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The magnetoelectric effect predicted in topological insulators makes heterostructures that combine magnetic
materials and such insulators promising candidates for spintronics applications. Here, we theoretically consider
a setup that exhibits two well-separated interfaces between a topological insulator and a ferromagnetic insulator.
We show that there is a topological magnetic dipole-dipole interaction stemming from long-range Coulomb
interactions. We analytically derive the magnetization dynamics at the two interfaces and discuss how the
long-range coupling can be applied to nonlocally induce the formation of a magnetic texture at one interface by
suitably gating the other interface.
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Topological insulators (TIs) represent a fascinating and
novel state of matter, namely a combined bulk insulator
and surface metal with the additional property that the
gapless current-carrying surface states are protected from
scattering by particle number conservation and time-reversal
symmetry [1,2]. When TIs coexist with magnetic order, the
magnetization opens a gap in the surface Dirac cone on the
topological insulator. This leads to an anomalous quantum
Hall effect with a half-integer quantized conductance of
σ 0

xy = e2/(2h) [1,3] and a topological magnetoelectric effect
(TME) [4] whereby an electric field induces a magnetic
polarization in the same direction and vice versa. The latter
can be understood from a field theoretic description of the
Dirac fermions, which resembles axion electrodynamics [5].
Namely, the TME is evoked by a contribution proportional to
θ E · B in the Lagrangian, where θ is the axion field. This term
is of a topological origin and quantized, as only the two values
θ = 0,π are allowed by time-reversal symmetry (TRS) of the
TI bulk.

Even though conclusive direct evidence of the TME is
still pending, the tantalizing idea of magnetization control
by electric fields in a topologically protected way has led
to intense research. For instance, heterostructures of TIs and
ferromagnets have recently attracted much attention as a highly
promising platform for spintronics in both theory [6–15]
and experiment [16–22]. The strong spin-orbit coupling
required to invert the band structure in a TI enables strong
spin-orbit torques, and the spin-momentum locking provided
by the topological Dirac fermions offers unique possibilities
for magnetization control by electrical currents. Envisioned
devices based on the TME aim at, for instance, electrically
controlled domain wall motion [23–25] and qubits [26] and
even indicate a route to topological transistors [27].

Importantly, the TME is a generic feature involving any
electric field that is present, not only external fields. The
setup we propose in this Rapid Communication differs from
most previous suggestions in that it takes into account the
fluctuating electric field stemming from long-range Coulomb
interaction and its impact on the magnetization dynamics
in the presence of the TME [6,7]. This is crucial, as the

Coulomb interaction always will be present in a real system.
For instance, electrostatic coupling between TI surfaces has
been reported [28]. We show that Coulomb interactions lead
to a topological magnetic dipole-dipole interaction whereby it
gives rise to a magnetic anisotropy. Furthermore, we suggest a
spintronics nanodevice where this long-range interaction is
exploited to couple two otherwise completely independent
interfaces between TIs and ferromagnetic insulators (FMIs). A
magnetic texture at one interface can then be switched on and
off by applying a voltage at the other interface. Measuring this
effect would not only serve as a clear evidence of the TME,
since no other coupling mechanism exists in the system we
consider. It might also inspire device architectures for electric
magnetization control where the applied field and the desired
response are locally separated in the device.

In Fig. 1, we show a possible TI/FMI multilayer het-
erostructure for our approach featuring two parallel magne-
toelectrically active interfaces. We emphasize that these two
interfaces belong to different TI layers and that these two layers
are separated by FMI and nonmagnetic insulator layers in a
way that no electron hopping or direct magnetic coupling is
present. In the following, we will first employ the framework
of quantum field theory to obtain the effective Lagrangian of
the system in the low-frequency regime after integrating out all
quantum fluctuations and show that it contains a topologically
protected magnetic dipolar interaction. Then, we derive the
Landau-Lifshitz equation (LLE) for magnetization dynamics.
Finally, we argue how nonlocal electric magnetization control
is possible with a suitable gate placement at one of the
interfaces. We work in natural and Gaussian units and assume
that the TI and FMI layers are made of the same material,
respectively, such that any material constants are the same
at the two interfaces. We use the symbol ∇ to denote the
two-dimensional differential operator.

We begin by considering the Coulomb interaction, which
plays a key role for our results. The well-known three-
dimensional r−1 potential is acting on charge carriers that
are restricted to a plane. A two-dimensional Fourier trans-
formation yields the intraplane potential 2πe2/|q| and the
interplane potential 2πe2 exp(−d|q|)/|q|. Here, e is the
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FIG. 1. The structure of the nanodevice: a top and a bottom TI
layer sandwich two FMI layers that are separated by a nonmagnetic
insulator (NI). At the two interfaces indicated by arrows, the
magnetization opens a gap in the TI surface state dispersion, leading
to the TME. The interfaces are well separated and interact only via
Coulomb interactions. The coordinate system is chosen such that the
z axis is pointing out of plane.

elementary charge, q is the momentum in two dimensions,
and d denotes the distance between the two interfaces. The
overlap integral of electron orbitals from different interfaces
will be zero, since they belong to different TI bulks and
are well separated. The only contribution from the Coulomb
interaction acting between the interfaces will thus be a density-
density interaction, while exchange interactions vanish. To
facilitate handling the two-particle interaction, we write it
as a single-particle term by introducing the scalar Hubbard-
Stratonovich fields ϕi with units of an electric potential. With
the operator ρi(q) of electron density at interface i = 1,2, the
potential then has the two contributions

∑
i,q eϕi(q)ρi(q) and

1
2

∑
i,j,q ϕi(−q)Bij (q)ϕj (q), where the matrix B now contains

the Coulomb-mediated coupling of the interfaces. The matrix
entries can be derived from the intra- and interplane potential.

In the low-energy regime, the conduction electrons at the
two interfaces can be described by a Lagrangian

Li = �
†
i [i∂t + ivF (σ × ∇) · êz + e(ϕi + φi) + Jσ · ni]�i,

(1)

with the second-quantized fermion operators �
†
i ,�i . It con-

tains the Dirac-cone dispersion proportional to the Fermi
velocity vF , which is typical for TI surface states. As explained
above, the electric potential ϕi from the Coulomb interaction
enters. In addition, we allow for an externally applied electric
field Ei = −∇φi . Proximity to an FMI layer induces a
magnetization ni at each interface that couples to the electron
spin with a coupling strength J . The three Pauli matrices
are included in the vector σ . In the anomalous quantum
Hall regime, the uniform mean-field magnetization will be
orthogonal to the plane and give rise to a mass m� = J 〈n1z〉 =
J 〈n2z〉 of the fermion field, thus opening a gap in the Dirac
cone. We assume that the Fermi level, εF , lies inside the gap,
either by doping or gating. Thus, there is no loss of generality
in considering εF = 0. Furthermore, note that since ϕi are
fluctuating fields, any nonzero εF can be absorbed into ϕi . The
situation is different in the metallic regime where the Fermi
level lies outside the gap, in which case Friedel oscillations
are expected to occur in the Coulomb interacting system [29].

To account for the ferromagnetism of the bulk FMI layers,
we add

LFMI,i = bi · ∂tni − κ

2
[(∇ni)

2 + (∂zni)
2], (2)
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FIG. 2. The topologically distinct one-loop diagrams of vacuum
polarization that contribute to the effective action upon integrating out
the fermions. Here, n‖ and n⊥ denote the magnetization fluctuations
in plane and out of plane, respectively, � is the fermion field, ϕ is the
fluctuating Coulomb potential, and φ is the electric potential that is
fixed by the externally applied field (indicated with a cross). Diagrams
that mix in-plane and out-of-plane fluctuations vanish, and we skipped
the φ-φ diagram, which yields a constant. Magnetoelectric effects are
due to the first two diagrams in the second line.

where (∂ni
× bi)n2

i = −ni and κ > 0 is the coefficient of
exchange energy. Recall that ∇ is two dimensional. We
assume that the magnitude of the magnetization is fixed at
constant temperature. In total, the model Lagrangian including
Coulomb interactions is

Ltot(r) =
∑
i=1,2

[Li(r) + LFMI,i(r)]

+ 1

4π

∑
i,j=1,2

∑
q

[∇ϕi(r)] ·
∫

d2r ′ ei(r−r′)·q

|q|(1 − e−2|q|d )

× [δij − (1 − δij )e−|q|d ][∇′ϕj (r′)]. (3)

Since our analysis will mainly focus the magnetoelectric
dynamics of the magnetization at the interface, the physics is
effectively two dimensional. Furthermore, we will perform the
calculations at zero temperature. However, it must be noted that
the results obtained here are of relevance for finite-temperature
analysis, provided T � m� . Due to the proximity coupling to
the Dirac fermions at the interface, the system overcomes the
Mermin-Wagner theorem so that a finite Curie temperature
exists. To see this it is enough to consider a mean-field theory
where the dynamics of the magnetization is simply given
by ∂tn = n × (Heff + J 〈�†σ�〉), where Heff = −δHFM/δn,
with HFM being the Hamiltonian of the ferromagnet. In this
case it is easy to show that the magnon spectrum is given by
ω(q) = m�[(κ/J )q2 + 1], which clearly does not have any
infrared singularity.

We now integrate out the fermions, keeping only leading-
order terms. More precisely, we consider the one-loop di-
agrams of vacuum polarization. The relevant topologically
distinct diagrams are shown in Fig. 2. The breaking of TRS
by the magnetization generates a Chern-Simons (CS) term in
the resulting action [4] that leads to the TME ∼(n × ∂tn) and
a Berry phase. Since the two interfaces so far are decoupled in
the fermion sector, to this point the calculation is identical for
i = 1 and 2. The field-theoretic treatment of a single interface
can be found in Ref. [7]. Next, we proceed to integrate out the
Hubbard-Stratonovich fields to unravel the effective magnetic
interaction. The Lagrangian for the fields ni(r) is then given
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by

L(r) =
∑
i=1,2

(
LFMI,i(r) − σxy

2v2
F

[ni(r) × ∂tni(r)] · êz

− NJ 2

24πm�

{
[∇ · ni(r)]2 + [∇ni,z(r)]2

}

−NJ 2m�

2πv2
F

n2
i,z(r) + NJm2

�

πv2
F

ni,z(r)

−σxye

JvF

ni(r) · Ei(r)

)
+

∑
i,j=1,2

σxye

2JvF

[∇ · ni(r)]

×
∫

d2r ′ρj (r′)√
(r − r′)2 + (1 − δij )d2

(4)

Here, σxy = σ 0
xyNJ 2/e2 is the induced Hall conductivity,

assuming N electron orbital degrees of freedom. We have
neglected several further terms that are constant or contain time
derivatives that are not of leading order in the low-frequency
regime. Although we have not included any intrinsic axial
anisotropy in the Lagrangian of the FMI proximate to the
TI, we note that such an anisotropy has been dynamically
generated by Dirac fermion quantum fluctuations, in the form
of a term ∼n2

iz. Thus, if an intrinsic axial anisotropy is already
present in the FMI, the TI surface states will necessarily
enhance it. In the last term, ρj denotes the effective charge
density, which appears in the presence of in-plane divergences
of the magnetization and the applied electric field. This is
because the electric charge at a TI/FMI interface coincides
with the magnetic charge [30]. The charge density is given by

ρi = σxye

2vF J
∇ · ni − Ne2

24πm�

∇ · Ei , (5)

where the first term is of topological origin. Remarkably,
the contribution from this topological term to Eq. (4) can be
rewritten by partial integrations over both r and r′ to read

Ldipolar(r) = −
(

σxye

2JvF

)2∑
i,j=1,2

∫
d2r ′

[(r − r′)2 + (1 − δij )d2]3/2

×
{

3
[n‖

i (r) · (r − r′)][n‖
j (r′) · (r − r′)]

(r − r′)2 + (1 − δij )d2

− n‖
i (r) · n‖

j (r′)
}
, (6)

where n‖
i = (nix,niy,0). Thus, we have found a magnetic

dipole-dipole interaction having an intrinsic topological origin.
We note from the effective magnetic field, H(i)

eff = −∂H/∂ni ,
that it is the dipolar interaction that connects the two interfaces
via the in-plane magnetization. Here H is the Hamiltonian
associated to the effective Lagrangian (4), i.e., by removing
the Berry phase terms.

Typically, dipolar interactions generate a magnetic
anisotropy, turning the susceptibility nondiagonal. Indeed, it
is easy to see from Eqs. (4) and (6) that the susceptibilities for
the spin-wave modes in the interfaces and across them feature
transverse and longitudinal components, and have the form
χii

αβ(ω,q) = χii
T (ω,q)(δαβ − qαqβ/q2) + χii

L (ω,q)qαqβ/q2,

χ12
αβ(ω,q) = χ21

αβ(ω,q) = χ12
T (ω,q)(δαβ − qαqβ/q2) + χ12

L

(ω,q)qαqβ/q2, where α,β = x,y and χii
zz(ω,q) describes the

gapped, longitudinal (in field space) mode. The spin-wave
mode across the interfaces decays exponentially with the
thickness in momentum space. Moreover, there is no longitu-
dinal field mode propagating between the interfaces. Dipolar
interactions are normally considerably smaller than exchange
interactions. However, they are known to be as large as ex-
change interactions in some ferromagnetic insulators, such as
europium monochalcogenides [31]. The dipolar interaction (6)
is quantized due to the TME. An estimate can be given based
on recent experiments on Bi2Se3-EuS heterostructures [16,21].
Using �vF = 2.17 eV Å and assuming that J ≈ 90 meV,
we estimate a dipolar interaction roughly having a strength
∼1 meV. Note how the prefactor in Eq. (6) is independent of
the fermionic gap m� . Thus, the topologically induced dipolar
term is expected to play a role also above the Curie temperature
of the system. In principle, the anisotropy in the susceptibility
can be probed in the static limit via polarized neutron scattering
techniques, similar to the one used in Ref. [32] to probe the
dynamics of longitudinal and transverse fluctuations in EuS.
Since Eq. (6) involves only the planar components of the
magnetization, it is particularly sensitive to polarized neutron
reflectometry (PNR) experiments, since PNR only measures
the in-plane components of the magnetization. In the context of
TI heterostructures, PNR has recently been successfully used
to probe the magnetization for a wide range of temperatures
near the interface between Bi2Se3 and EuS in a TI/FMI bilayer
structure [21]. The same method can in principle be used to
find evidence of a dipolar magnetic anisotropy arising from
TME.

From Eq. (4), we derive the LLE at interface i,(
ni

n2
i

+ σxy

v2
F

êz

)
× ∂tni = dn,i + dE,i + dCou,i , (7)

which describes precession around an effective field di . The
second term inside the parentheses stems from the additional
Berry phase generated by the CS term. The effective field
consists of three contributions: dn,i describes the local spin
dynamics and is given by

dn,i = ρs · (∇2ni) + NJ 2

12πm�

∇(∇ · ni)

+ NJm�

πv2
F

(
Jni,z − m�

)
êz, (8)

with the spin-stiffness matrix ρs =
diag[κ,κ,κ + NJ 2/(12πm�)]. The last line reflects the
dynamically generated axial anisotropy and leads to
precession around the out-of-plane axis even if the
magnetization is uniform. The vectors dE,i = σxye/(JvF )Ei

and dCou,i = σxye/(JvF )ECou,i are due to the TME involving
the external field and the Coulomb field of the charge density
Eq. (5), respectively. Thus, dCou,i is nonlocal and contains
both in-plane and interplane interactions. The Coulomb field
at interface i is given by

ECou,i(r) = −
∑
j=1,2

∫
d2r ′ (r − r′)ρj (r′)

[(r − r′)2 + (1 − δij )d2]3/2
. (9)
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FIG. 3. Schematic depiction of the mechanism for a specific gate
placement: At interface 1, a voltage between the middle and edge
gates (bold black lines) leads to an electric field E1 (solid red arrows)
with an in-plane divergence. By the TME, the in-plane component
of the magnetization (dashed blue arrows) n1 aligns with the field,
resulting in a charged texture that gives rise to a Coulomb potential
ϕ. The Coulomb field causes the magnetization n2 at interface 2 to
develop a magnetic texture as well.

Equations (5) and (9) describe the effective nonlocal interac-
tion between magnetic moments in the system. We find that a
charge density at one interface leads to a net in-plane magnetic
texture at both interfaces.

Based on this topological coupling mechanism, we pro-
pose a spintronics device for nonlocal electric magnetization
control, where we adopt the following strategy: One of the
magnetoelectrically active interfaces is gated such that the
electric field will have an in-plane divergence. By the TME,
the magnetization at the same interface will develop a net
in-plane component that is aligned with the field. Thus, a
charge density according to Eq. (5) is induced and creates
a field, cf. Eq. (9), that finally causes a magnetic texture to
emerge at the other interface. A specific gate geometry is
shown in Fig. 3, where we consider the impact of an applied
electric field at i = 1 on the magnetic texture at i = 2. We place
three gates, where the two outer ones lie at the same potential,
and a voltage is applied between them and the middle gate
such that the electric field will have opposite orientation in
the two half-planes. Consequently, a charge density emerges
along the middle gate, where ∇ · E1 and ∇ · n1 become large.

Due to the Coulomb field, the net magnetization at interface
2 will develop an opposite in-plane component in the two
half-planes. Thus, we obtain a magnetic texture without any
local manipulations. This texture can be switched on and off by
means of the voltage applied at the first interface. We note that
in principle any setup where the applied field has a divergence
would work.

Besides applications for electric magnetization control,
measuring the magnetic texture at interface 2 would also
be an intriguing demonstration of the TME. The interplane
coupling mechanism is topologically protected. Namely, the
TME that translates the diverging field into a magnetic charge
density at interface 1, the correspondence of magnetic and
electric charge, and the TME with the Coulomb field at
interface 2 are all topologically protected. Furthermore, the
device is constructed in such a way that other long-range
interactions are excluded. One could think of a seemingly
simpler heterostructure than the one shown in Fig. 1, where
a single TI layer is coated with FMI layers on both sides,
such that the active interfaces are opposite surfaces of the
same TI bulk. In that case, however, the electric field could,
at least close to the sample edges, directly leak around
the topological side surfaces onto the other interface and
interfere with the magnetization there, circumventing the
desired long-range coupling of purely topological origin.
The nonmagnetic insulator layer in our setup also pre-
vents spin waves from traveling from one interface to the
other.

In conclusion, we have analytically derived a topological
magnetic dipole-dipole interaction that emerges from long-
range Coulomb interactions in the presence of the TME. It
generates a magnetic anisotropy that could, e.g., be probed by
PNR. We presented analytical results for the magnetization
dynamics in a heterostructure with two well-separated parallel
TI/FMI interfaces and demonstrated that the long-range
interactions enable nonlocal electric control of a magnetic
texture at one interface by applying a voltage at the other
interface. We believe that these results are experimentally
accessible with the existing technology.

S.R. and A.S. acknowledge support by the Norwegian Re-
search Council, Grants No. 205591/V20 and No. 216700/F20.
F.S.N. would like to thank the Collaborative Research Center
SFB 1143 “Correlated Magnetism: From Frustration to Topol-
ogy” for the financial support.

[1] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[2] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[3] Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).
[4] X.-L. Qi, T. L. Hughes, and S.-C. Zhang, Phys. Rev. B 78,

195424 (2008).
[5] F. Wilczek, Phys. Rev. Lett. 58, 1799 (1987).
[6] F. S. Nogueira and I. Eremin, Phys. Rev. Lett. 109, 237203

(2012).
[7] S. Rex, F. S. Nogueira, and A. Sudbø, Phys. Rev. B 93, 014404

(2016).

[8] I. Garate and M. Franz, Phys. Rev. Lett. 104, 146802 (2010).
[9] T. Yokoyama, J. Zang, and N. Nagaosa, Phys. Rev. B 81, 241410

(2010).
[10] Y. G. Semenov, X. Duan, and K. W. Kim, Phys. Rev. B 86,

161406 (2012).
[11] C. Wickles and W. Belzig, Phys. Rev. B 86, 035151 (2012).
[12] F. S. Nogueira and I. Eremin, Phys. Rev. B 88, 085126 (2013).
[13] A. G. Mal’shukov, H. Skarsvåg, and A. Brataas, Phys. Rev. B
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