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Field dependence of the vortex core size probed by scanning tunneling microscopy
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S. Mañas-Valero, M. Galbiati, and E. Coronado
Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, Catedrático José Beltrán 2, 46980 Paterna, Spain
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We study the spatial distribution of the density of states (DOS) at zero bias N (r) in the mixed state of single
and multigap superconductors. We provide an analytic expression for N (r) based on deGennes’ relationship
between DOS and the order parameter that reproduces well scanning tunneling microscopy (STM) data in several
superconducting materials. In the single gap superconductor β-Bi2Pd, we find that N (r) is governed by a length
scale ξH = √

φ0/2πH , which decreases in rising fields. The vortex core size C, defined via the slope of the
order parameter at the vortex center, C ∝ (d�/dr|r→0)−1, differs from ξH by a material dependent numerical
factor. The new data on the tunneling conductance and vortex lattice of the 2H-NbSe1.8S0.2 show the in-plane
isotropic vortices, suggesting that substitutional scattering removes the in-plane anisotropy found in the two-gap
superconductor 2H-NbSe2. We fit the tunneling conductance of 2H-NbSe1.8S0.2 to a two gap model and calculate
the vortex core size C for each band. We find that C is field independent and has the same value for both bands. We
also analyze the two-band superconductor 2H-NbS2 and find the same result. We conclude that, independently
of the magnetic field induced variation of the order parameter values in both bands, the spatial variation of the
order parameter close to the vortex core is the same for all bands.
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I. INTRODUCTION

The spatial distribution of the quasiparticles density of
states (DOS) within the vortex lattice (VL) is intimately related
to the spatial distribution of the order parameter. The latter is
governed by the coherence length ξ which sets the size of the
vortex core and by the applied magnetic field which fixes the
intervortex spacing.

There are a few definitions of ξ used in literature, adjusted
to a particular problem at hand, see, e.g., Ref. [1]. Within
this work, ξ is associated with the vortex core size C, which
is related to the order parameter slope at the vortex center,
d�/dr|r→0 ∝ 1/ξ ∝ 1/C. It was suggested theoretically that
C shrinks with the increasing magnetic field H [1]. Basically,
the coherence length ξ (along with the core size) is not among
the input parameters of the BCS theory—it should be evaluated
and this is a nontrivial task. The evaluation done on quite
general grounds in Ref. [1] (and in works cited therein) has
shown that in clean isotropic materials the H dependence of C
is close to 1/

√
H in large fields.

In fact, interpreting μSR data on various materials, it was
deduced that ξ decreases with increasing fields following
roughly the 1/

√
H dependence [2]. This conclusion was

obtained with the help of London-based models for the field
distribution within VL. In these models, ξ enters as a cutoff
restricting their applicability. For this reason, extracting ξ (H )
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from μSR data can hardly be considered as direct. Similar
shortcomings can be attributed to ξ (H ) deduced from the
magnetization data [3].

The scanning tunneling microscopy (STM) has the ad-
vantage of directly probing the spatial distribution of the
quasiparticles DOS within the vortex lattice. The DOS depends
on the value of the order parameter �(r) and can be used, in
principle, to map |�(r)| within VL. This was done within
the microscopic quasiclassical formalism by U. Klein [4] for
clean Nb, by N. Nakai et al for 2H-NbSe2 [5], and by F. Gygi
and M. Schlüter using Bogolyubov-deGennes formalism [6].
Similar approaches have been applied to nickel-borocarbides
and pnictide compounds [7–9], requiring detailed knowledge
of the normal phase properties [8–11]. However, extracting a
value for ξ or obtaining order parameter variations in different
bands from STM data remains highly nontrivial. There is thus
a need to discuss within a simple model the spatial distribution
of the DOS within vortex lattices.

Perhaps the most compact and simple result for the DOS
distribution in the mixed state was given by P.G. deGennes
in the work on dirty superconductors [12,13]. Following
this work, we offer here a phenomenological scheme to
describe the STM data on zero-energy DOS for materials
with hexagonal vortex lattices. If needed, the approach can
be generalized for other VL symmetries and for anisotropic
superconductors. We show that the DOS distribution within
VL can be well described by the model for single- and two-gap
superconductors. For the single-gap case we find that the core
size C is proportional to a universal length ξH = √

φ0/2πH .
When H approaches the upper critical field Hc2, ξH coincides
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TABLE I. Superconducting parameters of the compounds stud-
ied. The gap values are obtained from the fits (red lines in Fig. 1), see
Table II in Appendix A.

Compound Tc (K) Hc2 (T) ξc2 (nm) � (meV)

β-Bi2Pd 5 0.6 23 0.8
2H-NbSe1.8S0.2 7 7 7 0.8; 1
2H-NbS2 5.7 2.5 12 0.5; 1

with the commonly used coherence length ξc2 = √
φ0/2πHc2.

This behavior agrees with predictions [1] for clean materials.
For the two-gap samples, we find nearly field independent and
equal core sizes, C1 = C2.

II. EXPERIMENTAL

We have chosen β-Bi2Pd for a single gap superconduc-
tor, and 2H-NbSe1.8S0.2 and 2H-NbS2 which are multigap
superconductors with no in-plane anisotropy. The tunneling
conductance and VL in 2H-NbSe1.8S0.2 is first reported here,
whereas the data for β-Bi2Pd and 2H-NbS2 are taken from
our previous work [14,15]. Details of the sample preparation
and of DOS measurements are given in Appendices A and C.
Superconducting parameters of the compounds are given in
Table I, and their zero-field tunneling conductance curves
are shown in Fig. 1. Note that the critical temperatures of
the three compounds are similar, although ξc2 obtained from
the upper critical fields vary by a factor of three. Mean free
paths have been estimated from resistivity measurements,
yielding values slightly above or comparable to the coherence
lengths. β-Bi2Pd is clearly a single gap superconductor (� =
0.76 meV, Fig. 1) with a zero field conductance following
s-wave BCS theory and shows a hexagonal VL [14]. The
zero-field conductance of both 2H-NbSe1.8S0.2 and 2H-NbS2

can be fitted using BCS theory (red lines in Fig. 1) with two
gaps (see Table I) [10,11,16].

To obtain tunneling conductance vs distance from the vortex
center, we select single vortices out of zero-bias conductance
images and evaluate angular averages of the normalized
conductance σ0 for each r . We define σ as:

σ = σ0(r) − σ0(r∗)

σ0(0) − σ0(r∗)
, (1)

where r∗ is the distance from the vortex center to the
point where the tunneling conductance is minimum (in the
hexagonal lattice, the center of an equilateral vortex triangle).

III. MODEL

The zero-bias DOS, N (r), in large fields of the mixed state
at low temperatures and in the dirty limit was given by P.G.
deGennes [12,17]:

N (r)

Nn

= 1 − |�(r)|2
�2

0

. (2)

Nn is DOS in the normal phase. Note that this relation does
not account for possible core states [18], in other words, we
disregard the effect of these states on the shape of |�(r)|,
which acts as an effective potential due to which the bound
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FIG. 1. Zero field tunneling conductance for β-Bi2Pd (upper
panel), 2H-NbSe1.8S0.2 (middle panel), and 2H-NbS2 (lower panel).
Fits to BCS theory are given by red lines (see also Table II in
Appendix A). Temperatures at which the data were taken are given
in each panel. Insets show VL images obtained from the zero-bias
conductance at, from top to bottom, 0.05 T, 0.1 T, and 0.15 T (lateral
sizes of the images are 450 nm, 360 nm, and 290 nm, respectively).

core states are formed. When � → 0, as, e.g., at Hc2 or at
vortex centers, N → Nn as it should. This remarkable relation
expresses the local DOS in terms of the order parameter at the
same point. Precise value of the constant �0 (on the order of
zero-T BCS gap) will not affect our analysis.

TABLE II. Superconducting parameters of the compounds stud-
ied used to obtain the red lines in Fig. 1; �’s are the broadening
parameters.

Compound �1,2 (meV) �1,2 (meV)

β-Bi2Pd 0.76, - -,-
2H-NbSe1.8S0.2 0.78, 1 0.12, 0.12
2H-NbS2 0.5, 1 0.16, 0.22
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One can argue that N (r) depends only on even powers of
�. Within the Eilenberger version of the BCS theory [19] the
superconductivity is described by Gor’kov Green’s functions
integrated over energy, f,f +, and g, which depend on Matsub-
ara frequencies ω and are related by g2 = 1 − ff +. The DOS
as a function of energy ε is given by N = NnRe[g(ω → iε)],
where f and f + are ∝ |�|. Hence, g depends only on |�|2
and so does N .

In large fields of the mixed state even between vortices,
the order parameter is suppressed relative to the zero-field
value �0. The ratio �2(r)/�2

0 is small and terms correcting
Eq. (2) of the order �4(r)/�4

0 are smaller yet. Hence,
Eq. (2) is likely to hold not only in the dirty limit [20], and we
take it as a basis of our phenomenological model.

The order parameter for a single vortex in isotropic
superconductors can be approximated by [21,22]:

�(r)

�0(T )
= r√

r2 + C2
, (3)

where the core size C is of the order of ξ . This function repro-
duces the expected behavior for r → 0, where d�/dr|r→0 =
�0/C; for r � C, � → �0, the order parameter of uniform
zero-field state. Minimizing the Ginzburg-Landau energy
functional, Z. Hao and J. Clem deduced C = ξ

√
2 to fit

magnetization data in large fields [23].
For the hexagonal VL of our samples, the unit cell can

be taken as a hexagon centered at the vortex. Hence, we can
use Wigner-Seitz approximation and consider the unit cell
as a circle of a radius a such that πa2 = φ0/B, φ0 is the
flux quantum, and B is the magnetic induction. For platelike
samples we work with, in fields perpendicular to plates faces, B
is close to the applied field H . The cell radius a is close to half
of the intervortex distance L: 2a/L = (2

√
3/π )1/2 ≈ 1.05.

To satisfy the periodicity condition, the normal derivative
of |�| should vanish at the unit cell boundary. Within circular

approximation this translates to d�/dr = 0 at the boundary
r = a. The function (3) does not satisfy this condition,
although for a � C this derivative is small. To correct this,
we modify the form (3) to

�(r)

�0(B,T )
= r√

r2 + C2
exp

[
− r2C2

2a2(C2 + a2)

]
, (4)

which satisfies d�/dr = 0 at r = a; for a � C it approaches
the maximum at the cell boundary exponentially slowly.
Expressions (3) and (4) practically coincide within the core
r < C; for larger r the new function varies slower than for a
single vortex. The slope d�/dr|r→0 = �0/C, so that C can
still be taken as the core size.

Next, we observe that the normalizing constant �0(B,T )
drops off the measured quantity

σ = N (r) − N (a)

N (0) − N (a)
= �2(a) − �2(r)

�2(a) − �2(0)
= 1 − �2(r)

�2(a)
(5)

since �(0) = 0. We now take a as a unit length to obtain:

σ = 1 − ρ2(1 + η2)

ρ2 + η2
exp

η2(1 − ρ2)

1 + η2
,

(6)
ρ = r/a, η = C/a.

IV. RESULTS

A. β-Bi2Pd

Let us first focus on β-Bi2Pd (Fig. 2). Fitting the data to
Eq. (6) and treating η as a fit parameter we can extract the core
size C. The good quality of the fit validates our model as able
to provide quantitative description of the STM data. The fits
yield values of η around 0.50 ± 0.08 in a field range where H
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FIG. 2. The left panel: the tunneling conductance σ of Eq. (5) vs distance r from the vortex center, normalized to the cell radius a, for
β-Bi2Pd and in fields indicated. Data are taken at 0.15 K and have been obtained from images of vortices averaged over the angle for each r

and normalized as described in the text. The right panel: the core size C of Eq. (7) vs H . Dots are the values of C = η a obtained from the fits
of the left panel with a being the Wigner-Seitz cell size. The line is C calculated with η ≈ 0.5 found in the fits.
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FIG. 3. Normalized conductance σ for 2H-NbSe1.8S0.2 (left panel) and for 2H-NbS2 (right panel). Lines are fits as described in the text.
Insets give the core size vs magnetic field C1,2 (red and black points, respectively) and the line is C calculated with η ≈ 0.5 for comparison.

changes by a factor of 4. Since η ≈ const, we have

C = ηa = η

√
φ0

πH
. (7)

Hence, the core size C varies with applied field as 1/
√

H , the
dependence deduced from the μSR data on many materials
[2]. This is highlighted by the red points in the right panel of
Fig. 2, which provide C vs magnetic field.

The theory of Ref. [1] suggests that in large fields the
coherence length as a function of field should behave as
ξ ≈ A/

√
H (except in the extreme dirty limit or at high

temperatures). In particular, this relation should hold at the
upper critical field Hc2. This gives the constant A = √

φ0/2π

so that we have

ξ =
√

φ0

2πH
≡ ξH . (8)

The core size, therefore, is

C = ηa = η

√
φ0

πH
= η

√
2ξH . (9)

Using η ≈ 0.5 obtained by the fits, we find C ≈ 0.7ξH .
Equation (9) implies that the order parameter and DOS
distributions within VL in large fields of one-band isotropic
materials are governed by a universal length ξH of Eq. (8).
As H → Hc2, ξH reaches the value of the standard coherence
length ξc2 = √

φ0/2πHc2. Our results suggest that by a proper
rescaling, distributions of zero-bias DOS in large-field vortex
lattices in one-band isotropic superconductors can be reduced
to a nearly universal form.

B. 2H-NbS2 and 2H-NbSe1.99S0.01

We now turn to multigap superconductors 2H-NbSe1.8S0.2

and 2H-NbS2. To generalize our model to the two-gap situation

we assume that the order parameter takes values �1 and �2 on
two bands and write the spatially dependent density of states
as

N (r)

Nn

= 1 − n1
�2

1(r)

�2
10

− n2
�2

2(r)

�2
20

, (10)

where n1,2 are partial DOS in the normal state, n1 + n2 = 1.
Each �ν (ν = 1,2) satisfies the boundary condition d�ν/dr =
0 at the cell boundary r = a, because each one should be
periodic in the vortex lattice:

�ν(r)

�0ν

= δν = ρ√
ρ2 + η2

ν

exp

[
− ρ2η2

ν

2(η2
ν + 1)

]
, (11)

ην = Cν/a, ν = 1,2. Note that δν are normalized to corre-
sponding �0ν . Substituting this in Eq. (10), we obtain:

σ = 1 − δ2
1(ρ) + γ δ2

2(ρ)

δ2
1(1) + γ δ2

2(1)
, γ = n2

n1
. (12)

Fitting the data for σ (r) we extract η1 and η2. Figure 3
shows results of such a fitting. The good quality of the fits
is remarkable. Thus, the expression (12) describes well the
spatial distribution of the DOS in two-gap systems. Using
Eq. (10), we calculate the core sizes from the fitting parameters
and find—within the accuracy of our procedure—nearly equal
and field independent core sizes C1 and C2.

The spatial dependence of the conductance curves in
2H-NbSe1.8S0.2 and in 2H-NbS2, plotted vs r/a, is clearly H

dependent (Fig. 3). The density of states spreads considerably
when applying magnetic field, i.e., the parameters ην increase
with the magnetic field. This means that C = η a no longer
shrinks with the increasing vortex density, in fact the fits show
that C is field independent. What is more, the slopes of the
order parameter values in the vortex center, C1 and C2, in each
of the two bands remain the same.
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Let us now discuss the magnetic field independence of C.
This is expected for one-band superconductors in the dirty
limit [1]. In 2H-NbSe1.8S0.2, there is a remarkable increase of
Hc2 by a factor of two with respect to pure 2H-NbSe2, and the
zero bias peak at the vortex core is considerably suppressed
(see Appendix B). The Fermi velocities range from 105 m/s to
well above 106 m/s, leading to BCS zero-T coherence length
values between 10 nm and 50 nm, in any case above the
values ξc2 ≈ 7 nm obtained from Hc2 (see Table I) [24,25].
This suggests that the influence of scattering is strong in
2H-NbSe1.8S0.2.

In 2H-NbS2, the residual resistivity is the lowest among the
compounds discussed here (see Appendix D), and there is a
clear zero-bias peak at the vortex core, comparable to the peak
observed in pure 2H-NbSe2 [15]. The observed magnetic field
independence of C is therefore unexpected in this material and
requires more careful band dependent calculations. Probably,
the scattering is band dependent, giving different sensitivities
to scattering on the zero-bias peak and the spatial dependence
of the order parameter in vortex cores.

On the other hand, our model applied to STM data on
two-gap 2H-NbSe1.8S0.2 and 2H-NbS2 shows that the length
scales on which the order parameter changes in the two
bands are, in fact, the same. This outcome is unexpected,
one would think that at low temperatures the length scales
at which order parameters change should be close to the BCS
coherence lengths of the two bands, ξ0ν ∝ vν/Tc. However, it
has been shown time ago by B. Geilikman, R. Zaitsev, and V.
Kresin [26] and “rediscovered” recently [27,28] that near Tc

the two-gap Ginzburg-Landau theory yields the same length
scales for variation of both �1 and �2. Our conclusion that
the same is true for low temperatures in materials examined
is, of course, based on phenomenological model. The model,
however, should not be far from reality since we are able
to reproduce low temperature STM data quite well. On the
theoretical side, calculations based on Bogolyubov-deGennes
formalism showed different low temperature ξ ’s in two
bands for a weak interband coupling [29]. This suggests
that in materials examined here, the interband coupling
is not weak. Altogether, the question of the microscopic
conditions for having ξ1 = ξ2 at low temperatures is still
open.

To summarize, we argue that the deGennes formula for
the zero-bias DOS N (r) in the mixed state [12] can be used
out of the dirty limit. Combining this with the Wigner-Seitz
approximation for the order parameter within the VL unit
cell and the known approximation for the order parameter
distribution, we are able to reproduce the experimental N (r)
for one- and two-gap materials. This allows us to extract the
vortex core size C not as an imaginary boundary separating
the “normal” core from superconducting environment, but as
a parameter characterizing the DOS distribution in the vortex
lattice. We find that the core size in the isotropic material
β-Bi2Pd shrinks as 1/

√
H as predicted in Ref. [1] for the

clean limit, whereas it remains H independent in multigap
cases of 2H-NbSe1.8S0.2 and 2H-NbS2. In 2H-NbSe1.8S0.2,
scattering leads to the H independent core size expected in
Ref. [1] for the dirty limit. The result in 2H-NbS2 suggests
that the band dependence of electronic scattering is important

to understand details of the density of states of multigap
superconductors. Furthermore, in the latter two compounds,
we find no difference between the magnetic field dependence
of the core size in both bands.
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APPENDIX A: VORTEX LATTICE OF 2H-NbSe1.8S0.2

The experiment consists of a home built low-noise dilution
refrigerator STM system as described in Refs. [30,31]. The
tunneling conductance curves are taken with an energy
resolution of about 15 μeV [32,33]. We use an Au tip,
which is cleaned by repeated indentation onto the Au cleaning
pad [34]. The samples were cleaved in situ to obtain fresh
surfaces. Atomic resolution was consistently achieved in
all compounds discussed in this paper. The magnetic field
is applied perpendicular to the platelike samples. At the
measurement temperature (of 0.15 K for β-Bi2Pd, 0.1 K
for 2H-NbS2, and 0.8 K for 2H-NbSe1.8S0.2) we can safely
assume that the local conductance is proportional to the local
DOS, so that we can replace the measured conductance σ0

with the DOS N ’s. To make the fits shown in the main text
(red lines of Fig. 1), we use a single gap fit for β-Bi2Pd
and two gaps �1,2 for the rest of the samples with a
Gaussian smearing of the DOS having a width of �1,2 (see
Table I).

A few images of isolated vortices and of the vortex lattice in
2H-NbSe1.8S0.2 are shown in the left panels of Fig. 4 for a set
of magnetic fields. The right panels show the evolution of the
images with changing bias voltage at H = 0.3 T. Note that,
contrary to the much discussed case of star-shaped vortices in
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FIG. 4. Left panels: the zero-bias conductance maps in 2H-NbSe1.8S0.2 at T = 0.8 K at fields indicated. Right panels: conductance maps
of an isolated vortex for bias voltages indicated and a magnetic field of 0.3 T.

2H-NbSe2, the vortices here are round due to scattering by the
S impurities. As shown in the tunneling conductance curves, at
different distances from the core center (Fig. 5), there is a zero
bias peak. The zero bias peak is smeared due to scattering
by the S substitution with respect to the pure compound.
Previous measurements in Ref. [35] show the decrease of
the zero bias peak in the vortex core when substituting Nb
by Ta. In the 2H-NbSe1.8S0.8, the zero bias peak is strongly
depressed.

We have also measured spatial distributions N (r,ε) at finite
bias energies ε. In Fig. 6 we show the angular averaged
N (r,ε) for all three compounds. Note that the shape of
the conductance vs bias voltage remains roughly the same
in increasing fields in β-Bi2Pd, whereas for the other two
compounds the conductance tends to increase away from the
core with increasing H . This tendency is seen by comparing
the curves obtained from the zero bias data in Figs. 2 and 3 of
the main text.
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FIG. 5. Tunneling conductance vs position at H = 0.02 T in 2H-
NbSe1.8S0.2 along the line given by the black arrow in the inset, which
is a zero-bias conductance map of a vortex.

APPENDIX B: VORTEX CORE STATES

The tunneling conductance within the vortex core shows
zero-bias peaks in 2H-NbSe1.8S0.2 and in 2H-NbS2 due to

Caroli-deGennes-Matricon core bound states. We do not take
these peaks into account in our model. The core states provide
a zero-bias conductance slightly above one (see Fig. 5 for
2H-NbSe1.8S0.2 and Ref. [15] for 2H-NbS2). The shape of the
vortex core is not significantly affected by these peaks. Note
that in the paper we calculate σ according to Eq. (1). Hence,
the magnetic field dependence of σ0(0) and of σ0(r∗) do not
influence σ .

On the other hand, in the previous work [15] we have
demonstrated that the absence of the core starlike anisotropy
in 2H-NbS2 is due to the absence of charge density waves
(CDW) in this compound. Thus, CDW causes the in-plane
anisotropy of the vortex core in 2H-NbSe2 [15]. Here, we
observe the CDW also in 2H-NbSe1.8S0.2 (Fig. 7). The loss of
in-plane anisotropy is shown here for the first time. Previous
measurements have studied Ta1−xNbxSe2. Authors of that
paper find that the height of the zero bias quasiparticle peak
decreases with substitution, although the effect of scattering
on the in-plane core anisotropy was not addressed.

APPENDIX C: SAMPLE GROWTH OF 2H-NbSe1.8S0.2

The synthesis of 2H-NbSe1.8S0.2 was performed in a
typical solid state reaction. The elements were mixed in

NbSe1.8S0.2
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FIG. 6. The angular averaged conductance normalized at its value at high bias voltages plotted as a function of distance r/a (with a being
the half intervortex distance) and the bias voltage at magnetic fields marked in the figure.
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0.12 nm

0 nm

FIG. 7. Atomic resolution topography of 2H-NbSe1.8S0.2 show-
ing the CDW in area with a lateral size of 20 nm. The Fourier
transform is shown in the inset. The CDW wave vectors are indistin-
guishable, within experimental error, from the pure compound. The
modulation is threefold, with q = 0.29 1/Å for the atomic lattice and
0.085 1/Å for the CDW, within an error of 20%. The CDW is located
at a distance of 34% of the atomic lattice, i.e., 1/3 within accuracy
of the relative values, which we estimate to be around 5% from the
width of the Fourier transform peaks. Note also that there are sizable
variations in topographic contrast that are certainly due to scattering
by S defects.
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FIG. 8. XRPD experimental pattern of 2H-NbSe1.8S0.2 single
crystal (black) and corresponding fit (peaks in blue and background
in green). The fit gives: a = b = 3.4323(3) Å and c = 12.513(1) Å,
a hexagonal crystal system with P 63/mmc space group, X2 =
2.22 × 10−5, and a Snyder’s figure of merit of 44.3158. Inset: view
of the grown single crystal.
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FIG. 9. Temperature dependence of the resistivity for β-Bi2Pd,
2H-NbSe1.8S0.2, and 2H-NbS2 normalized to the ambient temperature
value.

a stoichiometric ratio, sealed inside the evacuated quartz
ampoule and heated from room temperature up to 900 ◦C at
1.5 ◦C/min. The sample was kept at constant temperature dur-
ing 14 days and then was slowly cooled down (0.07 ◦C/min).
To obtain large single crystals, we mixed four mmol with I2 as
a transport agent ([I2] ≈ 5 mg/cm3) in evacuated quartz tube,
which was placed inside a three-zone furnace. We placed the
material in the leftmost zone and heated the other two zones
for three hours up to 700 ◦C and kept them at this temperature
for one day. After that, the leftmost zone was heated to 750 ◦C
within three hours and we established temperature gradients
as 750 ◦C/700 ◦C/725 ◦C. These temperatures were kept for
22 days after which the oven was switched off for cooling.

The crystals so formed were analyzed by inductively
coupled plasma spectrometry and by powder x-ray diffrac-
tion (Fig. 8). The elements content was Nb:36.9 ±1.0%,
Se:58.8 ±1.5%, and S:2.4 ± 0.2% in good agreement with the
expected values for 2H-NbSe1.8S0.2. Refinement of the x-
ray pattern revealed a hexagonal lattice with a P 63/mmc

space group and a unit cell of a = b = 3.4323(3)Å, c =
12.513(1)Å, α = β = 90◦, and γ = 120◦. These results are
only slightly different from those for pure 2H-NbSe2 [a = b =
3.4425(5)Å,c = 12.547(3)Å,α = β = 90◦, and γ = 120◦]
[36].

APPENDIX D: RESISTIVITY OF β-Bi2Pd, 2H-NbSe1.8S0.2,
AND 2H-NbS2

In Fig. 9 we provide the temperature dependence of the
resistivities normalized to the ambient temperature value for
the three compounds studied in this paper.
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R. F. Luccas, F. J. Mompéan, M. Garcı́a-Hernández, S. Vieira,
J. P. Brison, and H. Suderow, Magnetic field dependence of
the density of states in the multiband superconductor β-Bi2Pd,
Phys. Rev. B 92, 054507 (2015).

[15] I. Guillamón, H. Suderow, S. Vieira, L. Cario, P. Diener, and P.
Rodiere, Superconducting Density of States and Vortex Cores
of 2H-NbS2, Phys. Rev. Lett. 101, 166407 (2008).

[16] I. Guillamón, H. Suderow, F. Guinea, and S. Vieira, Intrinsic
atomic-scale modulations of the superconducting gap of 2H-
NbS2, Phys. Rev. B 77, 134505 (2008).

[17] D. Saint-James, G. Sarma, and E. J. Thomas, Type-II Supercon-
ductivity (Pergamon, Oxford, 1969), Eq. (6.83).

[18] C. Caroli, P. G. deGennes, and J. Matricon, Bound Fermion
states on a vortex line in a type II superconductor, Phys. Lett. 9,
307 (1964).

[19] G. Eilenberger, Transformation of Gorkov’s Equation for Type
II Superconductors into Transport-Like Equations, Z. Phys. 214,
195 (1968).

[20] In fact, the same relation holds for the clean case subject to
certain restrictions which affect the coefficient by |�|2, see P.
deGennes and S. Mauro, Sol. St. Comm. 3, 381 (1965).

[21] A. Schmid, A time dependent Ginzburg-Landau equations and
its application to the problem of resistivity in the mixed state,
Phys. Kond. Materie 5, 302 (1966).

[22] J. R. Clem, Simple model for the vortex core in a type II
superconductor, J. Low Temp. Phys. 18, 427 (1975).

[23] Z. Hao, J. R. Clem, M. W. McElfresh, L. Civale, A. P.
Malozemoff and F. Holtzberg, Model for the reversible mag-
netization of high-K type-II superconductors: Application to
high-Tc superconductors, Phys. Rev. B 43, 2844 (1991).

[24] M. D. Johannes, I. I. Mazin, and C. A. Howells, Fermi-surface
nesting and the origin of the charge-density wave in 2H-NbSe2,
Phys. Rev. B 73, 205102 (2006).

[25] V. G. Tissen, M. R. Osorio, J. P. Brison, N. M. Nemes, M. Garcı́a-
Hernández, L. Cario, P. Rodière, S. Vieira, and H. Suderow,
Pressure dependence of superconducting critical temperature
and upper critical field of 2H -NbS2, Phys. Rev. B 87, 134502
(2013).

[26] B. T. Geilikman, R. O. Zaitsev, and V. Z. Kresin, Properties of
Superconductors Having Overlapping Bands, Solid State Phys.
9, 642 (1967) [Fizika Tverdogo Tela 9, 821 (1967)]; V. Z. Kresin,
Transport properties and determination of the basis parameters
of superconductors with overlapping bands, J. Low Temp. Phys.
11, 519 (1973).

[27] J. Geyer, R. M. Fernandes, V. G. Kogan, and J. Schmalian,
Interface energy of two-band superconductors, Phys. Rev. B 82,
104521 (2010).

[28] V. G. Kogan and J. Schmalian, Ginzburg-Landau theory of two-
band superconductors: Absence of type-1.5 superconductivity,
Phys. Rev. B 83, 054515 (2011).

[29] L. Komendova, Y. Chen, A. A. Shanenko, M. V. Milošević, and
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