horizontal lines. The experimentally derived
AU (A) values for Cu, Ag, and Au are 1.65 (3.05), 1.62 (3.02),
and 1.50 (2.91), respectively.

On a technical note, the Zener anisotropic index (A) can
only be applied specifically to cubic systems and lacks the
flexibility to handle noncubic crystal systems. However, for
the case of fcc coinage metals, both A and AU give the
same information about anisotropy, and thus in the following
analysis, we will simply refer only to the AU index.

From Fig. 5, referring to the universal anisotropic index
AU (given in black lines), a departure from the zero value
will truly reflect its extent of anisotropy and here we find
a couple of outliers (i.e., more than 50% in error); namely
the xc functional PBE+D3 strongly overestimates AU of
Cu, PBE+TS strongly underestimates that of both Ag and
Au, and PBE+TS+SCS severely overestimates AU of all
coinage metals (especially so for Ag and Cu). Statistically
speaking, without considering these outliers PBE+TS and
PBE+TS+SCS, we find that the calculated AU values for
Au varies with a standard deviation of 0.56 (or 0.71 with them
included), while Ag and Cu have smaller standard deviations
of 0.23 and 0.17, respectively. Across all xc functionals tested,
optB86b provides the most balanced description of elastic
anisotropies in these coinage metals with the smallest average
error. Notably, PBEsol+D3BJ yields the smallest absolute
error in AU for both Cu and Au, but a 25% for Ag.

We attempt to understand these anomalies by inspecting
the calculated 3D representation surfaces of Ehkl (as shown in
Fig. 3). For instance, using the PBE+TS+SCS xc functional,
we find that both the E100 and E110 values of Ag are so strongly
underestimated (as compared to that of E111) that it results in
the grossly overestimated AU value of 9.81. In comparison to
other cubic metals, this poor (and wrong) description predicts
Ag to be much more anisotropic than Pb or Cs, which would
usually have a value of 2.6 for AU [53]. In the other extreme
case, using the xc functional PBE+TS to predict the AU

of Ag and Au fails badly, yielding near-isotropic values of
0.50 and 0.14, respectively. Once again, this is clearly shown
by the almost cubic 3D representation surfaces of Ehkl for
these metals in Fig. 3, where the E100 and E110 values are
overestimated while that of E111 is underestimated. This failure
of PBE+TS may wrongly suggest that Ag and Au are more
similar to the isotropic W or Co [53].

D. Error analysis of anisotropic mechanical properties

Finally, in order to assess how much of the error in these
anisotropic properties is inherited from the intrinsic errors in
the equilibrium properties of the coinage metals (i.e., lattice
constants), we have also recalculated the Cij values with the
various xc functionals at the experimental lattice constant for
all three coinage metals to decompose the influence of the
different lattice parameters and the Cij values predicted by
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FIG. 5. Upper panel: Elastic anisotropic indices of Cu, Ag, and Au. The Zener anisotropy (A) and universal anisotropy (AU) indices are
plotted as a function of Chung’s anisotropy index (AC). For each coinage metal, the calculated values are color coded for each xc functional as
shown in the legend on the right. Lower panel: The percentage relative error (in %) in the calculated AU (with respect to the experimental AU)
are shown for Cu (in black bars), Ag (in blue bars), and Au (in red bars) for each xc functional. The experimentally derived AU (A) values for
Cu, Ag, and Au are 1.65 (3.05), 1.62 (3.02), and 1.50 (2.91), respectively.

different xc functionals. This result is illustrated together as
a plot of calculated Cij values as a function of the calculated
lattice constants in Fig. 6 (see also Table S7 of Supporting
Information [56]).

Here, we observe that the calculated Cij values vary almost
linearly with varying lattice constant values. Interestingly,
from Fig. 2, we notice that the gradient of variation for the C44

of Au is the most gentle when compared to that for C11 and C12

of the same metal. On the other hand, the gradients of variation

for the Cij of Ag are most similar. Overall, confining our
discussion to only using the experimental lattice constants, we
do find an improved agreement with experimental Cij values.
Nonetheless, the ordering of the universal anisotropic index for
these metals is not changed (see Table S7). We therefore argue
that there is a non-negligible influence of vdW corrections
to the anisotropic mechanical properties of these coinage
metals with minimal influence from the equilibrium lattice
constants.

FIG. 6. Calculated C11, C12, and C44 values using the various xc functionals plotted as a function of the correspondingly determined lattice
constant, a0. Values of Cij as calculated using the experimental lattice constants are also included for discussion.
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IV. CONCLUSIONS

In summary, using a range of vdW-corrected xc DFT
functionals, we have calculated and critically assessed the
influence of the vdW contribution to the anisotropic me-
chanical properties of Cu, Ag, and Au. Besides agreeing
well with previous theoretical reports on the lattice constant
and cohesive energy values, we have found that applying
the various types of vdW corrections to the second-order
elastic constant (Cij ) calculations produced a mixed bag
of results. The force-field type (D3 and D3BJ) and self-
consistent TS corrections tend to overestimate the Cij values
when compared to the ones calculated by the noncorrected
PBE and PBEsol while TS+SCS narrows this gap. On the
other hand, the nonlocal vdW-DF1 and vdW-DF2 functionals
grossly underestimate the Cij values, while the optB86b and
optB88 offered the best agreement with available experimental
data.

Using these calculated Cij values, we have proceeded to
plot the angular-dependent anisotropic mechanical properties,
namely the Young’s modulus (Ehkl) and Poisson’s ratio
(νhkl) via 3D representation surfaces. It is found that the
vdW correction scheme due to Grimme (D3 and D3BJ)
agree only fairly with the experimental 3D topology, while
the TS and TS+SCS methods fail to describe the correct
anisotropic topology of both Ehkl and νhkl , especially for Ag
and Au. Due to their severely underestimated Cij values, the
nonlocal vdW-DF1 and vdW-DF2 functionals have predicted
rather unrealistic 3D topology profiles for all metals. Once
again, the optB86b and optB88 xc functionals provide the
closet angular-dependent anisotropic topology profiles to the

experimental ones for Ehkl and νhkl . A quantitative analysis
of the universal anisotropic index AU corroborates with the
consistent balanced performance of the nonlocal optB86b
and optB88 xc functionals in describing the extent of elastic
anisotropy in these coinage metals.

We believe that this examination of the influence of vdW
corrections on the less-studied (albeit, important) anisotropic
mechanical properties of coinage metals points to the fact
that advocating a perfect vdW-inclusive xc functional for
describing the general physics and chemistry of these coinage
metal may be a little premature. In the context of this work, we
believe that these challenges to modern DFT xc functionals
for anisotropically strained coinage metals (e.g., at the faceted
surfaces of nanostructures) may be very relevant to other
strained material systems.
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[24] C. R. C. Rêgo, L. N. Oliveira, P. Tereshchuk, and J. L. F. D.
Silva, J. Phys.: Condens. Matter 27, 415502 (2015).

[25] T. Bučko, J. Hafner, S. Lebègue, and J. G. Ángyán, J. Phys.
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