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Impulsive optical excitation can generate both coherent and squeezed phonons through first- and second-order
Raman-like processes. The expectation value of the phonon displacement 〈uq〉 oscillates at the phonon mode
frequency for the coherent state but remains zero for a pure squeezed state. In contrast, both show oscillations in
〈|uq |2〉 at twice the phonon mode frequency. Therefore it can be difficult to distinguish them in a second-order
measurement of the displacements as is typical in x-ray diffuse scattering. Here we demonstrate a simple method
to distinguish the generation mechanism by measurement of the diffuse scattering following double-impulsive
excitation. We find in the case of Ge and GaAs that the generation of large wavevector phonons spanning the
Brillouin zone is dominated by a second-order process.
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Light scattering in solids provides information about
low-lying excitations, such as phonons [1–3]. Optical light
scattering couples to low net momentum excitations because
the wavelength of the light is large compared to the interatomic
distances. In the case of first-order Raman scattering in
perfect crystals, conservation of energy and crystal momentum
dictates that the inelastically scattered photons involve the
absorption or emission of a single phonon with reduced
wavevector q ≈ 0. In second-order Raman scattering, the light
couples to a broad continuum of phonon pairs with near equal
and opposite momenta such that the reduced wavevector of
each pair is near zero, but the individual phonons have q
spanning the Brillouin zone (BZ). In the absence of perfect
crystalline order, optical excitation can also couple to a
disorder-activated first-order continuum [4]. Thus, it can be
difficult to separate first- and second-order scatterings by
measurement of the Raman spectrum alone.

An optical pump pulse can also excite a first-order Raman-
active phonon if the pulse duration is significantly shorter than
the phonon period [5,6]. Ideally this generates a coherent state
in which the expectation value of the phonon displacement
〈uq,λ〉 oscillates at the natural frequency of the mode (λ denotes
the phonon branch) [7]. As in the case of frequency domain
Raman, first-order impulsive optical scattering not only can
couple to modes near the zone center in perfect crystals, but
also can couple to high-wavevector modes in the presence of
disorder. In the more general case of second-order-Raman-
like processes, the short pump ideally generates a continuum

*henighan@slac.stanford.edu
†dreis@slac.stanford.edu

of squeezed phonon pairs for which 〈uq,λu−q,λ〉 = 〈|uq,λ|2〉
oscillates at twice the phonon frequencies for each q [8].

Recently we have demonstrated an optical-pump/x-ray
probe time-domain analog of inelastic x-ray scattering [9].
In these measurements a femtosecond optical pump excites
a broad continuum of phonons in the sample that are
probed by oscillations in the x-ray diffuse scattering as a
function of momentum transfer K and pump-probe delay t .
The scattered x-ray intensity I (K,t) is proportional to the
energy-integrated dynamical structure factor [10] and thus
a weighted sum of the second-order equal-time correlation
functions 〈uq,λ(t)u−q,λ(t)〉 over λ at a given q = K − G
(where G is the closest reciprocal lattice vector) [11,12]. The
diffuse scattering was seen to oscillate at twice the transverse
acoustic phonon frequencies as a function of q throughout
the BZ [13] as expected for a second-order measurement in
the phonon displacements. In Trigo et al. [9], the oscillations
were attributed to scattering from squeezed phonon pairs
generated (by second-order scattering) from the optical pump.
However, both squeezed and coherent states would generate
oscillations in the second-order correlation functions at twice
the mode frequency so that the observation of the first overtone
alone in the x-ray scattering cannot distinguish the excitation
mechanism.

Here we propose and demonstrate a method for distin-
guishing first- and second-order generation mechanisms in a
second-order measurement in the phonon displacements using
femtosecond x-ray diffuse scattering. Our technique relies
on two temporally separated optical pump pulses where the
second pulse suppresses or amplifies the coherences initiated
by the first depending on the observed oscillation frequency
and time delay between the pumps [14–16]. We find that
the patterns of suppression and amplification of the temporal
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FIG. 1. Schematic of sudden excitation and deexcitation of
coherent and squeezed modes, where ω is the phonon frequency.
(a) Phase-space diagram of a phonon mode subjected to an impulse,
generating a coherent state. An identical impulse at time π/ω later
returns the mode to its original state. (b) Phonon mode of the same
frequency subjected to a displacement-dependent impulse, generating
a squeezed state. A second such displacement-dependent impulse at
time π/2ω will return the mode to its original state. Note that in both
cases, 〈|u|2〉 oscillates at twice the phonon frequency. However, the
delay between the two impulsive perturbations that will return the
mode to its original state is different for the coherent and squeezed
cases. The dashed and solid lines show the evolution of 〈|u|2〉 in the
absence and presence of the second pump pulse, respectively.

oscillations in the diffuse scattering following the second
pump as a function of phonon frequency are consistent with
the generation of high-wavevector squeezed phonons in the
cases of undoped single-crystal Ge and GaAs. Our conclusion
is based on the fact that the pump-pump delay required
to suppress or amplify the temporal oscillations in 〈|uq,λ|2〉
differs for a squeezed and coherent state of the same mode as
illustrated in Fig. 1 and discussed further below.

In quantum optics a coherent state is the right eigenstate of
the annihilation operator which can be produced by applying
the displacement operator on the ground state [17] and
can be thought of as a classical state with added vacuum
fluctuation noise [18] whereas a squeezed state often refers
to a minimum uncertainty state in which the variance of one
of the quadratures is less than the other but the product is
given by the Heisenberg limit [18]. In general squeezing is
not limited to a quantum phenomena [19], and classically
arbitrary squeezing can be obtained for either quadrature [20].
Similarly, for our purposes we refer to a coherent state as one in
which either the classical or quantum phase-space distribution
is merely displaced from the origin, whereas a pure squeezed
state is referred to as one in which the distribution is not
displaced, but the variances are unequal [i.e., 〈(ωu)2〉 �= 〈p2〉,
where ω, u, and p are the phonon frequency, displacement,
and momentum, respectively).

This Rapid Communication is concerned with the dy-
namical states of phonon modes. We treat these modes as
independent classical harmonic oscillators that are perturbed
by the pump pulses, although the results do not change
significantly in a quantum treatment. Consider the simple
case of a monatomic lattice in one dimension. We write
phenomenologically the Hamiltonian for the single phonon
branch interacting with optical radiation,

H =
∑

q

H0(q) +
∑

q

H1(q,t) +
∑

q,q ′
H2(q,q ′,t)

=
∑

q

1

2

(
pqp−q + ω2

ququ−q

) +
∑

q

A1(q)f1(t)uq

+
∑

q,q ′
A2(q,q ′)f2(t)uquq ′ . (1)

Here H0 is the Hamiltonian for the unperturbed phonons
in the harmonic approximation, and H1 and H2 represent
the interaction of an optical field with single and pairs
of phonons, respectively. uq and pq represent the normal
mode coordinates and their conjugate momenta, respectively.
In the case of nonresonant Raman processes A1(q) and
A2(q,q ′) are proportional to the first- and second-order Raman
susceptibilities, respectively, and f1(t) = f2(t) is the pump
pulse intensity.

By symmetry A1(q) is zero for a high wavevector in an
ordered crystal, leaving H2 as the leading-order interaction.
Approximating the wavevector of the optical pump light as
zero, momentum conservation imposes that A2 is nonzero only
when q ′ = −q. The disordered case, in contrast, can have finite
A1 even at high q [4]. To see how to distinguish these processes,
consider how the pump pulses affect a single high-wavevector
mode for which A1 is nonzero. Utilizing the arguments above,
noting that u−q = u∗

q and p−q = p∗
q [24], and treating uq and

pq as classical variables, we obtain the equation of motion for
a single oscillator,

üq = −ω2uq − A1(q)f1(t) − 2A2(q, − q)f2(t)uq. (2)

For simplicity we assume the applied force is a δ function
in time and that the oscillators are initially in a thermal
distribution. We can think of this as a distribution of classical
oscillators, and in this context 〈|u|2〉 denotes the ensemble
average of |u|2 (i.e., the average over initial amplitudes and
phases). Neglecting H2 (A2 = 0), the equation of motion
contains an impulsive force from the A1 term which displaces
the phase-space distribution along the momentum (p) axis
to generate a coherent state as illustrated in Fig. 1(a). In
contrast, the impulsive force derived from the A2 term is
proportional to the oscillator displacement u. Thus if we
neglect H1 (A1 = 0) the right +u side of the distribution is
pushed in the +p direction, whereas the −u side is pushed in
the −p direction, giving rise to a squeezed state as shown in
Fig. 1(b). Although in this example we have considered only
impulse-type excitation, displacive excitation is also possible,
leading displacements along the u axes [25]. Thus the phase
of the oscillations in 〈|u|2〉 could take any value depending on
the degree of impulsive and displacive excitations.
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Figure 1 shows that 〈|u|2〉 oscillates at twice the phonon
frequency for both the squeezed and the coherent cases. Clearly
a measurement of the frequency of oscillations in I (K,t) ∝
〈|uq=K−G|2〉 following single pump excitation is not sufficient
to distinguish these two dynamic states of the oscillator.

In Fig. 1 we also illustrate how coherent control of
the phonon mode using two identical pump pulses could
distinguish the aforementioned dynamical states in a second-
order measurement of the phonon displacement. We start with
a pair of equal-amplitude pulses separated by a fixed delay τ .
We see that the coherent and squeezed motions are affected
differently: To completely suppress the coherent phonon of
natural frequency ω the second pulse has to arrive at delays
τ = (2n + 1)π/ω for integer n (i.e., odd multiples of half the
phonon period). On the other hand, to suppress the dynamics
of the squeezed state of the same phonon mode the second
pump has to arrive at τ = (2n + 1)π/2ω (i.e., odd multiples
of 1

4 of the same phonon period) in the limit of a sudden
perturbative excitation [26]. Also note that suppressing one
case leads to enhancing the other because of the 1

4 cycle
phase difference. This method yields a clear way to distinguish
pure coherent versus pure squeezed states based on which
frequencies are suppressed or enhanced for a given τ . For
a general squeezed-coherent state, there is no τ which can
completely suppress the oscillations.

Experiments were carried out at the x-ray pump-probe
(XPP) instrument [27] of the Linac Coherent Light Source with
a photon energy of 9.5 keV using a diamond double-crystal
monochromater [28]. The x-ray pulses were less than 50 fs in
duration and contained ∼109 photons at a repetition rate of
120 Hz. Optical pulses of ∼65-fs duration were provided by
a multipass Ti:sapphire amplifier centered at a wavelength of
800 nm. Delay between optical and x-ray pulses was controlled
electronically and measured using the XPP timing tool, leading
to an overall time resolution of ∼80 fs [29]. A Mach-Zehnder
interferometer was used to control the delay between two
collinear optical pump pulses of equal pulse energy. Scattering
measurements were performed in a reflection geometry with
x-ray grazing angles varying from 0.45◦ to 1.0◦ to match the
optical and x-ray penetration depths for the various samples.
The optical laser was 0.5◦ less grazing than the x rays
and p polarized. The x-ray and optical laser beam cross
sections were 200 × 15 and 600 × 90 μm2, respectively. The
samples were commercial single-crystal wafers of undoped
Ge, GaAs, and InSb. Samples were mounted in a He-purged
environment to minimize air scattering. Scattered x rays
were collected using the Cornell-SLAC pixel array detector
(CSPAD) on a shot-by-shot basis [30]. In each case, the
sample orientation and detector position are fixed, and thus
we probe a two-dimensional slice of reciprocal space. Each

FIG. 2. Dispersion of 〈|uq,λ|2〉, matching twice the transverse-acoustic phonon branches, obtained by Fourier transform of temporal
oscillations in the diffuse x-ray intensity following single and double optical pump excitations for (a)–(c) Ge, (d)–(f) GaAs, and (g)–(i) InSb.
(b), (e), and (h) are with a single pump pulse, whereas (c), (f), and (i) are with two pumps where the pump-pump delay is labeled τ . The measured
dispersions closely match twice the calculated acoustic phonon dispersions of (a), (d), and (g) using the force constants from Refs. [21–23]
indicating our measurement is second order as expected. Line weights in (a), (d), and (g) indicate the squared structure factor and thus our
expected sensitivity to the branch in the chosen geometry. The green horizontal lines in (c), (f), and (i) show frequencies which should be
stopped by the second pulse for squeezed phonons. All measured dispersions have an identical color scale, shown in (b). The horizontal axis
represents the scattering vector, the three components of which are shown in the top solid blue, dashed red, and dot-dashed green curves (in
reciprocal lattice units). Vertical hashed bars are regions with no detector pixels. Note that the frequency never reaches zero because we did
not probe the � point. This was by design to avoid Bragg peaks whose intensities would exceed the limits of the detector.
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pixel on the CSPAD detector corresponds to a small spread
in momentum transfer and thus crystal momentum set by the
scattering geometry and the sample.

Figure 2 shows a portion of the measured dispersion
of 〈|uq,λ|2〉 with single- and double-pump excitations in
(a)–(c) Ge, (d)–(f) GaAs, and (g)–(i) InSb obtained using
analysis described previously [9,13]. Here we have selected
a one-dimensional path spanning multiple zones through the
two-dimensional projection in reciprocal space. The dispersion
is obtained by plotting the temporal Fourier transform of
the differential change in I (K,t) following the excitation by
the pump pulse(s) for each pixel. The calculated dispersion
along the same path is shown in Figs. 2(a), 2(d), and 2(f)
where the weight of the lines represents the squared structure
factor and thus our expected sensitivity to the branch in
the chosen geometry. The observed dispersions match twice
the frequency of the transverse-acoustic phonons in all three
materials studied as expected for a measurement of 〈|uq,λ|2〉
and consistent with Refs. [9,13]. As seen in Fig. 2, the optical
laser produces phonon coherences which span the BZ and have
a continuum of frequencies. Thus if the phonon dispersion
is known, a fixed pump-pump delay is in principle all that
is necessary to distinguish squeezed from coherent motion
assuming a single generation mechanism dominates. The
second pulse excitation will maximally suppress the amplitude
of the 2ω oscillations in 〈|uq,λ|2〉 only of those modes for
which ωτ ∼ (2n + 1)π/2 if they are squeezed modes or
ωτ ∼ (2n + 1)π if they are coherent modes. The horizontal
lines show twice the phonon frequencies which should be
stopped by the second pulse if the phonons are squeezed.
One clearly sees a decrease in the Fourier intensity at these
frequencies when compared to the single pump for all three
materials. This is consistent with the high-wavevector phonons
being squeezed and thus generated by scattering of phonon
pairs as represented by the interaction term H2 in Eq. (1).

To more quantitatively test the generation mechanism, we
compared the temporal Fourier-transform amplitude of the
scattered signal after single- and double-pump excitations
as a function of Fourier-transform frequency. Within the
two-dimensional slice of reciprocal space probed, a mask was
applied to exclude detector pixels with low scattering signals.
Each unmasked pixel was assigned a frequency according to
the maximum of its Fourier transform for the single-pump
excitation, and data from pixels with the same frequency
were combined. In Fig. 3, we plot the integrated Fourier
peak for the double-pump excitation normalized to the single
pump for each frequency bin. The error bars represent the
standard mean error obtained when applying the same analysis
to independent repeated measurements, whereas the points
represent the average. Also shown is the calculated ratio for
squeezed (green solid line) and coherent (blue dashed line)
phonons assuming a δ-function excitation (in the case of
a generalized coherent squeezed state, one would obtain a
weighted superposition of these two curves). In Ge and GaAs,
the data match the trends expected for squeezed phonons much
more closely than those expected for coherent phonons. We
conclude that the optical pump primarily generates pairs of
phonons with nearly equal and opposite momenta in these two
materials. However, the results from InSb are inconclusiv due
to the relatively large statistical errors.

FIG. 3. Oscillation amplitude of phonon-phonon correlation
(which oscillates at twice the phonon frequency, as seen in Fig. 2)
following two-pulse excitation. The data is binned according to
frequency and normalized to single-pulse excitation amplitude. The
pump-pump delay is labeled τ . Solid green and dashed blue curves
show expected trends for impulsive excitation for squeezed and
coherent states, respectively, with no free parameters.

We emphasize that here we observe oscillations only at
twice the phonon frequency. X-ray diffuse scattering can also
detect 〈uq〉 in first order in the presence of significant elastic
scattering at K = G + q. In this case the time-domain signal
corresponds to a heterodyne detection between the elastic and
the inelastically scattered x rays at a given momentum transfer
and will thus oscillate at the phonon frequency for a coherent
state [31]. In the case of disorder, we expect that the first-
order continuum will be generated preferentially at the same
momentum transfers that the elastic diffuse scattering is large.
Therefore we expect a signal at both the fundamental and the
second harmonic with their relative magnitudes depending on
the details of the excitation and detection.

Our method for distinguishing first- and second-order
phonon generations is valid for any time-resolved measure-
ment of the second-order correlations in the atomic displace-
ments. In the case of ultrafast optically excited Ge and GaAs,
we confirm that the observed oscillations at twice the phonon
frequency in the diffuse scattering signal are what is expected
for squeezed as opposed to coherent phonon generation. This
is consistent with the coherences in the second-order equal-
time correlations 〈|uq,λ|2〉, being generated by a second-order
process that creates correlated pairs of phonons with near equal
and opposite momenta. This type of generation process is
generally allowed by symmetry selection rules, making this
method a broadly applicable technique for studying collective
excitations in solids.
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